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a b s t r a c t

The Wiener index is the sum of distances between all vertex pairs in a connected graph.
This notion was motivated by various mathematical properties and chemical applications.
In this paper we introduce four new operations on graphs and study the Wiener indices of
the resulting graphs.
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1. Introduction

The distance between two vertices in a connected graph G is the number of edges in a shortest path between them. This
concept has been known for a very long time and recently has received considerable attention as a subject of its own. One
of the concepts related to distance in graphs is the Wiener index. It is not only an early index which correlates well with
many physico-chemical properties of organic compounds but also a subject that has been studied by many mathematicians
and chemists. The Wiener index is the sum of distances between all vertex pairs in a connected graph:

W (G) =
1
2

∑
(u,v)⊆V (G)×V (G)

d(u, v|G),

where d(u, v|G) is the distance between vertices u and v of graph G, and V (G) is the set of vertices of G. Mathematical
properties and chemical applications of theWiener index have been intensively studied over the past thirty years. For more
information about the Wiener index in chemistry and mathematics see [8] and [1–5,7,9,10,12], respectively. Gutman and
Yeh examined in [11] operations on a connected graph that have been studied byWeigen Yan et al. in [13]. In this paper we
introduce four new operations on graphs and study the Wiener indices of the resulting graphs. At the end we give a new
proof of a result of Dobrynin on the Wiener index of hexagonal chains.

2. New sums of graphs

The sum of two connected graphs G1 and G2, which is denoted by G1 + G2, is a graph such that the set of vertices is
V (G1) × V (G2) and two vertices u = (u1, u2) and v = (v1, v2) of G1 + G2 are adjacent if and only if [u1 = v1 and
(u2, v2) ∈ E(G2)] or [u2 = v2 and (u1, v1) ∈ E(G1)], where E(G) is the set of edges of a graph G. Note that G1 + G2 has
|V (G2)| copies of G1, and we may label these copies by vertices of V (G2). Now two vertices with the same name in different
copies are adjacent in G1 + G2 if and only if their corresponding labels are adjacent in G2.
We are interested in giving new sums of graphs such that (E(G1)∪ V (G1))× V (G2) is the set of vertices. For this purpose

we first recall some operations on graphs.
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Fig. 1. A graph G and S(G), R(G), Q (G) and T (G).

Definition 2.1. For a connected graph G, define four related graphs as follows (see Fig. 1):
(a) S(G) is the graph obtained by inserting an additional vertex in each edge of G. Equivalently, each edge of G is replaced

by a path of length 2.
(b) R(G) is obtained from G by adding a new vertex corresponding to each edge of G, then joining each new vertex to the

end vertices of the corresponding edge.
(c) Q (G) is obtained from G by inserting a new vertex into each edge of G, then joining with edges those pairs of new

vertices on adjacent edges of G.
(d) T (G) has as its vertices the edges and vertices of G. Adjacency in T (G) is defined as adjacency or incidence for the

corresponding elements of G.

The graphs S(G) and T (G) are called the subdivision and total graph ofG, respectively. Formore details on these operations
we refer the reader to [3]. Yan, Yang and Yeh in [13] studied the Wiener indices of S(G), R(G) and Q (G). They proved that

W (S(G)) = 2W (T (G))−mn;
W (R(G)) = W (T (G))+m(m− 1)/2;
W (Q (G)) = W (T (G))+ n(n− 1)/2,

where n andm are the numbers of vertices and edges of G, respectively.
Suppose that G1 and G2 are two connected graphs. Throughout the paper we denote V (Gi) and E(Gi) by Vi and Ei, i = 1, 2,

respectively. We consider the following operation on these graphs:

Definition 2.2. Let F be one of the symbols S, R,Q , or T . The F-sumG1+F G2 is a graphwith the set of vertices V (G1+F G2) =
(V1 ∪ E1)× V2 and two vertices (u1, u2) and (v1, v2) of G1+F G2 are adjacent if and only if [u1 = v1 ∈ V1 and (u2, v2) ∈ E2]
or [u2 = v2 and (u1, v1) ∈ E(F(G1))].

Note that G1+F G2 has |V2| copies of the graph F(G1), andwemay label these copies by vertices of G2. The vertices in each
copy have two situations: The vertices in V1 (we refer to these vertices as black vertices) and the vertices in E1 (we refer to
these vertices as white vertices). Nowwe join only black vertices with the same name in F(G1) in which their corresponding
labels are adjacent in G2. We illustrate this definition in Fig. 2.

3. The Wiener index of F -sums of graphs

Firstly we prove a key lemma on the distances of vertices in G1+F G2. To determine the distance between vertices of the
graph G1+F G2 we distinguish the following three cases:
(a) The distance between black vertices and other vertices,
(b) The distance between white vertices in different copies,
(c) The distance between white vertices in the same copy.
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Fig. 2. Graphs G and H and G+F H .

Lemma 3.1. Let G1 and G2 be two connected graphs and v = (v1, v2) be a vertex of G1+F G2. Then:
(a) If v1 6∈ E1 (that is v is a black vertex), then for all u = (u1, u2) ∈ V (G1+F G2) we have

d(u, v|G1+F G2) = d(u1, v1|F(G1))+ d(u2, v2|G2).

(b) If v1 ∈ E1, then for all u = (u1, u2) ∈ V (G1+F G2), with u2 6= v2, u1 = u11v
1
1 ∈ E1 and u

1
1, v

1
1 ∈ V1 (that is v and u are

white vertices in different copies of F(G1)), we have

d(u, v|G1+F G2) = 1+ d(u2, v2|G2)+min{d(u11, v1|F(G1)), d(v
1
1, v1|F(G1))}.

(c) If v1 ∈ E1 (that is v and u are white vertices in the same copy), then for all u = (u1, u2) ∈ V (G1+F G2), where u2 = v2 and
u1 ∈ E1, we have

d(u, v|G1+F G2) = d(u1, v1|F(G1))+ d(u2, v2|G2) = d(u1, v1|F(G1)).

Proof. (a) Since v1 6∈ E1, we have v1 ∈ V1. Let

P : u = (u1, u2) = (p10, p
2
0)→ (p11, p

2
1)→ · · · → (p1d, p

2
d) = (v1, v2) = v

be a shortest path of length d between u and v in G1+F G2. Since (p1i , p
2
i ) and (p

1
i+1, p

2
i+1) are adjacent in G1+F G2, we have

either [p1i = p
1
i+1 ∈ V1 and (p

2
i , p

2
i+1) ∈ E(G2)] or [p

2
i = p

2
i+1 and (p

1
i , p

1
i+1) ∈ E(F(G1))], for i = 0, 1, . . . , d.

Replacing consecutive vertices of the form w,w, . . . , w by w in the sequence u1 = p10, p
1
1, . . . , p

d
1 = v1 of vertices in

F(G1), we obtain a path of length s1 between u1 and v1 in F(G1). So s1 ≥ d1, where d1 = d(u1, v1|F(G1)). Similarly replacing
consecutive vertices of the formw,w, . . . , w byw in the sequence u2 = p20, . . . , p

2
d = v2 of vertices in G2, we obtain a path

of length s2 between u2 and v2 in G2. Thus s2 ≥ d2, where d2 = d(u2, v2|G2). By the definition of the adjacency in G1+F G2
we have d = s1 + s2. Therefore d = s1 + s2 ≥ d1 + d2, and so

d(u, v|G1+F G2) ≥ d(u1, v1|F(G1))+ d(u2, v2|G2). (1)

To prove the reverse inequality in (1), suppose that

P1 : u1 = q10 → q11 → · · · → q1d1 = v1

P2 : u2 = r20 → r21 → · · · → r2d2 = v2

are the shortest paths between u1, v1 in F(G1) and u2, v2 in G2, respectively. Using the path P1 and walking from u1 in the
copy corresponding to u2 = r20 we can reach the vertex v1 in this copy. Since v1 is a vertex, using the path P2 and walking
along the copies corresponding to this vertex, we reach v. That is we have the following path between u and v in G1+F G2:

u = (u1, u2) = (q10, r
2
0 )→ (q11, r

2
0 )→ · · · → (q1d1 , r

2
0 ) = (v1, r

2
0 )→ (v1, r21 )→ · · · → (v1, r2d2) = (v1, v2) = v.

The length of this path is d1 + d2, so that d(u, v|G1+F G2) = d ≤ d1 + d2 and the equality holds in (1).
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(b) Let d(u11, v1|F(G1)) = k1, d(v
1
1, v1|F(G1)) = k2, d(u2, v2|G2) = d2, and d = d(u, v|G1+F G2). If u

1
1 = q

1
0 → q11 →

· · · → q1k1 = v1 and v11 = r
1
0 → r11 → · · · → r1k2 = v1 are the shortest paths between u11, v1 and v

1
1, v1 in F(G1),

respectively, and u2 = r20 → r21 → · · · → r2d2 = v2 is a shortest path between u2 and v2 in G2, then we can consider the
following paths in G1+F G2:

u = (u1, u2)→ (u11, u2)→ (u11, r
2
1 )→ · · · → (u11, r

2
d2) = (q

1
0, v2)→ (q11, v2)→ · · · → (q1k1 , v2) = (v1, v2) = v

u = (u1, u2)→ (v11, u2)→ (v11, r
2
1 )→ · · · → (v11, r

2
d2) = (r

1
0 , v2)→ (r11 , v2)→ · · · → (r1k2 , v2) = (v1, v2) = v.

The length of the first path is 1+ d2 + k1 and so d ≤ 1+ d2 + k1. The length of the second path is 1+ d2 + k2. So

d(u, v|G1+F G2) = d ≤ 1+ d2 +min{k1, k2}
= 1+ d(u2, v2|G2)+min{k1, k2}. (2)

To prove the reverse inequality in (2), suppose that

P : u = (u1, u2) = (p10, p
2
0)→ (p11, p

2
1)→ · · · → (p1d, p

2
d) = (v1, v2) = v

is a shortest path between u and v in G1+F G2. Since (u1, u2) and (p11, p
2
1) are adjacent in G1+F G2, we have [(u2, p

2
1) ∈

E(G2), p11 ∈ V1] or [(p
1
1, u1) ∈ F(G1) , p

2
1 = u2]. By assumption u1 6∈ V1. So p

2
1 = u2 and p

1
1, u1 are adjacent in F(G1). We

consider two cases.
Case 1. If p11 ∈ V1, then by the definition of S, R, T and Q , p

1
1 is one of the end points of u1 = u

1
1v
1
1 . This means that p

1
1 = u

1
1

or p11 = v
1
1 . Suppose that p

1
1 = u

1
1 (in the case p

1
1 = v

1
1 the argument is similar). Then the (p

1
1, p

2
1)–(v1, v2) section of P is a

path of length d− 1 in G1+F G2.
Replacing consecutive vertices of the form w,w, . . . , w by w in the sequence u11 = p

1
1, p

1
2, . . . , p

1
d = v1 of vertices

in F(G1), we obtain a path of length s1 between u1 and v1 in F(G1). So s1 ≥ k1 = d(u11, v1|F(G1)). Similarly from the
sequence u2 = p21, p

2
2, . . . , p

2
d = v2 of vertices in F(G1), we can obtain a path of length s1 between u2 and v2 in G2. So

s2 ≥ d2 = d(u2, v2|G2). Hence d− 1 = s1 + s2 ≥ k1 + d2 and so

d ≥ 1+ k1 + d2 ≥ 1+ d2 +min{k1, k2}
= 1+ d(u2, v2|G2)+min{d(u11, v1|F(G1)), d(v

1
1, v1|F(G1))}.

Thus in this case the equality holds in (2).
Case 2. If p11 ∈ E1. Since p1 and u1 are adjacent in F(G1) and u2 ∈ E1 (that is (p

1
1, u2) and (u1, u2) are white), by the definition

of S and R, they cannot be adjacent in G1+F G2, if F = S or F = R. Therefore in this case F 6= S and F 6= R.
Now since u11v

1
1 = p

1
1 and u1 are adjacent, they have a common end point, say u

1
1. Since (u

1
1, u2) is a black vertex, by case

(a), we have

∆ := d((u11, u2), (v1, v2)|G1+F G2) = d(u2, v2|G2)+ d(u
1
1, v1).

By adding the adjacent vertices (u1, u2) and (u11, u2) to the beginning of any path from (u
1
1, u2) to (v1, v1)we obtain a path

between (u1, u2) and (v1, v1). Thus

d ≤ d((u11, u2), (v1, v2)|G1+F G2) = 1+∆.

Since u2 = p20 = p
2
1 and u1, p

1
1 are adjacent in F(G1), we can replace (u1, u2) by (u

1
1, u2), in P , and obtain the path

(u11, u2) = (u
1
1, p

2
0)→ (p11, p

2
1)→ · · · → (p1d, p

2
d) = (v1, v2) = v

of length d in G1+F G2. Therefore∆ ≤ d and so∆ ≤ d ≤ 1+∆. Hence∆ = d or∆+ 1 = d.
If∆+1 = d, then equality (2) holds. We prove that the case∆ = d cannot happen. Suppose, to the contrary, that∆ = d.

Let

u11 = q
1
0 → q11 → · · · → q1k1 = v1 and u2 = r20 → r21 → · · · → r2d2 = v2

be the shortest paths between u11, v1 in F(G1) and u2, v2 in G2, respectively. As in case (a) we can show that the path

Q : (u11, u2) = (u
1
1, r

2
0 )→ (u11, r

2
1 )→ · · · → (u11, r

2
d2)

= (q10, v2) = (q
1
0, v2)→ (q11, v2)→ · · · → (q2k1 , v2) = (v1, v2),

in G1+F G2 is a shortest path between (u11, u2) and (v1, v2). The length of this path is∆ = (d2 − 1)+ (k1 − 1).
Let T1 := {u11 = q10, q

1
1, . . . , q

1
k1
= v1} and T2 := {u2 = r20 , r

2
1 , . . . , r

2
d2
= v2}. Then the length of the path

Q is d = ∆ = (k1 − 1) + (d2 − 1) = (|T1| − 1) + (|T2| − 1). Now put T̄1 := {u11, p
1
1, p

1
2, . . . , p

1
d = v1} and

T̄2 := {u2 = p20, p
2
1, . . . , p

2
d = v2}. Then the length of P is d = (|T̄1| − 1)+ (|T̄2| − 1). Therefore

|T1| + |T2| = |T̄1| + |T̄2|. (3)
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Fig. 3.

Replacing consecutive vertices of the form w,w, . . . , w by w in the vertices in T̄1, we can obtain a path between u11 and v1
in F(G1). So |T̄1| − 1 ≥ |T1| − 1 and |T̄1| ≥ |T1| > 0. By a similar argument we have |T̄2| ≥ |T2| > 0. Therefore by (3) we
have |Ti| = |T̄i|, i = 1, 2.
Now since |T̄1| = |T1|, there exist x10, x

1
1, . . . , x

1
k1
∈ T̄1, such that

Q1 : u11 = x
1
0 → x11 → · · · → x1k1 = v1

is a shortest path, between u11 and v1. Since u2 6= v2, not all consecutive vertices in T̄1 are edges of G1. Suppose i is the least
integer such that x1i ∈ E1 and x

1
i+1 ∈ V1. We consider two cases:

(1) Suppose that F = Q . By the definition of Q , x1i+2 must be an element of E1. Replacing x
1
i → x1i+1 → x1i+2 by x

1
i → x1i+2

in the path Q1, we obtain a path from u11 to v1 whose length is smaller than the length of Q1 (see Fig. 3(a)), which is a
contradiction.
(2) Suppose that F = T . Let t be the least integer such that x1i+t ∈ V1 and x

1
i+t+1 ∈ E1. Putwi+j = x

1
i+jx

1
i+j+1, j = 1, 2, . . . , t ,

which are elements of E1. Replacing x1i → x1i+1 → · · · → x1i+t → x1i+t+1 by x
1
i → wi+1 → wi+2 → · · · → wi+t−1 → x1i+t+1

in the path Q1, we obtain a path from u11 to v1 whose length is smaller than the length of Q1 (see Fig. 3(b)), which is a
contradiction.
(c) By the argument given in (a) we can see that

d = d((u1, u2), (v1, v2)|G1+F G2) ≤ d(u1, v1|F(G1))+ d(u2, v2|G2)
= d(u1, v1|F(G1)).

On the other hand, from every shortest path between (u1, u2) and (v1, v2) we can find a path between u1 and v1 in F(G1)
with length at most d. So d ≥ d(u1, v1|F(G1)) and this completes the proof. �

Now we explore condition (b) in Lemma 3.1, more precisely. In fact in the following two lemmas we find the distances
between vertices of G1+F G2 without the ‘‘min’’ condition, stated in Lemma 3.1(b). At first we consider the case F = R or
F = S.

Lemma 3.2. Let G1 and G2 be two connected graphs, u1, v1 ∈ E1, u2, v2 ∈ V2 and F = S or R. Then for u = (u1, u2) and
v = (v1, v2) in V (G1+F G2), with u2 6= v2, we have

d(u, v|G1+F G2) =
{
2+ d(u2, v2|G2) if u1 = v1
d(u1, v1|F(G1))+ d(u2, v2|G2) if u1 6= v1.

Proof. Since u1 ∈ E1, we have u1 = u11v
1
1 , for some u

1
1, v

1
1 ∈ V1. First suppose that u1 = v1. Thus d(u

1
1, u1|F(G1)) = 1 =

d(v11, u1|F(G1)) and by Lemma 3.1(b) we have

d(u, v|G1+F G2) = 1+ d(u2, v2|G2)+min{d(u11, u1|F(G1)), d(v
1
1, u1|F(G1))}

= 2+ d(u2, v2|G2).

Now suppose that u1 = u11v
1
1 6= v1. Let u1 = q

1
0 → q11 → · · · → q1d1 = v1 be a shortest path between u1, v1 in F(G1). Then

since F = S or F = R, we have q11 = u
1
1 or q

1
1 = v

1
1 . Therefore

min{d(u11, v1|F(G1)), d(v
1
1, v1|F(G1))} = d(u1, v1|F(G1))− 1.

Hence by Lemma 3.1(b), we have

d(u, v|G1+F G2) = 1+ d(u2, v2|G2)+min{d(u11, u1|F(G1)), d(v
1
1, u1|F(G1))}

= d(u2, v2|G2)+ d(u1, v1|F(G1)).

This completes the proof. �

Now we consider the case F = Q or F = T .
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Lemma 3.3. Let G1 and G2 be two connected graphs, u1, v1 ∈ E1, u2, v2 ∈ V2 and F = Q or T . Then for u = (u1, u2) and
v = (v1, v2) in V (G1+F G2) such that u2 6= v2 we have

d(u, v|G1+F G2) =
{
2+ d(u2, v2|G2) if u1 = v1
1+ d(u1, v1|F(G1))+ d(u2, v2|G2) if u1 6= v1, u2 6= v2.

Proof. Suppose that u1 = u11v
1
1 , u

1
1, v

1
1 ∈ V1. If u1 = v1, then d(u

1
1, u1|F(G1)) = 1 = d(v

1
1, u1|F(G1)) and by Lemma 3.1(b)

we have

d(u, v|G1+F G2) = 1+ d(u2, v2|G2)+min{d(u11, u1|F(G1)), d(v
1
1, u1|F(G1))}

= 2+ d(u2, v2|G2).

Now suppose that u1 6= v1. Let u1 = q10 → q11 → · · · → q1d1 = v1 be a shortest path between u1, v1 in F(G1). Suppose
d(u11, v1|F(G1)) ≤ d(v

1
1, v1|F(G1)). Then since F = Q or F = T , the path u

1
1 → q11 → · · · → q1d1 = v1 is a shortest path

between u11 and v1. Thereforemin{d(u
1
1, v1|F(G1)), d(v

1
1, v1|F(G1))} = d(u1, v1|F(G1)) and hence by Lemma 3.1(b), we have

d(u, v|G1+F G2) = 1+ d(u2, v2|G2)+min{d(u11, u1|F(G1)), d(v
1
1, u1|F(G1))}

= 1+ d(u2, v2|G2)+ d(u1, v1|F(G1)).

This completes the proof. �

Now we are ready to compute the Wiener index of G1+F G2. First we compute the Wiener index of G1+F G2 in terms of
Wiener indices of F(G1) and G2, where F = R or S.

Theorem 3.4. Let G1 and G2 be two connected graphs and F = S or R. Then

W (G1+F G2) = |V2|2W (F(G1))+ (|V1| + |E1|)2W (G2)+ |E1||V2|(|V2| − 1).

Proof. To compute the Wiener index of G1+F G2, we need to compute the sum of distances between vertices u and v.
According to the colors of u and v we must consider three cases:
Case 1. Suppose that u = (u1, u2) and v = (v1, v2) are black, that is u, v ∈ V1 × V2. By Lemma 3.1(a),

d((u1, u2), (v1, v2)|G1+F G2) = d(u1, v1|F(G1))+ d(u2, v2|G2).

Therefore the summation of distances between black vertices is

A : =
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ V1 × V2}

=
1
2

∑
(u1,u2),(v1,v2)

d(u1, v1|F(G1))+
∑

(u1,u2),(v1,v2)

d(u2, v2|G1)

=
1
2

∑
u1,v1∈V1

∑
u2,v2∈V2

d(u1, v1|F(G1))+
1
2

∑
u1,v1∈V1

∑
u2,v2∈V2

d(u2, v2|G2)

=
1
2
|V2|2

∑
u1,v1∈V1

d(u1, v1|F(G1))+ |V1|2W (G2).

Case 2. Suppose that u = (u1, u2) and v = (v1, v2) have different colors, that is [u ∈ E1×V2 and v ∈ V1×V2] or [u ∈ V1×V2
and v ∈ E1 × V2]. In this case, by Lemma 3.1(a),

d((u1, u2), (v1, v2)|G1+F G2) = d(u1, v1|F(G1))+ d(u2, v2|G2).

Therefore the summation of distances between vertices u and v, where u is black and v is white, is
1
2

∑
{d((u1, u2), (u1, v2)|G1+F G2) : (u1, u2) ∈ V1 × V2, (v1, v2) ∈ E1 × V2}

=
1
2

∑
u2,v2∈V2

∑
u1∈V1

∑
v1∈E1

d(u1, v1|F(G1))+
1
2

∑
u1∈E1

∑
u1∈V1

∑
u2,v2∈V2

d(u2, v2|G2)

=
1
2
|V2|2

∑
v1∈E1

∑
u1∈V1

d(u1, v1|F(G1))+ |E1|V1||W (G2).

The summation of distances between vertices with different colors is twice the above quantity, that is

B := |V2|2
∑
v1∈E1

∑
u1∈V1

d(u1, v1|F(G1))+ 2|E1|V1||W (G2).
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Case 3. Suppose that u = (u1, u2) and v = (v1, v2) are white, that is u ∈ E1 × V2 and v ∈ E1 × V2. Let

C :=
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2} .

We break down this summation into two sums C = C1 + C2, where

C1 =
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2, u1 = v1, u2 6= v2}

C2 =
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2, u1 6= v1} .

By Lemma 3.2, we have

C1 =
1
2

∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

2+ d(u2, v2|G2)

=
1
2

∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

2+
∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

d(u2, v2|G2)+
1
2
|V2|2

∑
u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1))

and

C2 =
1
2

∑
u2∈V2

∑
v2∈V2

∑
u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1))+
1
2

∑
u1,v1∈E1;u1 6=v1

∑
u2∈V2

∑
v2∈V2

d(u2, v2|G2)

=
(
|E1|2 − |E1|

)
W (G2).

Using the above result we can compute the Wiener index of G1+F G2:

W (G1+F G2) = A+ B+ C

=
1
2
|V2|2

∑
u1∈V1

∑
v1∈V1

d(u1, v1|F(G1))+ |V1|2W (G2)

+ |V2|2
∑
v1∈E1

∑
u1∈V1

d(u1, v1|F(G1))+ 2|E1|V1||W (G2)

+
1
2

∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

2+
∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

d(u2, v2|G2)

+
1
2
|V2|2

∑
u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1))+
(
|E1|2 − |E1|

)
W (G2)

= |V2|2W (F(G1))+ (|V1| + |E1|)2W (G2)+ |E1|
(
|V2|2 − |V2|

)
.

This completes the proof. �

Now we compute the Wiener index of G1+F G2 in terms of Wiener indices of F(G1) and G2, where F = Q or T .

Theorem 3.5. Let G1 and G2 be two connected graphs and F = Q or T . Then

W (G1+F G2) = |V2|2W (F(G1))+ (|V1| + |E1|)2W (G2)+
1
2

(
|V2|2 − |V2|

) (
|E1|2 + |E1|

)
.

Proof. Let A, B and C be as in the proof of the Theorem 3.4. The values of A and B do not change here. So we must only
compute the value of C . Let

C :=
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2} .

We break down this summation into two sums C = C1 + C2 + C3, where

C1 =
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2, u1 = v1, u2 6= v2}

C2 =
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2, u1 6= v1, u2 = v2}

C3 =
1
2

∑
{d((u1, u2), (v1, v2)|G1+F G2) : (u1, u2), (v1, v2) ∈ E1 × V2, u1 6= v1, u2 6= v2} .
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By Lemma 3.3, we have

C1 =
1
2

∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

(2+ d(u2, v2|G2))

=
1
2

∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

2+
1
2

∑
u1∈E1

∑
u2,v2∈V2;u2 6=v2

d(u2, v2|G2)

= |E1|
(
|V2|2 − |V2|

)
+ 2|E1|W (G2).

Also by Lemma 3.3

C2 =
∑

u1,v1∈E1;u1 6=v1

∑
u2=v2∈V2

d(u1, v1|F(G1))

= |V2|
∑

u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1)),

and

C3 =
∑

u1,v1∈E1;u1 6=v1

∑
u2,v2∈V2;u2 6=v2

(1+ d(u1, v1|F(G1))+ d(u2, v2|G2))

=

∑
u1,v1∈E1;u1 6=v1

∑
u2,v2∈V2;u2 6=v2

1+
∑

u2,v2∈V2;u2 6=v2

∑
u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1))

+

∑
u1,v1∈E1;u1 6=v1

∑
u2,v2∈V2;u2 6=v2

d(u2, v2|G2)

=
(
|E1|2 − |E1|

) (
|V2|2 − |V2|

)
+
(
|V2|2 − |V2|

) ∑
u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1))+ 2
(
|E1|2 − |E1|

)
W (G2).

Therefore

C = C1 + C2 + C3
= |E1||V2|2 + |E1|2|V1|2 − |E1|2|V2| − |E1||V1|2 + 2W (G2)|E1|2 + |V2|2

∑
u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1)).

Now we can compute the Wiener index of G1+F G2:

W (G1+F G2) = A+ B+ C

=
|V2|2

2

(∑
u1∈V1

∑
v1∈V1

d(u1, v1|F(G1))+
∑
u1∈E1

∑
u1∈V1

d(u1, u1|F(G1))+
∑

u1,v1∈E1;u1 6=v1

d(u1, v1|F(G1))

)

+
(
|V1|2 + 2|V1||E1| + |E1|2

)
W (G2)+ |E1|(|V2|2 − |V2|)+

1
2

(
|E1|2 − |E1|

) (
|V2|2 − |V2|

)
= |V2|2W (F(G1))+ (|V1| + |E1|)2W (G2)+

1
2

(
|V2|2 − |V2|

) (
|E1|2 + |E1|

)
.

This completes the proof. �

4. Corollaries and examples

We recall the following result of Yan et al. (see Corollary 4.2. in [13]).

Lemma 4.1. For a tree G with n vertices,

W (S(G)) = 8W (G)− 2n(n− 1);
W (Q (G)) = 4W (G);
W (R(G)) = 4W (G)− n+ 1;

W (T (G)) = 4W (G)−
n(n− 1)
2

.

Let Pn denote a path with n vertices. Then W (Pn) = (n+1)n(n−1)
6 , and so by the above one can see that

W (S(Pn)) =
2n(2n− 1)(n− 1)

3
,
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Fig. 4. The graphs P7+F P8 .

W (Q (Pn)) =
2(n+ 1)n(n− 1)

3
,

W (R(Pn)) =
(n− 1)(2n2 + 2n− 3)

3
,

W (T (Pn)) =
n(4n+ 1)(n− 1)

6
.

Hence by Theorems 3.4 and 3.5 we have:

Corollary 4.2. Let n > 1 and m > 1 be two integers. Then

W (Pn+S Pm) =
1
6
m(8mn3 − 12mn2 + 10mn+ 4m2n2 − 4m2n+m2 − 4n2 − 2n+ 5− 6m),

W (Pn+Q Pm) =
1
6
m(4mn3 − 7nm+ 4m2n2 − 7n2 − 4m2n+ 7n+m2 + 3n2m− 1),

W (Pn+R Pm) =
1
6
m(4mn3 − 4mn+ 4m2n2 − 4m2n+m2 − 4n2 − 2n+ 5),

W (Pn+T Pm) =
1
6
m(mn3 − 4mn+ 4m2n2 − 7n2 − 4m2n+ 7n+m2 − 1).

(4)
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Fig. 5. The chain Ln with n = 8.

As a corollary of our results we compute the Wiener index of hexagonal chains (see Fig. 5). This formula was already obtained
by Dobrynin [6].

Corollary 4.3. Let n be an integer. Then the Wiener index of hexagonal chains with n hexagonal, Ln, is

W (Ln) =
16n3 + 36n2 + 26n+ 1

3
.

Proof. It is easy to see that Ln = Pn+1+S P2. So by Corollary 4.2(4) (See Fig. 4) we have

W (Ln) = Pn+1+S P2 =
16n3 + 36n2 + 26n+ 1

3
,

completing the proof. �
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