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Abstract

Within the framework of the Koiter’s linear elastic shell theory, we study the limit model of a
Lipschitz curved arch whose mid-surface is periodically waved. The magnitude and the period of
the wavings are of the same order. To achieve the asymptotic analysis, we consider a mixed for-
mulation, for which we perform a two-scale homogenization technique. We prove the convergence
of the displacements, the rotation of the normal, and the membrane strain. From the limit formula-
tion, we derive an effective model for curved critically wrinkled arches. It introduces two membrane
strain functions—instead of one in the classical case—and exhibits a corrector membrane term to the
coupling between the rotation of the normal and the membrane strain.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction

The aim of the present paper is the introduction, with a rigorous mathematical analysis,
of an effective model for critically wrinkled arch structures of Lipschitz mid-curve.

In many industrial areas such as automotive or aerospace, elastic shell structures play
a central role. In a few words, a shell is a three-dimensional structure of small thickness.
The importance of the potential applications, as well as an original and exciting mathe-
matical modelling, combining differential geometry, and continuum mechanics has led to
the emergence of a fast growing discipline, #iell theory A huge amount of literature
is nowadays dedicated to the modelling, mathematical and numerical analysis, optimal de-
sign, and active control of shells. Among many others, starting from the seminal works of
Koiter [1], some recent references are [2-8].

E-mail addresshabbal@unice.fr.

0022-247X/$ — see front matter 2003 Elsevier Inc. All rights reserved.
doi:10.1016/S0022-247X(03)00400-1


https://core.ac.uk/display/82825953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

156 A. Habbal / J. Math. Anal. Appl. 285 (2003) 155-173

Generally, classical shells are considered with a smooth mid-surface and a bounded
slowly varying curvature. Some authors have investigated the case of rapidly oscillating
thickness, e.g., Kohn and Vogelius for plates in [9]. In the cited reference, the authors
obtained a model of plate for a critical rate of oscillations, precisely when the magnitude
and period of these are comparable.

In the present paper, we study the case where the mid-surface of the shell is waved
instead of its thickness. To our knowledge, only very few authors have investigated this
approach. In the situation where the magnitude is one order or more smaller than the pe-
riod, the so-called moderately and slightly wrinkled cases, we refer to the works of [10,11].
A closely related work for smooth wrinkled rods has been studied in [12]. In the cited pa-
per, the author uses the two-scale convergence to derive and justify an effective model for
arches of fourth order continuously differentiable mid-surface. Corrector results are also
proved. In the present paper, the mid-surface of the arch is required to be only Lipschitz
continuous, but we point out that, restricted® smooth arches, the two models do coin-
cide.

We consider one-dimensional shell structure, that is an elastic arch. The mid-surface of
the arch is waved periodically, and the magnitude and period are of the same order. We
justify the need for a mixed formulation, necessary to go further in the asymptotic analysis
of the waved arch. Then, to achieve the asymptotic analysis, we use the two-scale homog-
enization method. The mixed formulation for the arches has been introduced by [13]. For
a general introduction to the mixed formulation of variational problems, we refer to [14].
The two-scale homogenization technique, introduced by Nguetseng [15] and Allaire [16]
is a powerful tool to deal with periodic homogenization. We refer to these papers for the
definition and an extensive study of the properties of the two-scale convergence.

2. Classical modelling of an elastic arch

An arch structure is an infinite three-dimensional cylindrical body of small thickness.
We denote byl its width at the ground. Then, its geometrical description is the following.
Let¢: [0, L] — R be a function such that(0) = ¢ (L) = 0. The functionp is assumed
to have bounded derivatives up to the third order, ¢es,w3)°°([o, L)).
Thesurfacew of the arch is defined by

w={(x,y,2) e R¥such that €10, L[, z = ¢(x), y e R}.

Let nowe be a small positive parameter (the thickness). Then, the three-dimensional
arch structure, is defined by

2.={MeR3 M=m+1-ii(m), wherem € w andr € 1—e/2, +¢/2] },

wherern (m) denotes the unit normal vector &0 The thickness parameteis assumed to
be small enough, compared to the curvatuft® df w, so that any point of2, belongs to
one and only one normal ®. The relative ratie/R is sometimes used as a parameter to
classify shells as thin, shallow, or thick [5].
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Fig. 1. Description of the arch geometry.

The arch is now loaded, with a load assumed tonkariantwith respect to the cylinder
axis (the directiorDy for instance). From the Kirchoff-Love thin shell theory [17] within
the linear elasticity framework, the problem reducesrie-dimensiongbroblem, set over
the generic curve = ¢ (x) (Fig. 1).
In the following, some definitions needed for the statement of the arch equations are
given.

e The local basig7r(m), n(m)) at a given poinin € w of coordinatesx, ¢ (x)) is

. . = ~¢'(x)
1(m) =1(x) = ( ¢,((fc) ) i(m) =7(x) = ( S0 )

S(x) E)

where7(x), 7n(x) are, respectively, the unit tangent and normal vectors at the point
x, ¢’ =d¢/dx is the derivative of¢ with respect to the space variahte and

Sx) =1+ ¢ (x)2.

e The local displacement vectd(m) of a pointm is given by
f(m) = i (x) = uy (O1(x) + (O (X),

whereu, andu, are, respectively, the tangent and normal displacements. From now
on, the local displacememngriablex will be denoted byt = (u;, u,,).

Let £2 =10, L[ and denote by the space of admissible displacements

V = H}(2) x H3(2) arch clamped at both ends (1)
V = H}(2) x (H3($2) N HJ(22)) arch simply supported atboth ends ~ (2)

whereH}(£2) and H2(2) are the usual Sobolev spaces.
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The elastic energy functional is defined by
L
a(u,v) = /[EeF(u)F(v) +EMK @)K (v)]S(x)dx forallu,veV, (3)
0

whereE is the Young modulusg the constant thickness, aid the second moment of
area of the cross-section,

1, 1 . .
I'(v) = Evt + EU" is the membrane strain
1 . . .
K@) = EG’(U) is the bending strain

1, 1 . .
O(v) = —5U + =V is the rotation of the normal,

e = _? is the curvature. (4)
R 538

The mechanical stress distribution is given by
oc((x, ) =E(Fw)(x) +tK@)(x)), xel[0,L], te[—e/2 +e/2]. (5)

In order to give a sense to the elastic energy functional, the derivatiweaupfto the
third order (appearing in the teri (v)) must be bounded, whence the assumption that
¢ € W32 (R2).

Now, if we denote byf = (f;, f») the density of the load, then tleguilibrium equation
is given in its variational form by

findu eV suchthati(u,v) =L(v) forallveV, (6)

where the compliancgé(v) is generally of the form

L
L(v) =/(f.ﬁ)S(x)dx.
0

Itis proved in [18] that the symmetric bilinear mapping, -) is continuousy -elliptic.
Then, assumed that € V’, the dual space oV, there exists one and only one solution
u € V satisfying Eq. (6).

3. Thearch iswaved. Thefirst analysis

We consider a plane beam, seen as a particular arch with a mid-surface gigga@.
The plane mid-surface is periodically waved into a function

Pe(x)=€"p(x/e), x €.

The period of the waving is given by the real positive numberhich is intended to
go to zero. The amplitude is representedbythe positive number denoting the relative
period/amplitude rate.
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If we denote byY =]0, 1] the usual periodic unit-cell, then the functignis a Y-
periodic function which is smooth enough to yield a mid-surfacef global W3 (£2)
regularity.

From now on, the useful notatiof stands for the derivative of the functianwith
respect to the microscopic variable= x /e.

Now, we have a curved arch whose geometric description strongly depeggs on

Sc(x) =/ 1+ (e 1 (»)?, 7)

1 L,

— = 8

Re ¢ s3 ®)
1 , —3.‘5 -2

— ) =32 r=2.... 9

(&) =g+ ©

The membrane straiff (v), the rotation of the norma(v), and the bending straik (v)
also depend on, and so is the solution to the waved arch equations (6), which we denote
by u.. Our main goal is to study the convergence of the sequence of displacemgnts (
whene goes to zero and to state the limit or effective equation satisfied by the limit dis-
placement. We are particularly interested in the cases where effective equations still model
(waved) shells.

From a simple look at the leading terms in (7)—(9) one naturally expects the following
classification:

(@) 0<r < 1: one hasS. — +o0 ase — 0. Here, we intend to use an infinite length of
material. In the limit case = 0, one expects a two-dimensional laminated composite
behavior. The shell theory is no more valid.

(b) 1< r < 2: one has IR, — 400 ase — 0. In this case, a Budiansky—Sanders limit
model seems out of reach. However, at the rate1 numerical experiments exhibit
non-negligible effects: the plane beam displacement is affected by the waving at a
macroscopic scale.

(c) 2<r <3:0onehagl/R.) — +oo ase — 0. At the rate- = 2 numerical experiments
show only negligible first order effects.

(d) 3<r: one has a strong convergence to zero of the sequengén(the W3 ()
norm. Since the displacement solution is a smooth function of the shape, see [8], for
instance, we get a strong convergence (inffenorm of displacements) of the waved
model to the simple plane beam.

The first case (a) is out of the scope of the present paper, which focuses on situations
where the limit model is a shell one. The last case (d) is in contrast trivial since the dis-
placements are infinitely differentiable with respect to the arch shapes. Considering—in
Ref. [8]—the equation satisfied by the derivative of the displacements with respect to the
mid-surface at the poirt, = 0 which is a plane beam, it is easy to show that this derivative
is itself identically equal to zero. Hence, we get a direct proof of the following first order
expansion:

u(pe) = u(gp) +0(e"3). (10)



160 A. Habbal / J. Math. Anal. Appl. 285 (2003) 155-173

The expansion above implies that we have a strong convergence of the local waved arch’s
displacements to the plane beam ones.

We shall see in the next section that both the cases (c) and (b) with4 2 also fit in
this situation.

Thus the case = 1 could be seen legitimately ascatical waving rate, and all the
mathematical analysis done in Sections 4.2 and 5 is related to this critical case.

Now, the numerical tests are clearly in contradiction with the behavior (i.e., divergence
to infinity) of the main geometric component in shell theory, namely the curvature and
its derivative. This suggests that the classical arch model is not adequate to an asymptotic
analysis.

One shouldelaxthe dependence on the curvature, and get rid of those oscillations only
due to the representation of the displacements in the local basis, which is itself rapidly
varying.

This is exactly what the mixed formulation presented in the next section is dedicated to.

4. Two-scale asymptotic analysisvia a mixed formulation

In the present section, we recall a mixed formulation framework for elastic arches, intro-
duced by Lods [13], on which we perform an asymptotic analysis of the mixed formulation
for waved arches by means of the two-scale homogenization technique.

4.1. Recall of the mixed formulation for elastic arches

We start by remarking that any virtual displaceme&ettor v over a generic arch
structurey € W3°°(£2) can be written in the local basis of tangent-normal unit vectors
(f(y), n(y)) as well as in the globaky, e») one,

U= Ur(y, v)ér + Ua(, v)é2 = v () + vald (V). (11)

The key-point of the mixed formulation is the following identity, whiglminates the cur-
vature term It relates the rotation of the norm@{y,, v) and the membrane strain(y,, v)
given by the formulae (4) to the global componetits(y, v), U2(v, v)) of the displace-
ment.

Lemma 4.1. Using the notations above, we have the following

1
O, v) = W(I//'Ui(lﬁ, v) = Up(¥, v)),
1
I'(y,v) = W(Ui(lﬁ, V) + YU, v)), (12)

or, in an equivalent form
Uiy, v) =90y, v) + T' (¥, v),

Us(Y,v) = =60, v) +¥' T (¢, v). (13)
The equalities hold iL.2($2).
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See [13] for the proof.
In the following, we introduce or recall some useful notations and functional spaces

vm=(U1,U2,0, 1) € Vm, WhereVim = H}(2) x H3}(£2) x H}(2) x L*(£2),
am=(q1,42) € Om, WhereQm = L%(2) x L*(2). (14)

Next, we define the bilinear mappings

bn(¥; )1 Vm x Om —> R,

B (W's vms i) = / (U} = 9'6 — a1+ U+ 6 — ' w)qzdsx,

and (with obvious notations)

am(: vy, vip) = Eeﬂ/ 2S(w)dx + EM/ S(I//)el’ez’d

The continuous bilinear mappirig, expresses via a duality viewpoint that relations (13)
are seen as constraints, whilg is simply a reformulation of the elastic energy of the arch
formerly given by (3).

The right-hand side modeling the external forces is written (in the global coordinates
system) as

Lin(0r: vm) = / (AUL+ f2U2)S(¥) dx. (15)

Now, we are ready to set up the mixed formulation.
Find (um, pm) € Vim x Om such that

{ Yom € Vm, am(¥; um, vm) + bm(¥; vm, pm) = Lm(¥; vm), (16)
VYgm € Om,  bm(¥; um,qm) =0

The existence and uniqueness(®@f,, pm) € Vim X Om solution to the mixed problem
above is proved in Lods [13] by application of the Brezzi's theorem [14]. To this end, the
following assumptions, also known as the BBL conditions, are shown to hold:

(Ha) The continuous bilinear mappiag(v; -, -) is elliptic on the kernel obyy, that is the
space

Vr%// = {Um € Vm such thaNQm € Om, bm(l/fy Um, t]m) = 0} (17)
(Hb) The continuous bilinear mappiibg,(v/; -, -) satisfies the condition

inf  sup  bm(¥; vm.gm) > 0.
dmE€0m yneV;
llgmll=1 vaH l
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The equivalence of two problems (16) and (6) holds when the mid-sugfac®/3> (£2).
In the case of Lipschitzian arches, i.g;,c W1>°(£2), the mixed formulation yields a
generalizedmodel for arch structures.

From now on, we shall consider exclusively the generalized Lipschitzian arch model.
We shall omit the subscript “m” standing for “mixed” in the present section.

In the next section, we use two properties (Ha) and (Hb) to get a priori estimates of the
mixed solution for the waved arch. These estimates are used as a preamble to the two-scale
homogenization technique. Then, we derive a limit mixed problem for which we prove that
corresponding (Ha) and (Hb) hold.

4.2. Atwo-scale limit for the mixed problem

First, we recall a few results from the two-scale homogenization [16].

We denote by’2°(Y) the space of infinitely differentiable functionstwwhich arey -
periodic. The spac®(£2; Cz°(Y)) denotes the space of infinitely differentiable functions
of compact support ig2 with values inCz°(Y).

Definition 4.1. A sequencéu,.) of L2(£2) is said to two-scale converge if there exists a
functionuo(x; y) € L%(£2 x Y) such that

IimO/ué(x)v(x;x/e)dxz / uo(x; y)v(x; y)dxdy (18)
‘ 2 2xY

for anyv(x; y) € D(£2; Cg°(Y)).

We shall denote by —ug whenu, two-scale converges .

We shall also use the standard notatjoh= fy v(x; y) dy which stands for the mean-
value of a¥ —periodic functiorw.

We have the following:

(P1) Up to a subsequence, bounded sequence$(sf) two-scale converge;

(P2) Ifuc—ugin L2(£2 x Y) thenue — (uo) in L2(£2) weakly;

(P3) Up to a subsequence, bounded sequeaceof H1(£2) two-scale converge: there
existu € H1($2) anduy € L?(2; H}(Y)/R) such that,, — u in H(£2) weakly and
u,—u' + 1.

Now, let us first rapidly conclude in the case where the wavings are of the form

Pe(x) =do(x) + € p(x/e), r>1
We shall denote byu€, p€) and(u®, p°) the respective solutions ivi x Q of the mixed
problem (16) set fofy = ¢ and foryr = ¢g (i.€., the non-waved arch).
Itis then proved in [19] that under the assumptions
e po € WH(2),
l¢e |l w1 is uniformly bounded w.r.k,



A. Habbal / J. Math. Anal. Appl. 285 (2003) 155-173 163

||¢e - ¢O”H1(.Q) —- 0 withe — O,

L(¢e; ) — L(¢o;-) with e — 0in the dual spac¥’, (19)
one has the strong convergences

u¢ —>u® inv, (20)

p¢—p° inoQ. (21)

The latter assumptions obviously hold for our sequence of periodic funetigngwith
r > 1. Thus, the limit model is simply the plane beam one. This result is an evidence which
corroborates the criticality of the case=1.

From now on, we consider the waved mid-surfaces described by functions

$e(x) = Po(x) +€p(x/e),
wheree > 0 is the period as well as the magnitude of the waving,s2 is a macroscopic
space variable. The functiasy € W°°(£2) describes the mid-curve of the arch before it
is waved.
The functiong belongs to a sett defined by

A=y e whe(y), v is Y-periodic,y (0) = (1)} (22)

Thanks to the definition ofA, the functionsp. belong to the spac&1>°(£2) and are
admissible generalized arch mid-surfaces.

The mechanical unknowns which describe the behavior of the loaded waving elastic
arch are now the mixed variables

u=(U1.Us5.0%u) eV,  p°=(pL.ps)€Q.
solution to the mixed problem
Yv=(U1,U2,0,u)€V,
Ee [, uuS(¢e)dx + EM [, %(95)’9%{)6
+ [o (U] = (0)'0 — ) pi + (Us+6 — (¢e) 1) ps dx

= [o(ff U1+ f5U2)S(¢e) dx,
Vg = (q1.92) € Q.
Jo (U = (9) 0€ — u)q1 + (US) + 0 — (¢e) u)g2dx = 0.

For the waved arch structures, it is natural to assume that the external ffrces
(f1. f5) are periodic. For instance, this is the case of the pressure, self-weight and snow
loadings which are common loadings for arch structures.

We shall assume that the loading is of the forfi(x) = f(x; x/€). The function
f(x; y) belongs to the spade?(£2; Cx(Y)) of measurable and square integrable functions,
with values in the space of continuotigperiodic functions.

For such functiong€ in L2(2; Cx(Y)), one has| £ ()l 22y < I (s 22 xry -

We recall that by conventiogi(x; y) denotes the derivative of a functigr(x; y) with
respect to the microscopic variables Y. We shall also denote by the function

S = S(x.y) = /14 @p2) + 2.
Now, we are ready to state the following convergence theorem.

(23)
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Theorem 4.1. Letu® = (U7, U5, 6, u°) € V and p© = (p1, p5) € Q be the unique solu-
tions to the waved arch proble(@3). Then, we have

(i) There existunique functionsU?, U2, 6° € H}(2), 1 € L?(2 x Y), andUs,, Uxe,
6. € L2(22; H;(Y)/R) such that the function&'s, US, and 6¢ weakly converge in
H($2), respectively, ta/?, U2, 69, and

sy — U + Uy,
(US) = (UY) + U,
©€) — (0% +6.,
né = ul,

(24)

Moreover, the functiom.€ weakly converges ib?(£2) to (UD)' — ¢0°.

(i) There exists a unique functigrf € L2(£2 x Y)?2 such thatp€ — p9.

(i) Thefunction&/?, U2,6° € H}(2), u° € L2(2 x Y), Use, Uae, 6c € L2(2; HX(Y)/R),
and p® = (p?, pd) € L2(2 x ¥)? are solution to the well-posed limit mixed formula-
tion

VU1, U2,6 € H}(82), V1, W1,01 € L3(2; Hf(Y)/R), u € L3(2 x Y),

Ee [y, nouSdxdy + EM [, 31(0%) +60) (0 + 61)]dx dy
+ oy U1+ V1= @5+ d)0 —wp]
+(Uj+ W1+ 0 — (¢ + d)w)pSdxdy

= fgxy(fl(X; Y)Ul-i- fZ(X; y)UZ)SdXdyv

Vg1.q2 € L3(2 x Y),

Joxy (U + Ue — (¢ + $)6° — u0q1
+(UDY + Uze +6° — (¢ + $)u®)g2dx dy =0.

(25)

Proof. The sequence:©) is uniformly bounded w.r.t in V so that it two-scale converges.

Zeine has proved in [20] that the continuous bilinear mappirtgs; -, -) are uniformly
elliptic with respect to the parameter- 0 over the spaceg? defined by (17), provided
that one has a uniform bounfiip. ||1.0.oc < C. In our case, we havipe|l1.00 < ll¢oll1.00 +
€llélloo + [l ]l Which ensures the needed uniform upper-bound.

From other part, since(¢; -, -) depends o through only its first derivative, the
bilinear mapping is also uniformly continuous. We conclude by the classical arguments of
a priori estimates for elliptic problems thigt|| < C|| € (x) [l L2(2) < CllL.f (X3 V) L2(2 ¢ )
uniformly.

Since

2 2 2 2 2
lluc == ||Ule||H& + ||U26||H& + |I9eIIH& + lleeell7 2,

we apply the two-scale compactness result (P3) to get the weak convergence of the func-
tions in H} and the two-scale convergencelif(s2 x Y) of the derivatives.
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The last point in assertion (i) comes from the remark that sitideelongs to the space
V."’f we havej. = (Uie)' — (¢e) 0. Using property (P2) and noticing th@t. )’ — (¢o)’ +
(@) = (¢0)’, we have

pe = ((UD) + Use — (@ + $)60) = (UF)" — ¢ofo.
The sequencep®) is uniformly bounded w.r.t in Q so that it two-scale converges.
Itis proved in [13] that the bilinear mappirig¢.; -, -) enjoys the following property:

There exists a positive constafitsuch that, for any given € Q, there exists a function
v € V such that

b(@eiv.q)=llgl”> and vl < C(llgelln.00 + 1)l (26)

the constanC > 0 being independent af.. We shall denote by* the corresponding
function obtained thanks to the property above when we sep°©.
Now, from Eq. (23) we have

112 = b(¢pe; wE, p©) = —a(e; u, we) + L(de; w).
Then, using the uniform continuity af(¢c; -, -) and L(¢¢; -) with respect ta we get

P12 <{C@ U+ 1 £ Il 2cwry HIwE Il

We replace now w* || by its upper-bound given by (26) and simplify the inequality above
by || p¢|l. The proof ends by remarking that from aboy&s || is itself uniformly bounded.

Since the sequendg®) is bounded uniformly with respect tq there exists a subse-
quence which two-scale converges to a lipite L2($2 x Y)2. The convergence of the
whole sequence comes from the uniqueness of the limit, and is proved below.

We pass to the two-scale limit in the mixed equa(zs).

First, we choose test functions of the form

v=(Ur(x) + € Vi(x; x/€); Ua(x) + € Wi(x; x/€); 0(x) + €01(x; x /€); u(x; x/€)),
U1,U3,0 € D(82), u, V1, W1,01 € 'D(.Q; CEO(Y)),
q=(q1(x: x/€), q2(x: x/€)), q1.q2 € D(2; CF(Y)). (27)

(Here, the usual notatigR stands for the space of infinitely differentiable functions with
compact support, and a standard density argument of such spaceaiil HO1 is used.)

Then, applying the definition of the two-scale convergence, we can pass to the limit in
€ in each of the terms of Eq. (23).

As an illustrating example, considering the test function

1, .
w(x;y) = 5(9 (x) +61(x; y)),

we get

/(96)'w(x; x/€)dx = / S(; )(95)’(9 +eb1(x; x/€)) dx + O(€) (28)
2 2 ¢

so that

€y/ 1 0y/ o l )
/(9 ) w(x; x/€)dx — / E[((@ ) +6c) (O +61)]dxdy
2 2xY
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for the bending term, and

f (U) = (60)/6° — u)qrdx — f (U9 + Use — @+ $)6° — 1) qrdx dy
22 2xY

for the first term of the duality functional.

The limit mixed formulation given by (25) is then straightforward.

The limit mixed formulation is well-posed.

In order to make the expository as clear as possible, we again introduce adapted nota-
tions and functional spaces

W0 = (U1,U2,0,1) e VO, whereV® = H}(2)% x L2 x V),
v’ = (Vi, Wi,61) € VE,  whereV¢ = L2(2; HAX(Y)/R)®,
v =00 v e v, wherevH =vOx v,
g = (q1,92) € 0, whereQ = L?(2 x Y) x L?(2 x Y). (29)
The space/ ¥ is endowed with the norm
W12 = 1011250, + 102172y + 16" 172y + 181122y
F Va2 2 oy F IWLIZ2 gy + 16117200y (30)

while the spac&? is endowed with its naturdl? norm.
The limit bilinear mappings are defined by

b (p;-,):VHE x 0 S R,
bt (g 0" ) = / (U} + V1 — @+ )0 — w)an
2xY
+ (Up+ Wi+ 6 — (¢ + ) g2dx dy, (31)
and (with obvious notations)
a(@: ) vH x v SR,

a® (; ), v")?) = Ee / ut s y)uP(x; y)Sdx dy

2xY
+EM / %[((91)’ +61) (0% +62)]dx dy. (32)
2xY

We shall also need to define the kernebéf by

vH? = [v# e vH suchthavg® € 0, b (¢;v",¢") =0}. (33)
The limit right-hand side is easily obtained as being
LH (i) = / (F1(x: UL+ fox: Y)U2) S dx dy. (34)
2xY

We denote by = (U9, U2, 6%, u%; Usc, Uz, 6) andp™ = p® = (p, p).
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Then the limit equation reads in the classical mixed formulation: Firfd, p’) e
VH « 0 such that

{VvHeVH, al(p; ull ,vHy + bH (¢; v, pHy = LU (p; v1),

Vgl € 0, bH(giut g) =0, (39)

The continuity of the mappings” (¢; -, -), L (¢; -), andb? (¢; -, -) over their respec-
tive spaces is straightforward. In order to prove that the problem (35) above is well-posed,
it is enough to prove that the following BBL conditions hold:

(a) Ellipticity of the limit mixed energy:” (¢; -, -) over the spac& 7-¢;
(b) The inf-sup condition for the limit bilinear mappiad’ (¢; -, -).

We shall use the generic elemertt = (U1, Uz, 0, u; V1, Wi, 61) of V.
(a) The continuous bilinear mappiad (¢; -, -) is elliptic over the spac& 7-¢ defined
by (33). First, remark that sinag is Y -periodic, one has immediately

afl(g; v, vy > A / ,u,zdxdy—i-B/(Q’—i—él)zdxdy (36)
2xY 2xY
> A / uzdxdy+B/(9’)2dx+B / (61)%dx dy. (37)
2xY 2 2xY

Secondly, since the functiarf’ belongs to the spacé-¢, we have
UD) +Vi=(po+ )0 +n,  (U2) +Wi=—60+(¢o+ ). (38)

Now, using the identities above, the Poincaré inequalityfand theY -periodicity of V1
and Wy it is an easy exercise, left to the reader, to derive the ellipticity’ofp; -, -) in the
(induced) norm of/ 4%,

(b) The inf-sup condition. A classical method to prove the inf-sup condition (Hb) is to
explicitly construct for any giveg” e 9, a functionv” € V¥ such that

b ;v g™y =g 1> and o) < Clig™ I, (39)

the constan€ > 0 being independent af’ .
Given any arbitrary function’ = (g1, ¢2) in 0, one has to yield a functionf’ € V#
such that

q1(x; y) = (UD)' + Vi — (¢p + )0 — 1,
g2(x: y) = (U2) + W1+ 06 — (¢ + ). (40)
One could easily check that the following candidates work:

n(x;y)=— / qi(x; y)dxdy,

2xY
) / q2(x; y)dxdy,

2xY

- —x

2

(% =4 !
(x)= (5_
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X

Ur(x) = /((ql(s; D)+ (1 (ss ) ds.
0

X

Ua(x) =/((q2(5; ) —6(s)) ds, (41)
0
and,

y
Vi(x;y) = /(q1(x§ 1)+ pu(x; 1) + (g + ) () (x) — Uy (x)) dt + constant
0
y
Wi(x; y) = /(qz(x; 1) —0(x)+ (¢ + ) (Ou(x; 1) — Ué(x)) dt + constant (42)
0

Itis straightforward from this explicit construction that the upper-bound required in (39)
is fulfilled. Moreover, the constardt can be chosen independent of the paramgterc

We have then established the existence and uniqueness of thedifmisid p so-
lutions to the limit mixed problem (35). As a consequence, we also have proved the
convergence of the whole sequen¢gd and(p©).

5. An effectivemodel for Lipschitz waved arches

The limit mixed formulation obtained in the previous section has the advantage to pre-
cisely describe the two scales of behavior, the macroscopic and the microscopic (also called
hidden scale) one. For numerical purpose nevertheless, this advantage becomes a draw-
back, since it implies a dramatical increasing in the complexity of the calculations.

Mainly for this reason, computational mechanicians are always interested in models
where one can get rid of the microscopic variable and functions (e.qg., first order correctors).
When possible, one tries to obtain a so-called effective or homogenized model which is set
in the macroscopic variable/functions only.

In the sequel, we build in three steps such an effective model for the present case of
periodically waved arches.

First step.In the limit equation (25), we mak&; = U =6 = u = 0 andf; = 0. We
obtain that for allvy, W1 € L?(2; H}(Y)/R),

/ (leg + Wlpg) dxdy =0. (43)
2xY

A simple integration by parts yields that the functiph does not depend on the micro-
scopic variabley,

Pl v =px),  pIxsy) = pa(x).
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Thus, thanks to the periodicity of the functiovis Wy, andg, the dual ternb (¢; v, p)
reduces to

b (p; v, pt) = / (U — (W) p+ ((U2) +6 — (6 + P)s)) pI dx. (44)
2

Then we consider test functiogd’ which themselves do not depend on the variable
Hence the dual equation in (25) reads

Vg1, g0 € L3(£2),

/ (UD) = 21+ ((U3) +6° (65 + d)n’))g2dx = 0. (45)
2

Remark thatV;, W1 as well aslUs., Uz, have completely disappeared from Egs. (44) and
(45).
Second stepNow, we focus our attention on the bending term, namely,

1 . .
Thending= / SO +6)@ +6p]dxay. (46)
2xY

First, by settingy/y = U, =60 = u =0 andV1 = W1 = 0 in (25), we derive the equation

{ HEEY +d) =0 in@xv, #7)

y — 0.(x; y) is Y-periodic.
Now, we have to handle a classical homogenized equation for whicbethequations

technique can be used.
One defines the functiomy € H}(Y)/R by

{diy(%{nu‘)g}):om Y, 48)

y — wg(y) is Y-periodic.

Then, one can easily show that(x; y) = (6% (x)we(y). Then, settingdi(x;y) =
0'(x)zo(y), wherezg € Hi(Y)/R, one gets

1 .
Ibending= /(90)/9// §(1+ wy)dydx. (49)
2 Y

Itis also easy to get from Eq. (48) that

/E(1+u'))d -
S 0 y—(>,

Y

which reduces the terffyendingto

1
Ibending= / E(Qo)/Q’dx. (50)
2
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The (nearly) effective equation for the waved arch model can then be stated as follows:
Find U2, U2,00 € H}(£2), 10 € L?(2 x ¥), and p® = (p?, pJ) € L?(£22) x L?(£2) such
that

VU1, Uz, 0 € H3(R2), Vi e L2(2 x ),
Ee [o .y 1nOuSdxdy + EM [g 5 [ (6°)6' dx
+ [ (U1 = () pd + (U2 +6 — (P + $)u)) pYdx
= [oUAS UL+ (/25)U2) dx,
V(q1. q2) € L3(2) x L3(£2),

[o (U — (u®)q1+ (U +6° — (¢} + $)u®)gadx = 0.

The Brezzi conditions for this mixed formulation are fulfilled. The proof is slightly the
same than the one of the limit problem (35). Henae?, (U2, 6°; 1 p°) is the unique
mixed solution of both Egs. (35) and (51).

Third stepNotice that (51) is only a semi-effective mixed formulation becausge; y)
shows. As a matter of fact, one cannot expect that the mean-yatiiés the effective un-
known for membrane strain, since in the problem abigyg + )0 cannot be expressed
as a linear function of the latter.

So, inorderto go onin the homogenization process, w&set U =6 = 0in Eq. (51),
which reduces to

(51)

YueL?(2 xY),
Ee / pOuSdxdy = / (P2 + (ph+ ) pS) L dx dy. (52)
2xY 2xY
This equality inL2(£2 x Y) proves thap.? can be written as
Eep®(x; y)S = p(x) + (¢p(x) + () p3(x).
It is then legitimate to take test functiopse L2($2 x Y) of the same form

(Bp(x) + ()

o P
S

with 1, w2 generic elements of the spabé(.(z).

Thus, the homogenized membrane styafris uniquely described by the paje$, 119) e
L?(22) x L%(£2) such that

1
pu(x; y) = <pa(x) + 2(x)

($p(x) + ()
S
Finally, using these new expressionsfioand..®, we put them in the mixed formulation

(51) in order to get, this time, a completely effective equation.
We have the following result.

1
1o0x; y) = Eu?(x) + 1I(x).

Theorem 5.1. The global displacementd/], U;) H(}(.Q), the rotation of the normal
0¢ € H}(£2), the membrane straip¢ € L(£2), and the Lagrange multiplierép, p$) €
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L2(2) x L%(£2) which are the solution to the mixed waved arch probl@8) weakly
converge in their spaces, respectively, to

(UL U3) e Ho(2), 6°€ Hy(2), n= (<%>u2 +<(¢°S+¢) >u8> € LX),

and
(P2, p) € L%(2) x L3(£2).
The limit, or effective, functions above are the unique solution of the following effec-

tive mixed formulationFind U2, U9, 6° € H}(£2), p° = (13, 7 € L2(2)?, and p° =
(pY, pd) € L?(£2)2, such that

VUL, Uz,60 € Hy(2), Y= (11, n2)" € L2(82)%,
Ee [o(AEp®) - pdx + EM [, BE(©°)0' dx
+ [ (U = (@00 — AF - w)pf + (U2) +6 — A - p) pYdx (53)
= [o({AS)UL + (f28)Up) dx,
V(q1. q2) € L3(2) x L3(£2),
Jo(UYY = (¢0)'0° — AL - uO)q1+ (UD) +6° — AL - nO)g2dx = 0.
The effective material properties are given by

e R (%R p_ 1
A :<<(¢o)s’+q'>><((¢o)’s+d>)2>>’ B =<S) (54)

where

§=500,) =1+ @200 + @)

and the brackets denote the meanvalue takeryferY. The dot- denotes the canonical
scalar product inR? andA%, AL are the first and second columns of the symmetric positive
matrix A, which is always definite except for the trivial case of the non-waved curved
arch.

Proof. We already know that the candidate$, U9, 6°, p°, andu, 1.9 (through the func-

tion 0 = (1/5)u8 + (¢ + ¢)/ )13 ) are the unique functions which satisfy Eq. (51). It

is then sufficient to prove that the mixed formulation (53) has a unique solution, or in other
words, that it fulfills the BBL conditions. If so, we can conclude that two problems (51)
and (53)are equivalentTheorem 4.1 completes the proof.

Now, we claim that Brezzi conditions hold for the mixed formulation (53) above. In-
deed, the continuity of the involved bilinear (and linear) forms is straightforward. The
inf-sup condition for the dual bilinear mapping is also fulfilled. The proof is done by ex-
hibiting candidates that fulfill property (39)—updated for our mixed problem. It can be
easily shown that such candidates exist, using the same techniques as those of (41) and (42).
As a hint, one should seek for candidaﬂ.’isy,g which are constant, solution to the simple
2 x 2 linear system £ u® = ([, q1(x) dx, 0)T.
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It remains to prove the ellipticity condition (over the relevant space, roughly speaking
the kernel space of the dual mapping). This is also straightforward as soon as we can state
that the matrixA is symmetric positive definite. This property &f is obtained through
the simple Cauchy—Schwarz inequality

@+ 1 2</g/((¢6+¢‘>>)2
Y VS oVs \y Sy > |

yielding that the matrixA £ has a positive determinant, which is equal to zero if and only if
the wavingg is itself equal to zero (thanks to the periodicity conditio®) = ¢ (1)). O

Remark 5.1. For the plane arch, the membrane strain and rotation of the normal are given
by

wf=Ul), o"=—(u;), (55)
while we have shown that for the limit model of the waved arch, one has
pF=(uy),  6°=—(U3) + A5 -u° (56)

This coupling between the rotation and the membrane strain shows that the limit structure
is not simply aplanebeam with new effective mechanical constants (as comes from the
homogenization of a plane beam with periodic thickness). Notice that, contrarily to the
waved plane arch case, the coupling between bending and membrane effects is already
present for curved arches.

Also remark that when the waving in the formulation above reduces to zero, there is
no need for a couple of unknowrig{, 119). One hasA% - u® = ¢, andwf must be
taken as the—classical membrane strain—unknown.

As a conclusion, we emphasize that Theorem 5.1 introduces a new elastic arch model, of
Lipschitz effective mid-surface, showing a corrector term to the coupling between bending
and membrane effects. The corrector, which depends on the shape of the waving could be
used in view of, e.g., structural optimal design.

It is still well suited to numerical implementation, using classical mixed finite element
methods, like the one presented in [13] where the displacements are approximated by
(P1) polynomials, the membrane strain and the Lagrange multipliers by piecewise con-
stant polynomials and the rotation of the normal by (P3) Lagrange—Hermite polynomials.
However, one should be careful when developing finite element methods for this model.
It is of course a shell of parabolic type, which still exhibits inextensional fields which are
known to be responsible for numerical locking phenomena.

A possible development is the extension of the critical wrinkling to the general thin
shells. To this end, for standard mixed formulations, we unfortunately cannot get rid of
the curvature. But a similar study to ours should be possible for the case of axisymmetric
models, an important class of the hyperbolic shells [21].
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