Pharmacy

424
BEAM AUTOGRFT IN A DIALYSIS PATIENT: A CASE REPORT
Booth, D.1 Royal Melbourne Hospital, Melbourne, Victoria, Australia.

In September 2004 YC was diagnosed with relapsed Hodgkin Disease as an incidental finding during work up for a renal transplant for reflux nephropathy. Despite her dependence on haemodialysis three times a week, she was only 24 years old and otherwise well so she was planned for salvage chemotherapy. Treatment consisted of stemcell mobilisation with dose modified cyclophosphamide and G-CSF followed by two cycles of modified ADEC (cytarabine, dexamethasone, etoposide and cyclophosphamide) followed by BEAM autograft. Very little information was available to guide dosing for conditioning in this patient. A 50% dose reduction was selected for melphalan and serum melphalan levels were collected 5minutes and 12hours post dose. Both levels were lower than the range observed in patients with normal renal function. Dose reduction of melphalan for renal dysfunction may not be appropriate even in patients on dialysis. YC is alive and in remission 2 years after her transplant.

425
A DOUBLE BLINDED PILOT STUDY OF APREPIANT VS PLACEBO COMBINED WITH STANDARD ANTIEMETICS FOR THE CONTROL OF NAUSEA AND VOMITING DURING HEMATOPOIETIC CELL TRANSPLANTATION
Babulo, J.S.1, Leis, J.E.2, Curtin, P.F.2, Kucawiuk, T.J.3, Meyers, G.1, Hayes-Latton, R.1, Jones, N.1, McCune, T.S.4, Munar, M.Y.1 Oregon Health & Science University Hospital and Clinics, Portland, OR; 2Fred Hutchinson Cancer Research Center, Seattle, WA; 3Oregon State University College of Pharmacy, Portland, OR.

Despite advances in antiemetic therapy, HSCT conditioning regimens of high dose chemotherapy +/- TBI, continue to cause significant rates of nausea and vomiting (N/V). The role of the neurokinin antagonist, aprepitant (A), when added to standard antiemetic therapy was investigated to determine if it improved control of N/V. During cyclophosphamide-based conditioning therapy patients were randomized to receive ondansetron (O) +/- dexamethasone plus A or a placebo (P) on days of chemo/radiotherapy. The primary aim of this study was to reduce N/V both during and after HSCT conditioning. Nausea, emesis, and nutritional intake, were evaluated from the start of conditioning through day +7. Since A is a substrate & moderate inhibitor of CYP3A4, busulfan dosing was targeted to disease appropriate AUCs & pharmacokinetic (PK) analysis was performed on cyclophosphamide (Cy), metabolites (HCy & CEPM), and A. Patients were similar demographically for age & gender with 10 patients randomized per arm. Nine patients received TBI (1200 cGy) Cy (120 mg/kg) and 11 received Bu (16 mg/kg) Cy (120 mg/kg). A/P was begun on Day –7 (125 mg) with the first O dose and continued daily (80 mg) through day +4 (alone on days –1 through +4). Responses were defined as complete (CR), no emesis, mild-moderate nausea, and major (MR), 1-2 emesis on only 1 day with any level nausea or no emesis with severe nausea. Overall responses (CR + MR) were seen in 9/10 A patients and 4/10 P patients. (p=0.03) Reviewing emesis solely, no emesis was seen in 7/10 A patients and 4/10 P patients (p=0.18). Preliminary PK show the observed AUCs of Cy, HCy and CEPM for both preparative regimens were within the lower range of previously reported data and the PK differences between regimens were also consistent with previous data. All patients in both arms required busulfan dose adjustments (primarily reductions) to stay within target AUCs. Anti-seizure prophylaxis with phenytoin may significantly decrease A levels, but this didn’t appear to be clinically relevant in this study and further PK evaluation is needed. Adverse effects were similar between arms with one case of sinusoidal obstruction syndrome in the P arm.

In this interim analysis, aprepitant added to standard antiemetics provides improvement in emesis prevention over standard antiemetics alone during cyclophosphamide-containing conditioning therapy prior to HSCT, without significant changes in cyclophosphamide pharmacokinetics or increased toxicity.

426
USE OF LOW DOSE RASBURICASE IN THE MANAGEMENT OF HYPERURICEMIA IN TUMOR LYSIS SYNDROME
Jin, R.1, Shayani, S.1, Hitoy, S.1, Fuginami, W.1 City of Hope National Medical Center, Duarte, CA.

Background: Hyperuricemia is a complication of tumor lysis syndrome (TLS) in patients with high grade lymphomas, leukemias, and bulky tumors. Rasburicase is a recombinant form of urate oxidase which converts uric acid to a more soluble form, allantoin. It is indicated for the management of hyperuricemia in tumor lysis syndrome. City of Hope is a National Cancer Institute (NCI) designated comprehensive cancer center specializing in oncology, hematology, and hematopoietic stem cell transplantation (HSCT).

The primary goal of this study is to determine the efficacy of low-dose rasburicase in treatment of hyperuricemia secondary to TLS. Based on the previous experience with low-dose rasburicase at City of Hope and small studies supporting the use of low-dose rasburicase, a TLS management guideline was developed in November 2005, using low-dose rasburicase. The guidelines also address the proper handling of the blood samples, since laboratory techniques in collecting and processing blood specimen are critical in obtaining accurate uric acid levels.

Methods: This study compared the efficacy of low-dose rasburicase versus the manufacturer recommended dose of 0.15-0.2mg/kg for five days both pre-guideline and post-guideline from January 2002 to April 2006. For the purpose of this study, doses less than 0.13 mg/kg would be considered low-dose and doses greater than or equal to 0.13mg/kg would be considered standard dose.

Results: Data was collected from the pharmacy information system, hospital record system, patient charts, and the laboratory information system. Uric acid levels collected at baseline and post-treatment, and serum creatinine levels were reviewed. The percent successful treatment in both low-dose and standard-dose rasburicase was 100%. The percent serum uric acid level decline within 24 hours of rasburicase administration was 73% pre-guideline and 79% post-guideline for a low-dose treatment group and 92% pre-guideline and 97% post guideline for a standard-dose treatment group.

Conclusion: This retrospective study shows that although the magnitude of serum uric acid level decline differs between the pre- and post-treatment groups, low-dose rasburicase is as effective as the standard-dose rasburicase in normalizing serum uric acid levels.

427
TRIAZOLE-RESISTANT CANDIDA GLABRATA ORAL CANDIDIASIS AND ASSOCIATED GASTROINTESTINAL SYNDROME IN ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT: SUCCESSFUL TREATMENT WITH ORAL AMPHOTERICIN B
Obulendu, M.S.1, Darvourt, J.1, Kamble, R.1, Carrum, G.1 Center for Cell and Gene Therapy, Baylor College of Medicine and The Methodist Hospital, Houston, TX.

Oral candidiasis (OC) is common in patients undergoing hematopoietic cell transplant (HCT). Candida glabrata, the second most frequently isolated species in OC, has proven more difficult to treat and usually presents asymptptomatically. The clinical significance of symptoms is contentious and the literature lacks effective therapeutic guidelines for treatment. We herein describe a series of 6 HCT patients with OC due to triazole-resistant C. glabrata. The data were prospectively collected. Mouth swabs for fungal stain, culture and sensitivity were sent
from oral lesions and clinical symptoms recorded. The median age of the 4 females and 2 males was 50.5 years. All patients had signs of OC with tongue plaques manifesting at a median of 86 days post-HCT (range 30-1045) and symptoms of dry mouth, anorexia, nausea and/or vomiting. Dysguesia was noted in three patients and weight loss in five (median 18 kg). None had odyphagia and EGD performed in 5 patients was negative for esophageal candidiasis. A total of 24 isolates were evaluated, with those tested being resistant to fluconazole, itraconazole, and voriconazole with respective MIC's of ≥256 μg/ml, 44 μg/ml and 14.7 μg/ml. All isolates were sensitive to amphotericin B (MIC 0.38 μg/ml). Concurrent systemic antifungal therapy at the time of diagnosis of OC comprised: fluconazole, voriconazole, caspofungin or micafungin, or combination regimens of caspofungin, micafungin, or amphotericin B lipid complex with voriconazole. The signs and symptoms persisted despite continuation or alterations in the systemic antifungal regimen. Topical application to the oral mucosa (5 ml 2-4 times/day) of amphotericin B oral suspension (ABOS), prepared by the pharmacy at a concentration of 100 mg/ml, resulted in dramatic clinical response with rapid resolution of symptoms in all 6 patients. OC relapsed at a median of 65.3 days in all the patients necessitating re-treatment with ABOS. All patients rapidly responded. We conclude that ABOS provides a simple, highly effective and low-cost option for treatment of C. glabrata OC. The use of newer antifungal agents combined with the incidence and morbidity of other non-albicans OC infections may provide future directions of study.

HCT Patient Characteristics

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Transplant Characteristics</th>
<th>GI Necrotizing Esophagus</th>
<th>Concurrent Antifungal Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>F</td>
<td>CML-BC</td>
<td>MRD, Cy/TBI (12 Gy)</td>
<td>Acute</td>
<td>FLUC, VORI, VORI</td>
</tr>
<tr>
<td>51</td>
<td>M</td>
<td>MM/PCL</td>
<td>MRD, Flu/Mel/Cam</td>
<td>Chronic</td>
<td>FLUC, VORI</td>
</tr>
<tr>
<td>47</td>
<td>F</td>
<td>T-ALL/AML</td>
<td>MMUD, Cy/TBI/Cam (12 Gy)</td>
<td>N/A</td>
<td>FLUC, VORI</td>
</tr>
<tr>
<td>60</td>
<td>F</td>
<td>DLBCL/NHL</td>
<td>MUD, Flu/Mel/Cam</td>
<td>Acute</td>
<td>VORI, CASP, MICA</td>
</tr>
<tr>
<td>50</td>
<td>F</td>
<td>CML-BC</td>
<td>MMUD, Flu/TBI/Cam 4.5 Gy</td>
<td>N/A</td>
<td>VORI, CASP, ABLC, MICA</td>
</tr>
<tr>
<td>58</td>
<td>M</td>
<td>MDS</td>
<td>MRD, Flu/TBI/Cam 4.5 Gy</td>
<td>Chronic</td>
<td>FLUC, VORI, CASP, MICA</td>
</tr>
</tbody>
</table>

Abbreviations: CML-BC: Chronic Myelogenous Leukemia in Blast Crisis; MM/PCL: Multiple Myeloma/ Plasma Cell Leukemia; T-ALL/AML: T-cell Acute Lymphoblastic Leukemia/ Acute Myeloblastic Leukemia; DLBCL/NHL: Diffuse Large B-cell Lymphoma/Non Hodgkin's Lymphoma; MDS: Myelodysplastic Syndrome; MRD: Matched Related Donor; MMUD: Mis-matched Unrelated Donor; MUD: Matched Unrelated Donor; Cy: Cyclophosphamide; TBI: Total Body Irradiation; Flu: Fludarabine; Mel: Melphalan; Cam: Cetuximab; CD45: Investigational Anti-CD45 Monoclonal Antibody; FLUC: Fluconazole; VORI: Voriconazole; CASP: Caspofungin; MICA: Micafungin; ABLC: Amphotericin B Lipid Complex

428 PALONOSETRON FOR THE PREVENTION OF ACUTE AND DELAYED NAUSEA AND VOMITING FOLLOWING HIGH DOSE MELPHALAN AND AUTOLOGOUS STEM CELL TRANSPLANTATION

Trifilio, S.1, Pi, J.3, Fishman, M.1, Masino, K.1, Kanicki, K.1, Mehta, J.1, NorthWestern Memorial Hospital, Chicago, IL.

Recipients of autologous stem cell transplantation (HSCT) with high dose melphalan universally experience significant acute and delayed nausea and vomiting (N/V) (60-100%), with the number of emetic episodes typically increasing over advancing days. Currently no drugs with FDA approval for delayed N/V have been studied in recipients of HSCT. Palonosetron, a serotonin antagonist (5HT3) with a prolonged duration of action, is approved for acute and delayed onset N/V following moderate to highly emetogenic chemotherapy. A retrospective study was undertaken to determine if the type of 5HT3 used, affected the amount of N/V experienced and the number of antiemetics used to treat breakthrough N/V. The treatment group included 25 myeloma patients who received 0.25 mg palonosetron prior to HDM followed by HSCT. Melphalan dose (m2) = 200 mg (n = 22), 140 mg (n = 2) 100 mg (n = 1). The control group was comprised of 49 patients who received 24 mg IV ondansetron prior to HDM. The groups were otherwise comparable. There were no scheduled anti-emetic from day 0 onwards, and anti-emetics were administered “as needed” based on patient needs as assessed by nurse clinician or clinical rounds teams. As needed meds included lorazepam, prochlorperazine, metoclopramide, promethazine, ondansetron alone or in combination. Evaluation of nausea and vomiting was assessed via interview with patient and review of input/output in medical chart.

Table 1 shows results of palonosetron versus ondansetron and the use of breakthrough medications. There was a statistically significant reduction in the number of breakthrough medications needed for both acute and delayed N/V with respect to any breakthrough medications (days 1-4) or versus additional ondansetron only (all 7 days). In addition, cost analysis revealed the following (all quoted from Redbook 2006): Average daily cost of breakthrough medications (days 1-4) or versus additional ondansetron was $14.00 and $56.20 respectively. Average overall cost/patient (including prevention) for palonosetron = $477 versus ondansetron = $511. There were no differences in time to engraftment or significant side effects between groups.

We conclude that the use of palonosetron before HDM to prevent autologous transplantation was more effective that ondansetron in controlling acute and delayed nausea and vomiting and improving quality of life. In addition, because of its long duration of action, palonosetron decreased the need for additional 5HT3 antagonists leading to overall cost savings.

Breakthrough nausea and vomiting

![Table showing results of palonosetron versus ondansetron and the use of breakthrough medications.](image)

429 VORICONAZOLE PROPHYLAXIS IN PATIENTS AT HIGH RISK FOR INVASIVE FUNGAL INFECTIONS FOLLOWING ALLOGENIC HEMATOPOEITIC STEM CELL TRANSPLANTATION

Trifilio, S.1, Singhal, S.4, Williams, S.1, Winter, J.4, Tallman, M.4, Gordon, L.4, Evans, A.1, Franklin, O.1, Pi, J.1, Mehta, J.1, NorthWestern Memorial Hospital, Chicago, IL.

Voriconazole is a triazole antifungal agent with good activity against Aspergillus spp. Standard antifungal prophylaxis at NMH for recipients of allogeneic HSCT is itraconazole 200mg po bid. Voriconazole 200mg po bid is substituted on day 0 of transplant if they have prior history of Aspergillus infection or secondary prophylaxis (or switched from itraconazole to voriconazole with receipt of high dose steroids [methylprednisolone 2mg/kg]) for GVHD. Voriconazole is discontinued 30 days after immunosuppression is stopped. 80 allograft recipients who received voriconazole and in whom complete microbiologic and pharmacokinetic data were available were studied to determine the efficacy of voriconazole prophylaxis in preventing invasive fungal infections (IFI). 24 patients had no voriconazole prophylaxis. The remainder (n = 56) received iracona-