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Abstract

This paper is devoted to homogenization and minimization problems for variational functionals in the framework of Sobolev
spaces with continuous variable exponents. We assume that the sequence of exponents converges in the uniform metric and that
the Lagrangian has a periodic microstructure. Then under natural coerciveness assumptions we prove a Γ -convergence result and,
as a consequence, the convergence of minimizers (solutions to the corresponding Euler equations).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is devoted to homogenization and Γ -convergence problems for variational functionals in the framework
of Sobolev spaces with variable exponents. More precisely, we study the asymptotic behaviour of functionals

J ε[u] =
∫
Ω

1

pε(x)
a

(
x

ε

)∣∣∇u(x)
∣∣pε(x)

dx +
∫
Ω

(
1

pε(x)
b

(
x

ε

)∣∣u(x)
∣∣pε(x) − f (x)u(x)

)
dx, (1.1)

as ε → 0; here pε(x) > 1 is a continuous function whose modulo of continuity satisfies some technical conditions
described below in Section 2, a(y) and b(y) are periodic positive functions. Under the assumptions that pε(x) con-
verges in the uniform metric to a function p0(x), we prove that the family J ε Γ -converges to a limit functional with a
convex Lagrangian of p0(x)-growth. This convex Lagrangian coincides with the effective Lagrangian of the periodic
functional with frozen exponent p0(x).
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This Γ -convergence result allows us to study the corresponding variational problem and to prove the convergence
of the minimums and of the minimizers.

In recent years functionals with variable exponents and the corresponding Sobolev spaces were widely studied
in the mathematical literature, see [1–3,6,7,9,11,13,19]. In particular, the conditions under which C∞

0 functions are
dense in W 1,p(·) have been found. Also, Meyers estimates which are used a lot in the present work, have been obtained
in [1,19]. Let us mention that such equations arise in many engineering disciplines, such as electrorheological fluids,
non-Newtonian fluids with thermo-convective effects, and nonlinear Darcy flow of compressible fluids in heteroge-
neous porous media (see for instance [2]).

Γ -convergence and minimization problems for functionals with periodic and locally periodic rapidly oscillating
Lagrangians of p-growth with a constant p are well understood by now, see for instance [4,5] and the bibliography
therein.

The works [10,15–18] (see also [14]) focus on variational functionals with non-standard growth conditions. In par-
ticular, the homogenization and Γ -convergence problems for Lagrangians with variable rapidly oscillating exponents
p(x) were considered in [16,17]. It was shown that the energy minimums and the homogenized Lagrangians in the
spaces W 1,r might depend on the value of r (so-called Lavrentiev phenomenon). For example, such a behaviour can
be observed for the Lagrangian |∇u|p(x/ε) with a periodic “chess-board” exponent p(y) and a small parameter ε > 0.

Another interesting example of Lagrangian with rapidly oscillating exponent was considered in [10]. Namely, for
functionals

Jε[u] =
∫

|∇u|p(x/ε) dx

with a smooth periodic exponent p(y) such that p(x) > 1, it was shown that, contrary to our case, the limit functional
is bounded on a Sobolev–Orlicz space of functions with gradient in an Lα log-space where α is the fiber percolation
level of p(x).

Variational functionals with non-standard growth conditions have also been considered in [4]. Chapter 21 of this
book focuses on the Γ -convergence of such functionals in Lp spaces, but with different conditions on pε than ours.

Regarding the technique we have utilized, it is worth to mention one trick used in the paper. In order to prove
the Γ -liminf inequality we first replace the original exponent pε(x) by a new one πε(x) = min(pε(x),p0(x)), and
consider the corresponding family of auxiliary variational functionals. This family is equi-continuous in the space
W 1,p0(x) and thus it is sufficient to prove the Γ -liminf inequality for the dense set of piecewise affine functions. This
is done in Section 3.1. Then it is not difficult to show that the Γ -liminf functional for the auxiliary family estimates
from below the Γ -liminf functional for the original problem.

The Γ -convergence results of the paper admit the following generalization. Let Ψ (y,u, �ξ) be a function defined
for y ∈ Y , u ∈ R and �ξ ∈ R

n periodic in y, convex in �ξ and satisfies the following conditions:

c1|�ξ | � Ψ (y,u, �ξ) � c2|�ξ | + |u| + C,
∣∣Ψ (y,u1, �ξ) − Ψ (y,u2, �ξ)

∣∣ � C|u1 − u2|,
with 0 < c1 � c2 < +∞, C > 0, and suppose that pε(x) and p0(x) are the same as in (1.1). Then the above mentioned
Γ -convergence results are also valid for functionals

J ε[u] =
∫
Ω

(
Ψ

(
x

ε
,u(x),∇u(x)

))pε(x)

dx.

The paper is organized as follows. In Section 2 we state the problem and formulate the main result. This result is
proved in three steps in Section 3. On the first step (Section 3.1) we derive the “lim inf”-inequality. Section 3.2 is
devoted to obtaining the “lim sup”-inequality. Finally, in Section 3.3 we prove the convergence of minimizers.

2. Problem setup and the main result

Let Ω be a bounded domain in R
n (n � 2) with a sufficiently smooth boundary, and denote Y = (0,1)n. We assume

that a family of continuous functions pε = pε(x), ε > 0, is defined in Ω and satisfies the following conditions:

(A1) the functions pε are bounded from below and from above:

1 < p− � p−
ε ≡ min pε(x) � pε(x) � maxpε(x) ≡ p+

ε � p+ in Ω; (2.1)

x∈Ω x∈Ω
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(A2) for any x, y ∈ Ω and any ε > 0, the inequality holds∣∣pε(x) − pε(y)
∣∣ � ωε

(|x − y|) with lim
τ→0

ωε(τ) ln

(
1

τ

)
< +∞; (2.2)

(A3) the functions pε converge to a function p0 uniformly in Ω , i.e.,

lim
ε→0

‖pε − p0‖C(Ω) = 0, (2.3)

where the limit function p0 satisfies the condition:∣∣p0(x) − p0(y)
∣∣ � ω0

(|x − y|) with lim
τ→0

ω0(τ ) ln

(
1

τ

)
< +∞. (2.4)

We also suppose that

(A4) a = a(y), b = b(y) are Y -periodic measurable functions such that

0 < a0 � a(y) � a1, 0 < b0 � b(y) � b1; (2.5)

(A5) f ∈ C(Ω).

For notational convenience we set

aε
pε

(x) = 1

pε(x)
a

(
x

ε

)
, bε

pε
(x) = 1

pε(x)
b

(
x

ε

)
. (2.6)

In what follows we refer to [7,9,11,13] for the properties of Sobolev spaces with variable exponents. Following
[7,9,11,13], for any ε > 0, we introduce the Sobolev space W 1,pε(·)(Ω) with a variable exponent pε defined by

W 1,pε(·)(Ω) = {
φ ∈ Lpε(·)(Ω): |∇φ| ∈ Lpε(·)(Ω)

}
. (2.7)

Here by Lpε(·)(Ω) we denote the space of measurable functions φ in Ω such that

Apε(·)(φ) =
∫
Ω

∣∣φ(x)
∣∣pε(x)

dx < +∞. (2.8)

This space equipped with the norm

‖φ‖Lpε(·)(Ω) = inf

{
λ > 0: Apε(·)

(
φ

λ

)
� 1

}
(2.9)

becomes a Banach space.
On the space Lpε(·)(Ω) we define the functionals J ε : Lpε(·)(Ω) → R:

J ε[u] =
{∫

Ω
{aε

pε
(x)|∇u|pε(x) + bε

pε
(x)|u|pε(x) − f (x)u}dx, if u ∈ W 1,pε(·)(Ω);

+∞, otherwise.
(2.10)

We study the asymptotic behaviour of J ε and their minimizers as ε → 0. Our analysis relies on the Γ -convergence
approach in Sobolev spaces with variable exponent. Notice that under assumptions (2.2), (2.4), the spaces W 1,p0(·)(Ω)

and W 1,pε(·)(Ω) are separable and reflexive. Moreover, C∞
0 (Ω) is dense in these spaces. We also recall the definition

of Γ -convergence (see, e.g., [4,5,8] and the bibliography therein). In our case this definition takes the following form.

Definition 2.1 (Γp0(·)-convergence). The functionals I ε : Lpε(·)(Ω) → R ∪ {∞} are said to Γp0(·)-converge to a func-
tional I : Lp0(·)(Ω) → R ∪ {∞} if

(a) (“lim inf ”-inequality) for any u ∈ Lp0(·)(Ω) and any sequence {uε} ⊂ Lp0(·)(Ω) which converges to the function
u strongly in the space Lp0(·)(Ω) we have:

lim
ε→0

I ε
[
uε

]
� I [u];
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(b) (“lim sup”-inequality) for any u ∈ Lp0(·)(Ω) there exists a sequence {wε} ⊂ Lp0(·)(Ω) such that {wε} converges
to the function u(·) strongly in the space Lp0(·)(Ω), and

lim
ε→0

I ε
[
wε

]
� I [u].

The main result of the paper is the following:

Theorem 2.2. Let assumptions (A1)–(A5) be fulfilled. Then

(C.1) The functionals J ε defined in (2.10), Γp0(·)-converge to the functional Jhom : Lp0(·)(Ω) → R ∪ {+∞} given by

Jhom[u] =
{∫

Ω
{T(x,∇u) + βp(x)|u|p0(x) − f (x)u}dx, if u ∈ W 1,p0(Ω),

+∞, otherwise,
(2.11)

where

T(x, �ξ) = inf

{
1

p0(x)

∫
Y

a(y)
∣∣∇v(y) + �ξ ∣∣p0(x)

dy: v ∈ W
1,p0(x)
# (Y )

}
(2.12)

and

βp(x) = 1

p0(x)

∫
Y

b(y) dy. (2.13)

(C.2) Minimizers uε of the functionals J ε converge to a minimizer u of the functional Jhom strongly in the space
Lp0(·)(Ω).

Throughout the paper C,C1,C2, etc. are generic constants independent of ε.

3. Proof of Theorem 2.2

The proof of the statement (C.1) of Theorem 2.2 is given below in Sections 3.1 and 3.2.
The statement (C.2) of Theorem 2.2 is then a consequence of the statement (C.1) of this theorem, as proved in

Section 3.3.

3.1. Proof of the “lim inf”-inequality

The proof of the “lim inf ”-inequality is performed in two main steps. First we introduce auxiliary functionals J̃ ε

and prove the “lim inf”-inequality for these functionals. Then, at the second step, we show that the “lim inf”-inequality
for the auxiliary functionals J̃ ε implies the “lim inf”-inequality for J ε .

Step 1. An auxiliary inequality.
We denote

πε(x) = min
{
pε(x),p0(x)

}
and on the space Lπε(·)(Ω) define the functional J̃ ε : Lπε(·)(Ω) → R:

J̃ ε[u] =
{∫

Ω
{aε

pε
(x)|∇u|πε(x) + bε

pε
(x)|u|pε(x) − f (x)u}dx, if u ∈ W 1,πε(·)(Ω);

+∞, otherwise.
(3.1)

In what follows we make use of Hölder’s inequality for Sobolev spaces with variable exponents. Let φ ∈ Lp(·)(Ω),
ψ ∈ Lq(·)(Ω) with

1 + 1 = 1, 1 < p− � p(x) � p+ < +∞, 1 < q− � q(x) � q+ < +∞,

p(x) q(x)
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then ∫
Ω

|φ ψ |dx � 2‖φ‖Lp(·)(Ω)‖ψ‖Lq(·)(Ω). (3.2)

We also make use of the following results from the theory of Sobolev spaces with a variable exponent p = p(x). Let
p(x) satisfy the inequality 1 < p− = infΩ p(x) � p(x) � supΩ p(x) = p+ < +∞, and suppose that |p(x) − p(y)| �
ω(|x − y|) for all x, y ∈ Ω , with limτ→0ω(τ) ln( 1

τ
) < +∞. Then the following inequalities hold:⎧⎨⎩min

(‖φ‖p−
Lp(·)(Ω)

,‖φ‖p+
Lp(·)(Ω)

)
� Ap(·)(φ) � max

(‖φ‖p−
Lp(·)(Ω)

,‖φ‖p+
Lp(·)(Ω)

)
,

min
(
A

1/p−
p(·) (φ),A

1/p+
p(·) (φ)

)
� ‖φ‖Lp(·)(Ω) � max

(
A

1/p−
p(·) (φ),A

1/p+
p(·) (φ)

)
,

(3.3)

where Ap(·)(φ) is defined in (2.8).
Without loss of generality, we assume that measΩ > 1. Then using (3.2), (3.3) and the definition of the functions

aε
pε

, bε
pε

, one can obtain the following inequality:

∣∣J̃ ε[u] − J̃ ε[v]∣∣ � ‖u − v‖W 1,πε(·)(Ω)

( ∫
Ω

(
1 + |u| + |∇u| + |v| + |∇v|)πε(x)

dx

)1/q−
0

, (3.4)

which implies the uniform in ε continuity of the functional J̃ ε in the space W 1,πε(·)(Ω).
Denote by A(Ω) the class of piecewise affine functions defined in the domain Ω . First, we prove the inequality

lim
ε→0

J̃ ε
[
uε

]
� Jhom[u] ∀u ∈A(Ω). (3.5)

Consider an arbitrary function u ∈ A(Ω). It can be represented as follows:

u(x) = Ajx + Bj in Ωj, j = 1,2, . . . ,M, (3.6)

with Ωj such that Ω = ⋃M
j=1 Ωj . Let {uε} be a sequence which converges to u strongly in Lp0(·)(Ω) and such that

J̃ ε[uε] � C. In order to prove inequality (3.5) we introduce a covering of the domain Ω by cubes with edge length h

(0 < ε 
 h 
 1). Denote

Kh =
[
−h

2
,
h

2

]n

, Kα
h = Kh + hα, α ∈ Z

n,

and Kh = {Kα
h , α ∈ Z

n}. Without loss of generality, we assume that h is an integer multiplier of ε. Then we denote:

Πh = R
n
∖ ⋃

α∈Zn

(
hα +

[
−h − h2

2
,
h − h2

2

]n)
. (3.7)

Making a translation of the cubic structure Kh with a vector ỹ and varying this vector over Kh, one can show that
there exists ỹ such that∫

(Πh+ỹ)∩Ω

Fπε

(
x,uε,∇uε

)
dx � C h (3.8)

and ∫
(Πh+ỹ)∩Ω

{∣∣∇uε
∣∣πε(x) + ∣∣uε

∣∣πε(x)}
dx � Ch. (3.9)

We keep for the shifted cubes the same notation Kα
h and denote their centers by xα , that is xα = hα + ỹ. Notice that ỹ

might depend on ε. However, this dependence is of no importance for us, and we will not indicate it explicitly.
Using the notation

Fπε (x,u,∇u) = aε
p (x)|∇u|πε(x) + bε

p (x)|u|pε(x) − f (x)u, (3.10)

ε ε
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Ωh = {⋃α Kα
h ;Kα

h � Ω} and Ω̃h = Ω \ Ωh, one can represent J̃ ε[uε] as follows

J̃ ε
[
uε

] =
∫
Ωh

Fπε

(
x,uε,∇uε

)
dx +

∫
Ω̃h

Fπε

(
x,uε,∇uε

)
dx. (3.11)

It is clear that

meas Ω̃h = O(h) as h → 0. (3.12)

Using (3.12) and the fact that {uε} converges strongly to u ∈ A(Ω) in Lp0(·)(Ω), one can easily show that the
second term on the right-hand side of (3.11) admits the estimate

lim
h→0

lim
ε→0

∫
Ω̃h

Fπε

(
x,uε,∇uε

)
dx � 0. (3.13)

We proceed with the first term on the right-hand side of (3.11). Denoting

Γh =
(

M⋃
j=1

∂Ωj

)
∩ Ω

and letting ΩΓ be the set of the cubes Kα
h ⊂ Ωh such that Kα

h ∩ Γh �= ∅, we obtain

measΩΓ = O(h), as h → 0, (3.14)

and

lim
h→0

lim
ε→0

∫
Ωh

Fπε

(
x,uε,∇uε

)
dx � lim

h→0
lim
ε→0

∫
Ωh,Γ

Fπε

(
x,uε,∇uε

)
dx, (3.15)

where

Ωh,Γ = Ωh \ ΩΓ . (3.16)

Then from (3.13) and (3.15) we get:

lim
h→0

lim
ε→0

∫
Ω

Fπε

(
x,uε,∇uε

)
dx � lim

h→0
lim
ε→0

∫
Ωh,Γ

Fπε

(
x,uε,∇uε

)
dx. (3.17)

Consider now an arbitrary cube Kα
h ⊂ Ωh,Γ . Denote by ϕh

α the cut-off function in Kα
h such that: 0 � ϕh

α(x) � 1;
ϕh

α(x) = 0 for x /∈ Kα
h ; ϕα(x) = 1 for x ∈ Kα

h \ (Πh ∩ Kα
h ); |∇ϕα(x)| � Ch−2. We extend ϕh

α to the whole space
h-periodically, the notation ϕh stands for the extended function. Denote for brevity ζ ε(x) = uε(x) − u(x) and rewrite
uε as follows:

uε(x) = u(x) + ϕh(x)ζ ε(x) + (
1 − ϕh(x)

)
ζ ε(x) ≡ uε

h(x) + (
1 − ϕh(x)

)
ζ ε(x).

Then we have

lim
ε→0

∣∣∣∣ ∫
Ωh,Γ

Fπε

(
x,uε,∇uε

)
dx −

∫
Ωh,Γ

Fπε

(
x,uε

h,∇uε
h

)
dx

∣∣∣∣ � Ch. (3.18)

Indeed by (3.8) and (3.9), the following inequality holds∣∣∣∣ ∫
Ωh,Γ

Fπε

(
x,uε,∇uε

)
dx −

∫
Ωh,Γ

Fπε

(
x,uε

h,∇uε
h

)
dx

∣∣∣∣
�

∫
Πh ∩Ωh,Γ

∣∣Fπε

(
x,uε,∇uε

)∣∣dx +
∫

Πh ∩Ωh,Γ

∣∣Fπε

(
x,uε

h,∇uε
h

)∣∣dx

� Ch + C

∫
Π ∩Ω

{
1 + ∣∣ζ ε

∣∣πε(x) + ∣∣∇ζ ε
∣∣πε(x) + 1

h2πε(x)

∣∣ζ ε
∣∣πε(x) + ∣∣ζ ε

∣∣}dx.
h h,Γ
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By the definition of ζ ε ,

lim
ε→0

∫
Πh ∩Ωh,Γ

{∣∣ζ ε
∣∣πε(x) + 1

h2πε(x)

∣∣ζ ε
∣∣πε(x) + ∣∣ζ ε

∣∣}dx = 0.

Then considering (3.9) we get∫
Πh∩Ωh,Γ

{
1 + ∣∣∇ζ ε

∣∣πε(x)}
dx � Ch.

This yields (3.18).
Inequalities (3.17) and (3.18) imply that

lim
ε→0

;
∫

Ωh,Γ

Fπε

(
x,uε,∇uε

)
dx � lim

ε→0

∫
Ωh,Γ

Fπε

(
x,uε

h,∇uε
h

)
dx − Ch

= lim
ε→0

∑
α

∫
Kα

h ⊂Ωh,Γ

Fπε

(
x,uε

h,∇uε
h

)
dx − Ch. (3.19)

Since uε
h converges strongly to the function u in the space Lπε(·)(Ω) and ∇u = Aj , then, for any Kα

h ⊂ Ωh,Γ , we
have:

lim
ε→0

∫
Kα

h

Fπε

(
x,uε

h,∇uε
h

)
dx � lim

ε→0

∫
Kα

h

aε
pε

(x)
∣∣Aj + ∇(

ϕhζ ε
)∣∣πε(x)

dx

+
∫

Kα
h

{
βp(x)|u|p0(x) − f (x)u

}
dx. (3.20)

Denote

πα
h = min

y∈K̄α
h

πε(y), pα
h = max

y∈K̄α
h

pε(y). (3.21)

Then the first term on the right-hand side of (3.20) satisfies the estimate

lim
ε→0

∫
Kα

h

aε
pε

(x)
∣∣Aj + ∇(

ϕhζ ε
)∣∣πε(x)

dx � lim
ε→0

∫
Kα

h

1

pα
h

a

(
x

ε

)∣∣Aj + ∇(
ϕhζ ε

)∣∣πα
h dx. (3.22)

Since ϕhζ ε = 0 on ∂Kα
h , the integral on the right-hand side of the last inequality can be estimated as follows∫

Kα
h

1

pα
h

a

(
x

ε

)∣∣Aj + ∇(
ϕhζ ε

)∣∣πα
h dx � min

v∈W
1,πα

h
# (Kα

h )

∫
Kα

h

1

pα
h

a

(
x

ε

)
|Aj + ∇v|πα

h dx

= hn

pα
h

min
v∈W

1,πα
h

# (Y )

∫
Y

a(y)
∣∣Aj + ∇v(y)

∣∣πα
h dy,

the last equality here follows from the convexity of the integrand. Denote

L(p, �ξ) = min
v∈W

1,p
# (Y )

∫
Y

a(y)
∣∣�ξ + ∇v(y)

∣∣p dy.

Let us prove that this function is continuous in p.
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Lemma 3.1. For all �ξ ∈ R
n the function L(p, �ξ) is a continuous function of the variable p on the interval (1,+∞).

Proof. The statement of the lemma is a direct consequence of the Meyers estimate (see, e.g., [12]). �
Combining now (3.19), (3.20), (3.22), the statement of Lemma 3.1 and the fact that πα

h and pα
h converge to p0(x)

as ε → 0 and then h → 0, we conclude that

lim
ε→0

∫
Ω

Fπε

(
x,uε,∇uε

)
dx � lim

ε→0

∫
Ωh,Γ

Fπε

(
x,uε,∇uε

)
dx

�
∫

Ωh,Γ

1

p0(x)
L

(
p0(x),∇u

)
dx +

∫
Ωh,Γ

{
βp(x)|u|p0(x) − f (x)u

}
dx − κ(h),

where κ(h) tends to zero as h → 0. Considering now the definition of T(x, �ξ), estimates (3.12) and (3.14) and the
properties of the limit Lagrangian, we obtain

lim
ε→0

∫
Ω

Fπε

(
x,uε,∇uε

)
dx � Jhom[u] − κ1(h),

where κ1(h) tends to zero, as h → 0. Since the left-hand side and the first term on the right-hand side of the last
inequality do not depend on h, this yields the desired estimate (3.5).

By the definition of πε(x) we have πε(x) � p0(x). Therefore, the family J̃ ε[u] is uniformly, in ε, continuous in
W 1,p0(·)(Ω) topology, and the fact that (3.5) holds for all u ∈ A(Ω) implies that (3.5) holds for all u ∈ W 1,p0(·)(Ω).
This completes the proof of the “lim inf”-inequality for J̃ ε[u].

Finally, the “lim inf”-inequality for the functionals J ε[u] is a consequence of the following inequality: for any
sequence uε that converges in Lp0(·)(Ω) it holds

lim
ε→0

∫
Ω

Fpε

(
x,uε,∇uε

)
dx � lim

ε→0

∫
Ω

Fπε

(
x,uε,∇uε

)
dx.

3.2. Proof of the “lim sup”-inequality

Since the limit functional Jhom[u] is continuous in W 1,p0(x) norm and piecewise affine functions are dense
in W 1,p0(x)(Ω), it suffices to prove the “lim sup”-inequality only for piecewise affine functions u. Let Kα

h be a
periodic cubic grid in R

n with period (h − h2), and denote by {xα} the periodic set of points being the centers of the
cubes Kα

h . We associate with this covering a partition of unity {ϕα}: 0 � ϕα(x) � 1; ϕα(x) = 0 for x /∈ Kα
h ; ϕα(x) = 1

for x ∈ Kα
h \ ⋃

β �=α K
β
h ;

∑
α ϕα(x) = 1 for x ∈ Ω ; |∇ϕα(x)| � Ch−2.

Denote by Uα(y) a minimizer in (2.12) with x = xα , �ξ = ∇u(xα), Uα(y) is a Y -periodic function. In the domain Ω

we define

wε
h(x) = u(x) + ε

∑
α

Uα

(
x

ε

)
ϕα(x). (3.23)

From the Meyers estimate (see [1]) it follows that there exist δ > 0 and h0 > 0 such that∥∥wε
h

∥∥
W 1,pε(·)+δ(Ω)

� C (3.24)

for all h < h0 and ε < h2. Indeed, by [1] the functions Uα(y) admit the bound
‖Uα‖

W 1,p0(xα)+2δ(Y )
� C

for some δ > 0. Since p0(x) is uniformly continuous in Ω , there is h0 > 0 such that
‖Uα‖W 1,pα+δ(Y ) � C

for all h < h0; here and later on pα = maxKα
h

p0(x). This implies the inequality∥∥∥∥u(x) + ε
∑
α

Uα

(
x

ε

)
ϕα(x)

∥∥∥∥
W 1,pε(x)+δ(Ω)

� C
(
1 + εh−2).

Under the assumption that ε < h2 the last estimate yields the bound (3.24).
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Denote by Ω−
h the set Ωh,Γ \ Πh, where the sets Ωh,Γ and Πh have been defined in (3.16) and (3.7), respectively.

Letting h = ε1/4 and considering the structure of wε
h, we conclude that∥∥wε

ε1/4

∥∥
W 1,pε(x)(Ω)

� C,
∥∥wε

ε1/4

∥∥
W 1,p0(x)+δ(Ω)

� C, (3.25)∫
Π

ε1/4

1

pε(x)
a

(
x

ε

)∣∣∇wε
ε1/4

∣∣pε(x)
dx � Cε1/4, (3.26)

∣∣∣∣ ∫
Ω−

ε1/4

1

pε(x)
a

(
x

ε

)∣∣∇wε
ε1/4

∣∣pε(x)
dx −

∑
α

∫
Ω−

ε1/4 ∩Kα

ε1/4

1

p0(xα)
a

(
x

ε

)∣∣∇wε
ε1/4

∣∣p0(x
α)

dx

∣∣∣∣ � κ2(ε), (3.27)

where κ2(ε) converges to zero as ε → 0. Since T(x, �ξ) is a continuous function of x, we have∣∣∣∣ ∫
Ω−

ε1/4

T
(
x,∇u(x)

)
dx −

∑
α

∫
Ω−

ε1/4 ∩Kα

ε1/4

T
(
xα,∇u(x)

)
dx

∣∣∣∣ � κ3(ε), (3.28)

where κ3(ε) also converges to zero as ε → 0. Taking into account the relation∫
Ω−

ε1/4 ∩Kα

ε1/4

1

p0(xα)
a

(
x

ε

)∣∣∇wε
ε1/4

∣∣p0(x
α)

dx =
∫

Ω−
ε1/4 ∩Kα

ε1/4

T
(
xα,∇u(x)

)
dx

and combining (3.25)–(3.28), we deduce the estimate∣∣∣∣ ∫
Ω−

ε1/4

1

pε(x)
a

(
x

ε

)∣∣∇wε
ε1/4

∣∣pε(x)
dx −

∫
Ω−

ε1/4

T
(
x,∇u(x)

)
dx

∣∣∣∣ � κ4(ε)

with κ4(ε) vanishing as ε → 0. It remains to notice that∣∣∣∣ ∫
Ω\Ω−

ε1/4

1

pε(x)
a

(
x

ε

)∣∣∇wε
ε1/4

∣∣pε(x)
dx

∣∣∣∣ +
∣∣∣∣ ∫
Ω\Ω−

ε1/4

T
(
x,∇u(x)

)
dx

∣∣∣∣ � Cε1/4,

and that∫
Ω

(
1

pε(x)
b

(
x

ε

)∣∣wε
ε1/4

∣∣pε(x) − f (x)wε
ε1/4

)
dx −→

ε→0

∫
Ω

(
βp(x)|u|p0(x) − f (x)u

)
dx,

and the desired “lim sup”-inequality follows. This completes the proof of the statement (C.1) of Theorem 2.2.

3.3. Convergence of minimizers

Consider the variational problem corresponding to the functional J ε:

J ε
[
uε

] → inf, uε ∈ W 1,pε(·)(Ω). (3.29)

It is known from [1–3,6] that, for each ε > 0, there exists a unique solution uε ∈ W 1,pε(·)(Ω) of problem (3.12). From
(3.3), (2.10), and the assumption (A5) on the function f , we have that∥∥uε

∥∥
W 1,pε(·)(Ω)

� C and Apε(·)
(
uε

)
� C. (3.30)

Now it follows from assumption (A3), (3.30), and Meyers’ estimates in Sobolev spaces with variable exponents (see,
e.g., [1]) that∥∥uε

∥∥
1,p0(·) � C. (3.31)
W (Ω)
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This means that {uε} is a weakly compact set in W 1,p0(·)(Ω). Hence, one can extract a subsequence {uε, ε = εk → 0}
that converges to a function u ∈ W 1,p0(·)(Ω) weakly in W 1,p0(·)(Ω) and strongly in the space Lp0(·)(Ω). Let us show
that u = u(x) is a solution of the variational problem

Jhom[u] → inf, u ∈ W 1,p0(·)(Ω). (3.32)

First, since uε is the solution of the variational problem (3.29), then

J ε
[
uε

]
� J ε

[
wε

]
for any sequence wε . For any w ∈ W 1,p0(·)(Ω), consider a sequence wε which converges to w, as ε → 0, in Lp0(Ω)

and satisfies the Γ -limsup inequality. Taking into account also the “lim inf”-inequality, we get

Jhom[u] � lim
ε=εk→0

J ε
[
uε

]
� lim

ε=εk→0
J ε

[
uε

]
� lim

ε=εk→0
J ε

[
wε

]
� Jhom[w]. (3.33)

The last inequality implies that u is a solution to problem (3.32). Letting w = u in the last relation yields

Jhom[u] = lim
ε=εk→0

J ε
[
uε

] = lim
ε=εk→0

J ε
[
uε

]
. (3.34)

Since the limit problem (3.32) has a unique solution, then the whole sequence {uε} converges weakly in W 1,p0(·)(Ω)

and strongly in Lp0(·)(Ω) to the function u, as ε → 0. This completes the proof of Theorem 2.2.

Remark 1. The above mentioned results may be proved in the same way for more general functionals

J ε[u] =
∫
Ω

(
1

pε(x)
a

(
x

ε

)∣∣∇u(x)
∣∣pε(x) + 1

σε(x)
b

(
x

ε

)∣∣u(x)
∣∣σε(x) − f (x)u(x)

)
dx,

with

1 < σ(−) � σε(x) � σ (+) <
npε(x)

n − pε(x)

satisfying the conditions (2.2)–(2.4).
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