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Summary

Plants use receptor kinases, such as FLS2 and EFR, to
perceive bacterial pathogens and initiate innate immu-

nity. This immunity is often suppressed by bacterial

effectors, allowing pathogen propagation. To counter-
act, plants have evolved disease resistance genes that

detect the bacterial effectors and reinstate resistance.
The Pseudomonas syringae effector AvrPto promotes

infection in susceptible plants but triggers resistance
in plants carrying the protein kinase Pto and the asso-

ciated resistance protein Prf. Here we show that
AvrPto binds receptor kinases, including Arabidopsis

FLS2 and EFR and tomato LeFLS2, to block plant im-
mune responses in the plant cell. The ability to target

receptor kinases is required for the virulence function
of AvrPto in plants. The FLS2-AvrPto interaction and

Pto-AvrPto interaction appear to share similar se-
quence requirements, and Pto competes with FLS2

for AvrPto binding. The results suggest that the mech-
anism by which AvrPto recognizes virulence targets is

linked to the evolution of Pto, which, in association
with Prf, recognizes the bacterium and triggers strong

resistance.

Results

Plants use plasma-membrane-localized pattern-recog-
nition receptors (PRRs), which contain an extracellular
leucine-rich-repeat domain and a cytoplasmic serine/
threonine kinase domain, to detect pathogen-associ-
ated molecular patterns (PAMPs) and trigger innate
immunity [1, 2]. Phytopathogenic bacteria have evolved
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effector proteins that are delivered into plant cells
through the type III secretion system to inhibit the
PAMP-triggered immunity (PTI) [3]. Plants, in turn,
have adapted to effector-mediated virulence by evolv-
ing resistance proteins that directly or indirectly detect
the effectors inside the plant cell and trigger strong im-
mune responses (effector-triggered immunity; ETI) [3]
that often give rise to complete resistance to the invad-
ing pathogen. However, little is known about virulence
targets of the effectors and how effector virulence activ-
ities have shaped the evolution of resistance proteins. In
tomato plants, the resistance protein Pto directly inter-
acts with the Pseudomonas syringae effector AvrPto
inside the plant cell to activate ETI [4]. Interestingly,
Pto resembles the cytoplasmic kinase domain of recep-
tor-like kinases but lacks the extracellular leucine-rich-
repeat domain [5]. Pto constitutively interacts with Prf,
a typical resistance protein that contains a nucleotide-
binding domain and a leucine-rich-repeat domain and
is crucial for the activation of ETI [6]. In plants lacking
Pto or Prf, AvrPto inhibits PTI and enhances bacterial
virulence [7]. A recent report showed that AvrPto acts
upstream of the mitogen-activated protein kinase (MAPK)
cascade to inhibit the PTI signaling pathway, but the
target(s) remains to be identified [8]. AvrPto is plasma-
membrane-localized through myristic-acid modification
at the N terminus [9], but its biochemical function is
unknown.

To understand the biochemical function of AvrPto, we
have solved the crystal structure of the Pto-AvrPto com-
plex [10]. Structural and biochemical analyses demon-
strated that AvrPto is an inhibitor of the Pto kinase.
AvrPto occupies the P+1 loop and blocks the access
of Pto to its substrates. We hypothesize that the ki-
nase-inhibition ability is intrinsic to the virulence func-
tion of AvrPto, namely the interference with PTI by
blocking PRRs. Two well-known PRRs in plants are
FLS2 and EFR, which perceive bacterial flagellar peptide
flg22 and EF-Tu peptide efl26, respectively [11, 12]. To
determine whether FLS2 and EFR kinases might be
structurally related to Pto, we searched Protein Data
Bank (PDB) with the primary sequences. Among the
known structures of serine/threonine kinases, IRAK-4
is most closely related to Pto, FLS2, and EFR kinases,
particularly in the P+1 loop (Figure S1 available online).
This similarity permitted the use of IRAK-4 structure as
a template for FLS2 and EFR that was compared with
the Pto structure. Figures S1B and S1C show that the
two kinases are highly similar in overall structure and
P+1 loop, with a root-mean-square deviation of 1.285 Å
over 241 Ca atoms. We reasoned that AvrPto might sim-
ilarly bind the kinase domain of receptor kinases. To test
this, we coexpressed His-tagged FLS2 or EFR kinase
domains with GST-AvrPto in E. coli and assayed them
for AvrPto-FLS2 and AvrPto-EFR interactions in vitro.
Pull-down assays showed that the FLS2 and EFR ki-
nases were, indeed, copurified with GST-AvrPto (Fig-
ures 1A and 1B). GST alone did not bind FLS2 and

mailto:zhoujianmin@nibs.ac.cn


Bacterial Protein Targets Plant Receptor Kinases
75
Figure 1. AvrPto Binds and Inhibits Receptor

Kinases FLS2 and EFR In Vitro

(A–C) AvrPto binds the kinase domain of

FLS2 (A) and EFR (B), but not PKS3 (C).

Recombinant GST-AvrPto (AvrPto) or GST-

AvrPtoY89D mutant (Y89D) protein was coex-

pressed with the His-tagged FLS2 or EFR

kinase domain or PKS3 in E. coli, and protein

complex was affinity-purified with glutathi-

one-conjugated agarose beads. The pres-

ence of His-FLS2, His-EFR, His-PKS3, and

GST-AvrPto in the protein complex was

detected by western blots with anti-His and

anti-AvrPto antibodies.

(D and E) AvrPto inhibits the FLS2 (D) and EFR

(E) autophosphorylation in a Y89-dependent

manner. The recombinant FLS2 or EFR ki-

nase was incubated with increasing amounts

of AvrPto, AvrPtoY89D, or BSA in the kinase

assay buffer, and the autophosphorylation

of the kinases was determined by autoradi-

ography. The results shown are a representa-

tive of four independent experiments.
EFR. AvrPto Y89 plays a crucial role in Pto interaction by
maintaining a proper conformation of GINP motif and
making direct contact with Pto, and the AvrPtoY89D mu-
tation abolishes the binding and inhibition of Pto kinase
[10]. The AvrPtoY89D mutation also significantly dimin-
ished its binding to the FLS2 and EFR kinases (Figures
1A and 1B). We asked whether AvrPto nonspecifically
binds serine/threonine kinases. GST pull-down assay
showed that PKS3, a serine/threonine protein kinase
involved in salinity responses [13], did not interact with
AvrPto (Figure 1C), suggesting that AvrPto is specific
to the receptor kinases. BIAcore surface-plasmon-reso-
nance analysis further demonstrated that FLS2 binds
AvrPto at an equilibrium constant of 0.19 mM, but not
the control protein BSA (Figure S2). The wild-type (WT)
AvrPto significantly inhibited EFR autophosphorylation
and notably reduced FLS2 autophosphorylation in vitro,
whereas the AvrPtoY89D mutant was greatly compro-
mised in its ability to inhibit FLS2 and EFR kinases (Fig-
ures 1D and 1E), indicating that AvrPto inhibits FLS2 and
EFR kinase activities in a Y89-dependent manner.

To test whether FLS2 and AvrPto can interact in vivo,
we coexpressed 35S::AvrPto-3FLAG and the full-length
FLS2-HA fusion protein under the control of native FLS2
promoter in protoplasts and carried out coimmunopre-
cipitation assays. As shown in Figure 2A, FLS2-HA is
present in the AvrPto-3FLAG immune complex, and its
presence is severely reduced in the AvrPtoY89D-3FLAG
mutant immune complex. FLS2 is known to associate
with its coreceptor BAK1 only when induced by flg22
Figure 2. AvrPto Can Interact with FLS2 and

EFR In Vivo

(A and B) Coimmunoprecipitation assays.

The full-length FLS2-HA (A) or EFR-HA (B)

construct was cotransfected with AvrPto-

3FLAG or AvrPtoY89D-3FLAG into proto-

plasts, and total protein was incubated with

an agarose-conjugated anti-FLAG monoclo-

nal antibody. The presence of FLS2-HA,

EFR-HA, and AvrPto-3FLAG in the immune

complex was detected by western blot with

anti-HA or anti-FLAG antibodies. The results

shown are a representative of five indepen-

dent experiments.

(C and D) Bimolecular fluorescence comple-

mentation (BiFC) assay for FLS2-AvrPto and

EFR-AvrPto interactions. Full-length FLS2-

cYFP (C) or full-length EFR-cYFP (D) was co-

transfected with AvrPto-nYFP or AvrPtoY89D-

nYFP into protoplasts, and the protoplasts

were visualized under a confocal micro-

scope. The images shown are representative

of multiple protoplasts (FLS2+AvrPto, 23;

FLS2+AvrPtoY89D, 25; EFR+AvrPto, 21;

EFR+AvrPtoY89D, 43). Protein blots on the

right show protein levels as detected with

anti-AvrPto (for AvrPto-nYFP) and anti-HA

(for FLS2-cYFP and EFR-cYFP, which con-

tain a HA tag) antibodies. The results shown

are a representative of three 3 independent

experiments.
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[14, 15]. We tested whether the FLS2-AvrPto interaction
is indirectly mediated by BAK1. AvrPto and FLS2 inter-
acted similarly in the presence or absence of flg22 in
the WT protoplasts (Figure S3A) and in bak1-1 mutant
protoplasts (Figure S3B) [16], demonstrating that the
FLS2-AvrPto interaction is independent of BAK1. Coim-
munoprecipitation experiments also detected the Y89-
dependent interaction between AvrPto-3FLAG and
EFR-HA in protoplasts (Figure 2B). Bimolecular fluores-
cence complementation (BiFC) assay was used to fur-
ther test whether AvrPto interacts with FLS2 and EFR
in vivo. The C-terminal half of YFP (cYFP) was fused to
the C terminus of full-length FLS2, and the N-terminal
half of YFP (nYFP) was fused to the C terminus of AvrPto.
The FLS2-cYFP and AvrPto-nYFP fusion proteins were
examined for their ability to regulate FRK1-LUC expres-
sion in response to the flg22 peptide. Whereas the fls2
mutant protoplasts transfected with an empty vector
did not respond to the flg22 peptide, transfection of
the full-length FLS2-cYFP fully restored the flg22-
induced expression of FRK1-LUC, similar to when
protoplasts were transfected with the full-length FLS2-
HA construct, indicating that the fusion protein was fully
functional in the plant cell (Figure S4A). Conversely,
transfection of AvrPto-nYFP into protoplasts inhibited
the flg22-induced expression of FRK1-LUC (Figure S4B),
indicating that the nYFP fusion did not affect the im-
mune-suppressing function of AvrPto. We then exam-
ined whether these two fusion proteins interacted in
protoplasts. Figure 2C shows that protoplasts cotrans-
fected with AvrPto-nYFP and FLS2-cYFP displayed
strong fluorescence, whereas those cotransfected with
the AvrPtoY89D-nYFP and FLS2-cYFP showed only mar-
ginal fluorescence, indicating that AvrPto interacts with
FLS2 in the plant cell in a Y89-dependent manner. The
difference in florescence was not caused by different
amounts of YFP fusion proteins, because similar levels
of the nYFP- and cYFP-fusion proteins were detected
in protoplasts transfected with AvrPto-nYFP and
AvrPtoY89D-nYFP (Figure 2C). Protoplasts cotransfected
with AvrPto-nYFP and the empty cYFP plasmid did not
show florescence complementation (Figure S5). Simi-
larly, coexpression of EFR-cYFP and AvrPto-nYFP re-
sulted in YFP complementation, whereas coexpression
of EFR-cYFP and AvrPtoY89D-nYFP did not (Figure 2D).
Together, these experiments support the hypothesis
that AvrPto targets receptor kinases FLS2 and EFR in
the plant cell.

Because the kinase activity is required for the function
of FLS2 although the mechanism remains unknown [17],
the inhibition of FLS2 by AvrPto is expected to globally
block all downstream immune responses initiated by
FLS2, including induced gene expression [8, 18, 19],
a transient accumulation of H2O2 in plants, and callose
deposition at the cell wall [20]. To test this, we generated
transgenic plants expressing AvrPto under the control of
an estrogen-inducible promoter and examined flg22-
induced responses. Figure S6 shows that AvrPto inhibited
all flg22-induced responses tested. Thus, the results are
consistent with the AvrPto inhibition of FLS2 and EFR
kinase activity in vitro.

We next determined whether the FLS2-AvrPto and
EFR-AvrPto interactions are required for the inhibition
of MAPK cascade and downstream responses by
AvrPto [8]. Treatment of wild-type protoplasts with
flg22 and elf26 stimulated the MAPK activity, and the
expression of the wild-type AvrPto protein reduced the
MAPK activation in response to flg22 or elf26 treatment
(Figures S7A and S7B). Equal amounts of MAPK protein
were detected in various samples, indicating that AvrPto
expression did not reduce MAPK protein accumulation.
This inhibition was diminished when the AvrPtoY89D was
used, indicating that the FLS2-AvrPto and EFR-AvrPto
interactions are required for AvrPto to inhibit the
MAPK cascade. We also tested whether the interaction
is required for blocking downstream signaling by mea-
suring the flg22- and elf26-induced expression of
FRK1-LUC. Consistent with a poor interaction with
FLS2 and EFR, the AvrPtoY89D mutant was significantly
compromised in its ability to inhibit the FRK1-LUC
expression, indicating that the ability to interact with
FLS2 and EFR is required for the immune-suppressing
activity of AvrPto (Figures S7C and S7D). Together,
these data supported the notion that AvrPto blocks
PAMP-induced immune responses by targeting PRRs.

Because Pto and receptor kinases appear to be struc-
turally similar, it is possible that Pto and receptor
kinases bind to AvrPto in a similar manner. This is sup-
ported by the fact that Y89 is required for interaction
with both Pto [10] and receptor kinases. We performed
additional experiments to further determine the similar-
ity between Pto-AvrPto and FLS2-AvrPto interactions.
The kinase activity of Pto is required for AvrPto binding,
and the mutation at the ATP-binding site of Pto abol-
ishes its interaction with AvrPto [4, 10]. To test whether
phosphorylation of FLS2 is also required for AvrPto
interaction, we mutated the FLS2 kinase ATP-binding
site (K898) and examined the binding with AvrPto. In-
deed, the mutation compromised the FLS2-AvrPto inter-
action in vitro (Figure 3A). Coimmunoprecipitation assay
showed that this mutation significantly reduced FLS2-
AvrPto interaction in vivo (Figure 3B). The AvrPto GINP
loop interacts with Pto through main-chain hydrogen
bonding and van der Waals contacts mediated by I96
side chain [10], and mutations of I96 abolish the interac-
tion [9]. Coimmunoprecipitation assay showed that the
AvrPtoI96A mutation reduces, but does not abolish,
AvrPto-FLS2 interaction in vivo (Figure 3C). To further
test whether Pto-AvrPto and FLS2-AvrPto interactions
are mechanistically similar, we determined whether Pto
competes with FLS2 for AvrPto binding in vitro by using
GST pull-down assay. In the presence of Pto, AvrPto
binds Pto, and the FLS2-AvrPto binding is greatly dimin-
ished (Figure 3D), indicating that Pto indeed competes
with FLS2 for AvrPto binding. FLS2-HA, AvrPto-3FLAG,
and Pto were coexpressed in protoplasts to test whether
the competition occurs in vivo. Coimmunoprecipitation
assays indicated that the coexpression of Pto signifi-
cantly reduced FLS2-AvrPto interaction (Figure 3E).
Residues His49 and Val51 in Pto are required for interac-
tion with AvrPto, and the PtoH49D/V51D mutations dimin-
ish the interaction with AvrPto in vitro [10]. The
PtoH49D/V51D mutant was unable to compete for AvrPto
(Figure 3E). This explains a previous report that overex-
pression of Pto partially relieves the inhibition of FRK1-
LUC expression by AvrPto [8]. Together, these results
illustrated that AvrPto-Pto and AvrPto-FLS2 interactions
involve at least partially overlapping interfaces.
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AvrPto delivered by P. syringae enhances virulence in
both Arabidopsis and susceptible tomato plants [8, 21].
To determine whether FLS2-AvrPto interaction is impor-
tant for AvrPto virulence, we first tested whether the
virulence function of AvrPto in Arabidopsis plants de-
pended on FLS2 (Figure 4A). As reported before [22],
the fls2 mutant plants were significantly more suscepti-
ble than were the wild-type (WT) plants to strain DC3000,

Figure 3. Similarity of Pto-AvrPto and FLS2-AvrPto Interactions

(A) The ATP-binding site of FLS2 is required for AvrPto interaction

in vitro. Recombinant GST-AvrPto protein was coexpressed with

the His-tagged kinase domain of WT FLS2 or FLS2K898H in E. coli,

and the protein complex was purified with glutathione-conjugated

agarose beads. The presence of His-FLS2 in the protein complex

was detected by western blot with anti-His antibodies. The amount

of GST-AvrPto was indicated by western blot with anti-AvrPto anti-

bodies.

(B) The ATP-binding site of FLS2 is required for interaction with

AvrPto in vivo. Protoplasts were cotransfected with AvrPto-3FLAG

and full-length wild-type FLS2-HA or FLS2K898H-HA constructs.

Coimmunoprecipitation assay was used to detect the presence of

FLS2-HA protein in the AvrPto-3FLAG immune complex.

(C) The AvrPtoI96A mutation reduces FLS2-AvrPto interaction in vivo.

Protoplasts were cotransfected with WT AvrPto-3FLAG or

AvrPtoI96A-3FLAG and full-length FLS2-HA constructs, and coimmu-

noprecipitation assay was used to detect the presence of FLS2-HA

in the AvrPto-3FLAG immune complex.

(D) Pto competes with FLS2 for AvrPto binding in vitro. Purified His-

FLS2 was incubated with GST-AvrPto in the presence or absence of

Pto and was affinity-purified with glutathione-conjugated agarose,

and the presence of His-FLS2 and GST-AvrPto in the bound fraction

was detected by western blot with anti-His and anti-AvrPto anti-

bodies, respectively. The presence of bound Pto is detected by Pon-

ceau S staining of protein gel blot.

(E) Pto interferes with the FLS2-AvrPto interaction in vivo. Proto-

plasts were cotransfected with the full-length FLS2-HA and

AvrPto-3FLAG constructs along with the 35S::Pto or 35S::PtoH49D/V51D

construct. Protein extract was precipitated with agarose-bead-con-

jugated anti-FLAG antibody. The bound protein complex was

subjected to western blot with anti-HA or anti-AvrPto antibodies.

The results shown are a representative of two independent experi-

ments.
which contains avrPto (t test, p < 0.05). In WT Arabidop-
sis plants, the P. syringae strain lacking avrPto (DavrPto)
grew to a significantly lower level than did DC3000 (Fig-
ure 4A; t test, p < 0.05), confirming a role of AvrPto in
virulence on Arabidopsis plants. However, both the
DC3000 and DavrPto strains grew to similarly high levels
on the fls2 mutant plants, indicating that AvrPto plays an
important role in overcoming FLS2-mediated resis-
tance.

To determine whether the AvrPto virulence in tomato
plants is associated with its ability to interact with the
flg22 receptor LeFLS2, which is orthologous to Arabi-
dopsis FLS2 [23], we sought to test whether LeFLS2 is
similarly targeted by AvrPto and whether this targeting
is relevant to the virulence function in tomato plants.
Because the Arabidopsis FLS2 promoter-LeFLS2 trans-
gene does not result in detectable LeFLS2 protein accu-
mulation in Arabidopsis [23], we expressed LeFLS2-HA
under the control of 35S promoter. Figure 4B shows
that LeFLS2-HA restored the flg22-induced FRK1-LUC
expression in Arabidopsis fls2 mutant protoplasts.
Protoplasts coexpressing AvrPto completely lost the
LeFLS2-HA-mediated FRK1-LUC induction, whereas
protoplasts coexpressing AvrPtoY89D retained > 60%
of the response (Figure 4B). The effect of AvrPtoI96A

was between the WT AvrPto and AvrPtoY89D. Coimmu-
noprecipitation indicated that LeFLS2 indeed interacted
with AvrPto in a Y89-dependent manner (Figure 4C). To
determine whether Y89 is required for the virulence
function in tomato plants when AvrPto is delivered by
the bacterium, we introduced the avrPtoY89D mutant
into P. syringae strain T1 and tested its ability to en-
hance bacterial growth in susceptible tomato plants.
As expected, whereas the WT avrPto enhanced bacte-
rial growth in tomato plants, the avrPtoY89D mutant
was impaired in virulence activity and unable to enhance
bacterial growth (Figure 4D), indicating that the ability of
AvrPto to bind receptor kinases is correlated with its
virulence function in tomato plants.

Discussion

The results described here demonstrate that AvrPto is
capable of interacting with FLS2, EFR, and LeFLS2
in vivo, and this interaction is correlated with its ability
to block PTI and virulence function in susceptible to-
mato plants. Furthermore, AvrPto enhances virulence
on WT but not fls2 mutant Arabidopsis plants, indicating
that AvrPto is required for overcoming the FLS2 resis-
tance. AvrPto is likely to target and inhibit additional
receptor kinases. Indeed, yeast two-hybrid assays on
selected Arabidopsis receptor kinases that are most
similar to Pto showed that AvrPto interacted with and
inhibited the autophosphorylation of the receptor-like
kinase At2g23200 (Figure S8). Although the biological
function of At2g23200 is not known, the gene is induced
by PAMPs (data not shown). This could help explain the
fact that AvrPto overexpression inhibits defenses in-
duced by at least three different PAMPs [8]. The ability
of AvrPto to target multiple PRRs has an apparent ad-
vantage because plants use multiple PRRs to perceive
pathogenic bacteria [2]. AvrPto delivered by the bacte-
rium is likely to exist at a relatively low level in the plant
cell, a level that might or might not be sufficient to bind
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Figure 4. Association of AvrPto Virulence

Function with Receptor Kinases

(A) avrPto enhances P. syringae virulence on

WT but not fls2 mutant plants. Six-week-old

WT (Col-0 ecotype) or fls2 mutant plants

were spray-inoculated with the indicated bac-

terial strains. Strain DC3000 contains avrPto

and is virulent on Arabidopsis. The DavrPto

strain is a derivative of DC3000 with avrPto de-

leted. Leaf bacterial population was deter-

mined at the indicated days after inoculation.

Each data point consisted of four replicates.

Error bars indicate standard deviation (SD).

The experiment was repeated four times with

similar results. Different letters denote signifi-

cant difference at p < 0.05 (Student’s t test).

(B) LeFLS2-3FLAGcomplements the Arabido-

sis fls2 mutant, and its signaling is blocked by

AvrPto. Arabidosis fls2 mutant protoplasts

were cotransfected with FRK1-LUC and

FLS2-HA, LeFLS2-HA, or an empty vector in

the presence or absence of AvrPtoI96A-

3FLAG, AvrPtoY89D-3FLAG, AvrPto-3FLAG,

or an empty vector and induced with 100 nM

flg22 for 3 hr, and the luciferase activity was

determined. Each data point consisted of

three replicates. Error bars indicate SD.

(C) AvrPto interacts with LeFLS2 in a Y89-dependent manner. Arabidopsis protoplasts were transfected with LeFLS2-HA along with an empty vec-

tor, AvrPto-3FLAG, or AvrPtoY89D-3FLAG and immunoprecipitated with agarose-conjugated anti-FLAG antibody, and the immune complex was

subjected to western-blot analyses with anti-FLAG or anti-HA monoclonal antibodies.

(D) AvrPto Y89 is required for virulence in susceptible tomato plants. The P. syringae pv. tomato strains carrying a plasmid-borne WT avrPto gene,

the avrPtoY89D mutant, and the strain lacking the avrPto gene (T1) were infiltrated into susceptible tomato plants, and leaf bacterial population was

determined at the indicated times. Each data point consists of three replicates. Error bars represent SD. The data shown are a representative of

three independent experiments.
all PRRs that also exist at low levels. However, it is con-
ceivable that not all PRRs are activated by PAMPs when
a plant cell encounters a bacterium and that bacteria
might only need to inhibit PRRs in close contact with
the bacterium to block immune responses. PRR-medi-
ated perception of PAMPs plays a critical role in the
adaptation of land plants to an environment surrounded
by a large number of potential pathogens [3]. An increas-
ing number of bacterial effectors are found to suppress
PAMP-mediated signaling pathways [9, 24–26]. The
findings that AvrPto targets multiple PRRs to block
immune responses illustrate a novel virulence mecha-
nism in P. syringae and highlight an important battle-
ground in plant-microbe coevolution.

The fact that Pto and related PRR kinases interact
with AvrPto sheds light on the process of plant-microbe
coevolution. Receptor kinases are ancient PRRs for
pathogen recognition [3]. A recent work shows that
AvrPto is present in a number of P. syringae isolates in-
fecting a wide range of host plants including cucurbit,
mulberry, bean, tomato, and tobacco [27], suggesting
an important role of AvrPto in the adaptation of P. syrin-
gae to these plants. Thus it is likely that AvrPto is an
ancient effector evolved to inhibit receptor kinases in
these plants. In contrast, Pto is present only in a few
wild tomato species [28], and Pto family proteins appear
to be limited to Solanaceae plants, suggesting recent
evolution of this family. The closest homlogs outside So-
lanum are mostly receptor kinases. Both the AvrPto-Pto
and AvrPto-FLS2 interactions require an ATP-binding
site in the kinase and AvrPto Y89, which makes direct
contact with the kinase [10]. Moreover, Pto and FLS2
interact with AvrPto in a competitive manner, suggesting
that at least some interaction interfaces are similar. It is
possible that the mechanism by which Pto recognizes
AvrPto is mechanistically linked to the virulence function
of AvrPto toward receptor kinases.

Like AvrPto, many pathogen effectors interact with
multiple host proteins, only one of which is critical in me-
diating the recognition of effector by the corresponding
disease resistance protein. For example, the Cladospo-
rium fulvum effector Avr2 is a cysteine protease inhibitor
that interacts with Rcr3 and other tomato cysteine pro-
teases. The interaction of Avr2 with Rcr3, but not other
cysteine proteases, triggers resistance through tomato
resistance protein Cf2 [29]. Interestingly, the inhibition
of Rcr3 by a synthetic protease inhibitor does not trigger
the resistance. This is analogous to the case of AvrPto-
mediated resistance, where the AvrPto-Pto interaction,
but not the inhibition of the Pto kinase activity per se,
triggers the Prf resistance [10]. Another well-known
case is the Arabidopsis RPM1-interacting protein
RIN4, a negative regulator of PTI [24]. This protein [30–
32], as well as probably its homologous proteins [33],
interacts with P. syringae effectors AvrRpt2, AvrRpm1,
and AvrB. The interaction of RIN4, but not other RIN4
homologs, with the three effectors triggers strong resis-
tance when the cognate resistance proteins RPM1 and
RPS2 are present. The virulence function of AvrRpt2,
however, does not appear to be mediated by its associ-
ation with RIN4, because AvrRpt2 is a cysteine protease
that cleaves the negative PTI regulator RIN4, an action
counteractive for the virulence function [24]. Similarly,
the AvrRpm1-RIN4 association is not required for
AvrRpm1 virulence [34]. The third example is the Arabi-
dopsis protein kinase PBS1, which mediates the
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recognition between P. syringae effector AvrPphB and
the resistance protein RPS5. AvrPphB is a cysteine pro-
tease that cleaves PBS1, and this cleavage triggers the
RPS5-mediated resistance [35]. Arabidopsis carries
additional protein kinases containing AvrPphB cleavage
sites. It will be important to determine whether any of the
homologs of Rcr3, RIN4, or PBS1 are targeted by the
above effectors for virulence.

Supplemental Data

Experimental procedures and eight figures are available at http://

www.current-biology.com/cgi/content/full/18/1/74/DC1/.
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