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Abstract

Stochastic behavior—the probabilistic evolution of a system in time—is essential to modeling the complexity
of real-world systems. It enables realistic performance modeling, quality-of-service guarantees, and especially
simulations for biological systems. Languages like the stochastic pi calculus have emerged as effective tools
to describe and reason about systems exhibiting stochastic behavior. These languages essentially denote
continuous-time stochastic processes, obtained through an operational semantics in a probabilistic transition
system. In this paper we seek a more descriptive foundation for the semantics of stochastic behavior using
categories and monads. We model a first-order imperative language with stochastic delay by identifying
probabilistic choice and delay as separate effects, modeling each with a monad, and combining the monads
to build a model for the stochastic language.
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1 Introduction

Stochastic temporal behavior is crucial for modeling real-world systems with non-
functional requirements like quality-of-service guarantees [11]. Such requirements
often take the form of soft real-time constraints such as “do a before time t with
probability 0.99”. Multimedia applications and collaborative virtual environments
are well-known examples of systems exhibiting such characteristics.

To model and program systems with soft constraints, we need languages to ex-
press probability distributions over the delays experienced during the evolution of
the system. PEPA [26] and the stochastic pi calculus [43] are two examples of
languages that express this kind of stochastic temporal behavior. The semantics
of these languages is operational, given in terms of a labelled probabilistic transi-
tion system. The transition systems themselves denote continuous-time stochastic
processes, often continuous-time Markov stochastic processes.
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An operational semantics in terms of probabilistic transition systems, however,
does not directly describe stochastic temporal behavior—it delegates the task to
the metatheory. In this paper, we initiate a study of the foundation of stochastic
temporal behavior, working towards a natural denotational semantics for stochastic
languages. In particular, we are interested in relating the kind of probabilistic be-
havior found in languages with probabilistic choice with the kind of stochastic tem-
poral behavior found in the stochastic pi calculus. Following Giry’s [21] approach
to the categorical foundation of discrete- and continuous-time Markov processes,
we explore a categorical model of stochastic temporal behavior. This approach has
two immediate advantages. First, the resulting model is sufficiently abstract to be
generally applicable. Second, we obtain a principled derivation of semantic models
for stochastic languages.

To ground our intuitions, we study stochastic temporal behavior in the context
of a simple language of while loops [24,52]. Languages of while loops are relatively
simple, yet structured and Turing-complete. Moreover, being first-order, their deno-
tational semantics requires no heavy-duty machinery. In §2, we review the standard
categorical semantics for such languages, taking advantage of Moggi’s insight that
monads can be used to lift the semantics of a pure language to an extension with
effects [37,38]. We illustrate the approach with two different effects: iteration and
probabilistic choice.

Stochastic temporal behavior ultimately amounts to adding delay to computa-
tions. In §3, we present an abstract approach for adding delay to the categorical
semantics of our imperative language by introducing a monad to express timed
computations. We examine how this monad interacts with monads capturing other
effects in the language. In particular, we investigate conditions under which adding
timed computations to a semantic model that correctly handles iteration yields an
extended semantic model that also correctly handles iteration.

In §4, we instantiate our abstract approach to derive semantic models for a lan-
guage of while loops extended with a deterministic delay operator and for a language
of while loops extended with a probabilistic delay operator. In §5, we instantiate
our abstract approach to derive semantic models for a probabilistic language of while
loops [32] extended with a deterministic delay operation. We call the resulting se-
mantic models categories of M-timed stochastic relations TSRelM, extending the
category SRel of stochastic relations commonly used to give semantics to proba-
bilistic languages of while loops. In these categories, we draw a relationship between
probabilistic choice and stochastic temporal behavior by showing that both are in
fact derivable from a primitive that lets us sample probability distributions.

We review related work in §6 and conclude in §7. Due to space restrictions,
proofs of our technical results are only sketched where useful, and full proofs have
been relegated to the full version of the paper [12].

D. Brown, R. Pucella / Electronic Notes in Theoretical Computer Science 249 (2009) 193–217194



2 Categories for Imperative Languages with Effects

Standard denotational semantics for languages of while loops are state-transformer
semantics: the meaning of a statement is a partial function from states to states,
where states are assignments of values to variables. Partial functions are necessary
because loops need not terminate.

This sort of semantics can be given abstractly in any category with the right
structure. We review such a categorical semantics below. The material in this
section is well known and we claim no novelty, but our presentation of it may be
unfamiliar: because our approach to adding delay in §3–5 relies on first separating
iteration from the model, we treat nontermination as an effect and model it with a
monad in the style of Moggi [37,38].

We define a family of typed imperative sequential languages ISLext , where ext
represents some language extensions that carry effects. The base language in this
family, ISL0, is an imperative sequential language without iteration.

Syntax of ISL0:

τ ::= type
bool
. . .

E ::= expression
. . .

S ::= statement
skip skip
S1;S2 sequencing
let v : τ = E in S allocation
v := E assignment
if E then S1 else S2 conditional

Our focus is on statements and their semantics, so we elide the details of the ex-
pression language E and types other than bool; we assume only that expressions
are effect free. In examples we freely use expressions that include variable refer-
ence, Boolean operations, and rational arithmetic. We assume a countable set V of
variables, ranged over by u, v, w.

We use a standard type system (e.g., [42,24]) to simplify our semantics. Judge-
ment Γ � E : τ states that the expression E has type τ in typing context Γ.
Judgement Γ � S states that the statement S is well formed in typing context Γ.
A typing context Γ is a sequence of pairs v : τ .

Typing Rules of ISL0:

Γ � skip

Γ � S1 Γ � S2

Γ � S1; S2

Γ � E : τ v : τ,Γ � S

Γ � let v : τ = E in S

Γ, v : τ,Γ′ � E : τ

Γ, v : τ,Γ′ � v := E
(v /∈ Γ)

Γ � E : bool Γ � S1 Γ � S2

Γ � if E then S1 else S2
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The only subtlety in the typing rules is the side condition for assignment: v must not
occur in Γ, preventing non-unique types, but may occur in Γ′, permitting bound
variables to be shadowed by inner let bindings. In other words, typing contexts
“grow on the left”.

The standard state-transformer semantics for ISL0 can be given in any distribu-
tive category, that is, a category with finite products (for state spaces), finite co-
products (for Booleans), and distributivity of products over coproducts given by an
inverse to the canonical map

X×Y +X×Z

[1 × ι1, 1 × ι2]� X×(Y +Z)
(for conditionals [20]).

Following Moggi, we model effectful extensions of ISL0 in the Kleisli category of a
suitable monad, allowing the semantics for the pure language ISL0 to remain uni-
form as the extensions vary. We thus parameterize the semantics for ISL0 over an
arbitrary monad.

Let C be a distributive category and T : C → C a monad with unit
1

ηT
� T

and

multiplication
TT

μT
� T

. We define the monadic semantics of ISL0 via a pair of maps:
�−�Γ assigns to every well-formed statement a Kleisli arrow on states and �− : τ�Γ

assigns to every well-typed expression a pure arrow from states to values:

�S�Γ : �Γ� → T �Γ� (if Γ � S)

�E : τ�Γ : �Γ� → �τ� (if Γ � E : τ)

Since expressions have no effects, their semantics is given by arrows in the base
category C. Types denote objects; in particular,

�bool� � 1 + 1

the object representing the two truth values. The state object �Γ� denoted by the
typing context Γ is the product of the objects denoted by the types in the context:

�v1 : τ1, . . . , vn : τn� � �τ1� × · · · × �τn�

We write
XT

fT� YT
or

(
X

f� TY

)
T

for a Kleisli arrow in CT with underlying arrow

X

f� TY
in C, and we abbreviate components of natural transformations

FX

ϕX� GX

as
FX

ϕ� GX
when the object is clear from context. We abbreviate ηT and μT as η

and μ when the monad T is clear from context.

Monadic Semantics of ISL0:
(
�skip�Γ

)
T

�
(

�Γ�

η� T �Γ�

)
T

=
�Γ�T

1� �Γ�T(
�S1; S2�

Γ
)
T

�
(

�Γ�

�S1�
Γ
� T �Γ�

T �S2�
Γ
� TT �Γ�

μ� T �Γ�

)
T

=
�Γ�T

�S1�
Γ
T� �Γ�T

�S2�
Γ
T� �Γ�T
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�let v : τ = E in S�Γ �
�Γ�

〈�E : τ�Γ, 1〉� �τ�×�Γ�

�S�v:τ,Γ
� T (�τ�×�Γ�)

Tπ2� T �Γ�

�v := E�Γ,v:τ,Γ′ �
�Γ�×�τ�×�Γ′�

〈π1, �E : τ�Γ,v:τ,Γ′
, π3〉� �Γ�×�τ�×�Γ′�

η� T (�Γ�×�τ�×�Γ′�)

�if E then S1 else S2�
Γ �

�Γ�

�E : bool�Γ?� �Γ�+�Γ�

[�S1�
Γ, �S2�

Γ]� T �Γ�

Identities and composition in the Kleisli category model skip and sequencing. Stan-
dard product constructions in the base category model let and assignment. Standard
coproduct constructions along with guards [20] model conditionals, where guards
map every predicate

X

p� 1+1
to the arrow

X

p?� X+X
�

X

〈1, p〉� X×(1+1)

[1 × ι1, 1 × ι2]−1
� X×1+X×1

π1 + π1� X+X

The inverse [1 × ι1, 1 × ι2]−1 exists because C is distributive. The standard deno-
tational model of ISL0 can be recovered using the category Set with the identity
monad.

We illustrate the use of a monad T with our first extension, iteration, and its
associated effect, nontermination.

Iteration Extension: while

Syntax: Typing Rules:

S ::= · · · | while E do S Γ � E : bool Γ � S

Γ � while E do S

ISLwhile is the standard language of while loops, often called IMP [24,52]. To model
while, we need a monad that imposes enough structure on its Kleisli category to
support iteration. Following Manes and Arbib [35], we take this to mean that the
Kleisli category should be partially additive.

Intuitively, a loop is the limit of the finite unrollings of its body. Partial ad-
ditivity models this limiting process through an infinite summation operator on
hom-sets. Partial additivity is the combination of a few simple structures (see [35])
but we present it as one large, aggregate definition that suffices for our purposes.
The subtleties of this definition are less relevant to our goals than how it enables
us to interpret loops, which we give below.

Definition 2.1 A category D is partially additive if and only if

(1) D has countable coproducts.

(2) Every hom-set D(X, Y ) is a partially additive monoid. That is, it has a partial
function

∑
X,Y from countable subsets of D(X, Y ) to D(X, Y )—we say the

family {fi}i∈I is summable if
∑ {fi}i∈I is defined—subject to:

• Partition-associativity axiom: Given a countable family {fi}i∈I and a count-
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able partition {Ij}j∈J of its indexing set,

∑
{fi}i∈I =

∑ {∑
{fi}i∈Ij

}
j∈J

In particular, the sum on the left is defined if and only if all of the sums on
the right are defined.

• Unary sum axiom: Singleton families are summable with
∑ {f} = f .

• Limit axiom: A countable family is summable if every finite sub-family is
summable.

We abbreviate
∑ {fi}i∈I variously as

∑
i∈I fi,

∑
I fi, or

∑
fi, depending on

context.

(3) Composition distributes over sum: Given
{

X

fi� Y

}
i∈I

summable,

• {g; fi}i∈I is summable and g; (
∑

fi) =
∑

g; fi, for all
W

g� X
;

• {fi;h}i∈I is summable and (
∑

fi);h =
∑

fi;h, for all
Y

h� Z
.

(4) Compatible sum axiom: A countable family
{

X

fi� Y

}
i∈I

is summable if some

X

f� I·Y
makes all diagrams

X
f� I · Y

Y

ρi
�fi �

commute, where I · Y =
∐

I Y and the family
{

I·Y
ρi� Y

}
i∈I

is an instance of

the more general family of quasi-projections
{

‘
Xi

ρi� Xi

}
i∈I

defined by

ρi � [0X1,Xi , . . . , 0Xi−1,Xi , 1Xi , 0Xi+1,Xi , . . . ]

where the arrows 0X,Y are zeroes for composition and units for sum, which
exist as 0X,Y =

∑
X,Y ∅ in any category satisfying (2) and (3).

(5) Untying axiom: If the two arrows
X

f� Y
and

X

g� Y
are summable, then so

are
X

f ; ι1� Y +Y
and

X

g; ι2� Y +Y
.

Two familiar examples of partially additive categories are the category Par of sets
with partial functions and the category CPO of complete partial orders and con-
tinuous functions. In Par, a family of partial functions is summable if and only if
the functions are defined on mutually disjoint subsets of the domain, and the sum
is the union of their graphs. Partial additivity in CPO is even more familiar: a
family is summable if and only if it is a directed subset of the function space, and
the sum is the least upper bound.

The key consequence of partial additivity in our setting is that every arrow

X

f� X+Y
decomposes into arrows

X

f1� X
and

X

f2� Y
such that f =

∑ {f1; ι1, f2; ι2},
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and the iterate of f

f † �
∑
i<ω

f i
1; f2

is defined, where g0 = 1 and gi+1 = g; gi. The morphism f † satisfies the equation

f † =
∑

{f1; f †, f2}

which can be seen as the defining equation of the while loop.
Given a monad T : C → C whose Kleisli category CT is partially additive, we

model ISLwhile by extending the ISL0 semantics with an interpretation for loops:

Monadic Semantics of while:

�while E do S�Γ �
�Γ�

(
�Γ�

�E : bool�Γ?� �Γ�+�Γ�

�S�Γ + η� T �Γ�+T �Γ�

)†

� T �Γ�

A nice property of this semantics is that it does not rely on any particular monad but
is defined abstractly over the class of monads that yield partially additive Kleisli
categories. So when we consider additional effects and monads to model them,
we have a canonical interpretation for while as long as we have partial additivity.
The standard categorical model of ISLwhile can be recovered with Set as the base
category and the partiality monad −⊥ = − + 1. The resulting Kleisli category
Set−⊥ is isomorphic to Par, which is partially additive as we already noted.

Probabilistic extensions of ISL0 form the basis of our study. Throughout the
paper we assume the reader is familiar with basic probability and measure the-
ory [9,5,19,29]. The simplest way to model probabilistic behavior is to use a prob-
abilistic choice operator:

Probabilistic Choice Extension: +p

Syntax: Typing Rules:

S ::= · · · | S1 +p S2 Γ � S1 Γ � S2

Γ � S1 +p S2

The statement S1 +p S2 reads “execute S1 with probability 1 − p and S2 with
probability p”. This operator is nicely modeled with Markov kernels: functions
that map states to probability distributions over states. Markov kernels are the
Kleisli arrows for Giry’s [21] probability monad over measurable spaces but, since
they fail to be partially additive, the monad is only suitable for modeling ISL+ and
not the richer language ISLwhile,+ that includes iteration.

Panangaden [41] solves this problem by considering sub-Markov kernels obtained
from the monad Π of subprobability distributions. A subprobability distribution is
like a probability distribution except it allows the probability of the whole space
to be any value between 0 and 1; this relaxation enables the partiality inherent in
modeling iteration. The subprobability functor Π over the category of measurable
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spaces can be summarized as:

Π : Meas → Meas
(X, ΣX) �→ (ΠX, Σ•

X)

X

f� Y
�→

(
ΣX

ν� [0,1]
�→

ΣY

f−1
� ΣX

ν� [0,1]

)

The measurable space (ΠX, Σ•
X) is the set of all subprobability distributions over X

equipped with the smallest σ-algebra that makes measurable all evaluation functions
εA : ΠX → [0, 1], where A ∈ ΣX and εA(ν) = ν(A). The arrow action produces
a measurable map on distributions (ν ∈ ΠX) �→ (f−1; ν ∈ ΠY ). The functor is a
monad with unit and multiplication:

ηX : X → ΠX μX : Π2X → ΠX

x �→ δx P,A �→
∫

ΠX
ν(A) P (dν)

The unit η maps a point x to its point-mass distribution δx and multiplication
μ evaluates a distribution over distributions down to its average distribution. A
comment about notation: when defining functions into spaces of distributions, we
find it convenient to take a measurable set as an extra argument—that is, we define
a map X → ΠY in its uncurried form, X × ΣY → [0, 1].

Panangaden presents MeasΠ more directly as the category of sub-Markov ker-
nels or stochastic relations, SRel. Its objects are the same as Meas, and an arrow

X

f� Y
is a function f : X × ΣY → [0, 1] such that every f(x,−) is a subprobability

distribution and every f(−, B) is measurable. We can think of f as a probabilistic
variant of a relation: it gives the probability that a point in X is “related to” a
measurable subset of Y . Arrow composition

X

f� Y

g� Z
is then defined as

(f ; g)(x, C) =
∫

Y
f(x, dy) g(y, C) (1)

which can be read: the probability that (f ; g) relates x to the measurable set C

is the probability that f relates x to something that g then relates to C. It is
easy to see that SRel and MeasΠ are isomorphic: currying a stochastic relation

X×ΣY

f� [0,1]
gives a Kleisli arrow

X

f̃� ΠY
, and Kleisli composition is just a curried

version of (1). Throughout the paper we will freely interchange MeasΠ and SRel.
To support a semantics for ISLwhile, the base category Meas must be distributive

and MeasΠ must be partially additive. Panangaden [41] establishes partial addi-
tivity: 3 the sum of a family

{
X×ΣY

fi� [0,1]

}
i∈I

is the pointwise sum of the functions

if the sum is a valid stochastic relation—it does not exceed 1 anywhere—otherwise
the family is not summable. For distributivity, we first need products and coprod-
ucts. Like the category of topological spaces, Meas is topological over Set [2] and

3 Abramsky [1] first observed that SRel is a traced monoidal category. Panangaden refined this by fleshing
out its partially additive structure—see Haghverdi’s thesis [25] for details on how the iteration operator in
a partially additive category induces a trace.
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inherits both completeness and cocompleteness. Limit spaces are limits from Set
equipped with the initial σ-algebra, and colimit spaces are colimits from Set with
the final σ-algebra. In the cases of products and coproducts, this means that the
product space (X, ΣX)×(Y,ΣY ) is (X×Y,ΣX⊗ΣY ), where ΣX⊗ΣY is the smallest
σ-algebra that makes the projections

X×Y

π1� X
and

X×Y

π2� Y
measurable. Similarly,

the coproduct space (X,ΣX) + (Y,ΣY ) is (X + Y,ΣX ⊕ΣY ), where ΣX ⊕ΣY is the
largest σ-algebra making the injections

X

ι1� X+Y
and

Y

ι2� X+Y
measurable. Thus,

ΣX ⊗ ΣY = σ({A × B : A ∈ ΣX , B ∈ ΣY })

is the σ-algebra generated by the “rectangles” A × B with measurable sides, and

ΣX ⊕ ΣY = {A ·∪ B : A ∈ ΣX , B ∈ ΣY }

is the set of disjoint unions of pairs of measurable sets from X and Y . Distributivity
then follows by an elementary argument that the inverse in Set for the canonical
map

X×Y +X×Z

[1 × ι1, 1 × ι2]� X×(Y +Z)
is measurable.

It only remains to describe how to interpret probabilistic choice. It is easy to see
that SRel is closed under subconvex combinations of morphisms: given a sequence
ai ∈ R

+ such that
∑

ai ≤ 1, any family of arrows
{

X

fi� ΠY

}
i∈N

becomes summable

when each is scaled (pointwise) as
{

X

aifi� ΠY

}
i∈N

because the bound on the series
guarantees that the pointwise sum of the family does not exceed 1. Specializing
this to families with two arrows defines an abstract interpretation for probabilistic
choice in any category whose hom-sets are closed under subconvex combinations:

Monadic Semantics of +p:

�S1 +p S2�
Γ �

�Γ�

∑{
(1 − p)�S1�

Γ, p�S2�
Γ
}
� T �Γ�

As Panangaden notes, this semantics for ISLwhile,+ in SRel is the same as the
semantics of Kozen’s probabilistic language of while loops [32,33].

3 Adding Delay

We begin by showing how to abstractly add delay to a monadic semantics for ISL.
We are ultimately interested in modeling ISL0 extended with delay and other ef-
fects; the method we present in this section is parameterized over the monad that
models the class of effects to which delay should be added. This parametric story is
instantiated in §4 to add delay to the Par model of ISLwhile and in §5 to add delay
to the SRel model of ISLwhile,+.

Modeling delay requires a notion of time which can be conveniently and ab-
stractly captured using a monoid (M, e, m) [4]. Common examples include the
naturals (N, 0,+) and nonnegative reals (R+, 0,+). Since we are defining semantics
categorically, we abstract our model of time one step further and use a monoid in a
category C: an object M in a category C with finite products equipped with a unit
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arrow
1

e� M
and a multiplication arrow

M×M

m� M
subject to the commutativity of

two diagrams corresponding to the unit laws and associativity.

M
1 × e� M2 �e × 1

M M3 m × 1� M2

M

m
� 1

�
1 �

M2

1 × m
�

m
� M

m
�

In outline, we add delay to a semantics for ISLwhile as follows. We start with
a monadic semantics of ISLwhile,ext , for some language extension ext , in a partially
additive category CT . Given a monoid (M, e, m) in C to represent time and a
strength for T , we get a distributive law of the monad −× M over T , making the
composition T (− × M) a monad. We then identify reasonable assumptions under
which CT (−×M) inherits partial additivity from CT , enabling a natural extension
of the CT semantics to one in CT (−×M) that also models delay.

Let (M, e, m) be a monoid in a distributive category C. Our notion of delay is
expressed simply:
Delay Extension: wait

Syntax: Typing Rules:

τ ::= · · · | time

S ::= · · · | wait E

Γ � E : time

Γ � wait E

The statement wait E delays execution by E time units, where E has type time.
We use the monoid M to interpret values of type time:

�time� � M

This means that time expressions denote arrows into M :

�E : time�Γ : �Γ� → M

But what monad is appropriate to model delay? Or, more directly, what Kleisli
arrows should interpret statements in the timed language?

To guide our intuition, we first consider adding wait to an effect-free model of
ISL0 in C so that statements are interpreted just as arrows X → Y . To associate
a delay with a pure computation, we can use arrows X → Y × M that compute a
time in addition to a new state:

�S�Γ : �Γ� → �Γ� × M

The statement wait E should then denote an arrow that computes the delay E and
leaves the state unchanged:

�wait E�Γ =
�Γ�

〈1, �E : time�Γ〉� �Γ�×M
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Statements with no substatements, like skip, should denote arrows that record no
delay, and sequenced statements should combine their delays:

�skip�Γ =
�Γ�

〈1, !〉� �Γ�×1

1 × e� �Γ�×M

�S1; S2�
Γ =

�Γ�

�S1�
Γ; (�S2�

Γ × 1)� (�Γ�×M)×M

α� �Γ�×(M×M)

1 × m� �Γ�×M

where
X

!� 1
is the terminal arrow from X and

(X×Y )×Z

α� X×(Y ×Z)
associates prod-

ucts. If we continued considering interpretations for the rest of the statements in
ISL0, we would see that it is exactly the monadic semantics over the well-known
monad of monoid actions −×M : C → C extended with an interpretation for wait.

Proposition 3.1 Given a monoid (M, e, m) in a category C with finite products,
the functor −× M : C → C is a monad with

ηX =
X

〈1, !; e〉� X×M
μX =

(X×M)×M

α� X×(M×M)

1 × m� X×M

where
X

!� 1
is the terminal arrow from X.

The above gives a semantics for ISLwait in C−×M , but it leaves no room for other
monads capturing additional effects. Given a semantics for some extension ISLext

in a Kleisli category CT , we want to combine the monads T and −× M to obtain
a monad modeling the effects in both languages. Combining monads is difficult in
general, but in our setting the straightforward approach of functor composition and
distributive laws [6] suffices.

If we want to combine T and −×M by composition, which order is appropriate?
Intuitively, we think of partial additivity as giving a way to take partially defined
arrows and combine them into a single arrow that aggregates all of their partial
information. This suggests that the (T−)×M order is inappropriate since a Kleisli
arrow X → TY × M decomposes into an arrow X → TY giving the partial state
transformation from X to Y and an arrow X → M giving the non-partial delay
computation. So, unless we put heavier demands on the monoid M , it seems futile
to look for partial additivity on hom-sets X → TY × M . On the other hand,
hom-sets X → T (Y × M) give T the “last word” by framing the Y × M result—
a new state and a delay value—within T . For example, consider Set−⊥ : arrows
X → (Y × M)⊥ have a natural notion of failure whereas arrows X → Y⊥ × M do
not, unless we invent a second notion of failure within M .

For the composition T (−× M) : C → C to form a monad, a distributive law

λ : (T−) × M → T (−× M)

suffices to define the combined multiplication and satisfy the monad laws.

Proposition 3.2 (Beck [7]) If S, T : C → C are monads with a distributive law
of S over T

λ : ST → TS
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then TS : C → C is a monad with unit and multiplication

ηTS =
1

ηT ◦ ηS
� TS

μTS =
TSTS

TλS� TTSS

μT ◦ μS
� TS

where ◦ is horizontal composition.

Further, distributive laws for − × M arise from strong monads as defined by
Moggi [38]. Even though any distributive law of − × M over T suffices to achieve
our goals, the monads we use in §4 and §5 are both strong and strength is somewhat
more familiar than distributive laws, so we restrict our attention to distributive laws
arising from strong monads.

Proposition 3.3 If C is a category with finite products, T : C → C is a strong
monad, and (M, e, m) is a monoid in C, then a tensorial strength for T

tX,Y : X × TY → T (X × Y )

gives a distributive law of −× M over T

λX = t̄X,M : TX × M → T (X × M)

where t̄X,Y =
TX×Y

γ� Y ×TX

tY,X� T (Y ×X)

Tγ� T (X×Y )
is tY,X commuted.

Not only does the distributive law give the monad T (− × M) : C → C that
extends the pure semantics for ISL0 to model delay in addition to the effects in
the original language ISLext , but it also induces a monad −× M : CT → CT that
directly extends the effectful semantics of ISLext .

Proposition 3.4 If S, T : C → C are monads and S distributes over T , then S

lifts to a monad S : CT → CT where

S
(

XT

fT� YT

)
=

(SX)T

(
SX

Sf� STY

λY� TSY

)
T� (SY )T

XT

ηS
XT� (SX)T

=
(

X

ηTS
X� TSX

)
T

(SSX)T

μS
XT� (SX)T

=
(

SSX

(ηT ◦ μS)X� TSX

)
T

where ◦ is horizontal composition. Further,

(CT )S
∼= CTS

This is an instance of a Kleisli lifting of a functor [39,40] where, since the natural
transformation classifying the lifting is a distributive law, the lifted functor is a
monad and its Kleisli category coincides with the one for the composite monad.

We can now give a monadic semantics for the wait statement. Let T : C → C
a monad such that − × M distributes over T . This yields a monad T (− × M) :
C → C with which we instantiate the monadic semantics of §2 and extend with an
interpretation for wait:

D. Brown, R. Pucella / Electronic Notes in Theoretical Computer Science 249 (2009) 193–217204



Monadic Semantics of wait:

�wait E�Γ �
�Γ�

〈1, �E : time�Γ〉� �Γ�×M

η� T (�Γ�×M)

We must also ensure, however, that the new models in CT (−×M) can still interpret
T ’s original effects.

Our languages become uninteresting without iteration, so we seek conditions
to ensure that if CT is partially additive then CT (−×M) is partially additive as
well. In particular, we seek a set of conditions much smaller than the somewhat
cumbersome set of properties in Definition 2.1. If we keep in mind the lifted monad
−× M : CT → CT while trying to prove partial additivity for CT (−×M), we arrive
at a pair of simple, sufficient conditions:

Definition 3.5 A functor S : D → D′ between partially additive categories pre-
serves partial additivity 4 if and only if

(a) {fi}i∈I summable implies {Sfi}i∈I summable

(b) S(
∑

fi) =
∑

(Sfi)

Proposition 3.6 If a monad S : D → D preserves partial additivity, then DS is
partially additive where

(a)
{

XS

(fi)S� YS

}
i∈I

is summable if and only if
{

X

fi� SY

}
i∈I

is summable

(b)
∑

XS

(fi)S� YS
=

(∑
X

fi� Y S

)
S

Checking conditions (2)–(5) in the definition of partial additivity is lengthy but
straightforward. Condition (1), that DS has countable coproducts, follows imme-
diately from D having countable coproducts [49] since it is partially additive.

The result of all of this is that we can model delay in a monoid from the base
category of a monadic model of ISL0 and interpret the extended language, given that
we can establish a distributive law and preservation of additivity. Modeling delay
is the easy part—all the work goes into making sure we can still model iteration.

Theorem 3.7 Let S, T : C → C be monads with CT partially additive. If S

distributes over T and S : CT → CT perserves partial additivity, then CTS is
partially additive.

Corollary 3.8 Let C have finite products, let T : C → C be a strong monad with
CT partially additive, and let M be a monoid in C. Then T (− × M) : C → C is
a monad and, if −× M : CT → CT preserves partial additivity, then CT (−×M) is
partially additive.

The rest of the paper studies two applications of this theorem.
As a sanity check, we can verify that using the trivial one-element monoid to

model time gives back the original semantics. Let (M, e, m) = (1, !1, !1×1) and ob-

4 Haghverdi [25] observes that this is the same as a functor enriched over the category of partially additive
monoids and calls such a functor additive.
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serve that, since terminal objects are the unit for product, X×1 ∼= X, the extended
Kleisli category collapses to the original one: CT (−×1)

∼= CT . Intuitively, since a
terminal object has exactly one point, modeling delay in the trivial monoid amounts
to throwing away the language’s information about the duration of computations.

4 Adding Delay to Par

Before extending a probabilistic variant of ISL0 with delay, we first consider ISLwhile

since it has a simple semantics over partial functions. Then, to obtain a useful
intermediate between the two, we specialize the deterministic semantics to model
probabilistic delays while retaining deterministic behavior on states.

4.1 Deterministic Delay

Consider the Par ∼= Set−⊥ semantics for ISLwhile mentioned in §2. To extend the
semantics with delay by following the program outlined in §3, we need a few things:
a monoid M in Set, a strength for −⊥ to make (−× M)⊥ a monad, and preservation
of partial additivity for the lifted monad −× M on Par. These things are easy to
obtain.

Fix a monoid (M, e, m) in Set to model time. It is well known that −⊥ is
strong [38], making the composite functor (−× M)⊥ a monad.

Proposition 4.1 −⊥ : Set → Set is a strong monad with tensorial strength

tX,Y : X × Y⊥ → (X × Y )⊥
(x, y) �→ (x, y)
(x,⊥) �→ ⊥

Corollary 4.2 The functor (−× M)⊥ : Set → Set is a monad with unit and
multiplication

ηX : X → (X × M)⊥ μX : ((X × M)⊥ × M)⊥ → (X × M)⊥
x �→ (x, e) ((x, b), a) �→ (x, m(a, b))

(⊥, a) �→ ⊥
⊥ �→ ⊥

The lifted monad can be shown to preserve partial additivity by straightforward
reasoning with sums of partial functions.

Proposition 4.3 The monad −× M : Set−⊥ → Set−⊥ preserves partial additiv-
ity.

Corollary 4.4 The category Set(−×M)⊥ is partially additive.

Instantiating the monadic semantics of ISLwhile,wait from §2 and §3 with CT =
Set(−×M)⊥ , we see that statements are interpreted as partial functions where the
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result contains a delay component capturing the cumulative delay incurred by the
statement:

�S�Γ : �Γ� → (�Γ� × M)⊥
In particular, the wait statement terminates and records the specified delay:

�wait E�Γ(x) = (x, �E : time�Γ(x))

Sequenced statements combine their delays with the monoid multiplication m, and
pure statements represent the fact that they incur no delay with the monoid unit e.

4.2 Probabilistic Delay

Deterministic delays are too simple to model systems with complex time behavior.
A more expressive language would be able to represent the duration of complex
computations stochastically by sampling delays from probability distributions. Here
we consider a language with probabilistic delays and deterministic state behavior
before moving to a fully probabilistic language in the next section.

Consider a variation on ISLwhile,wait where delays are sampled from probability
distributions. This is easily achieved by using the time type to classify expres-
sions describing distributions over time. One way to understand such an expression
language is to view expressions as deterministically specifying the probability dis-
tribution over their possible delays. For the sake of examples consider including
expressions exp(E), an exponential distribution with parameter E, and bern(E), a
Bernoulli distribution yielding false with probability E and true with probability
1 − E (with suitable default behavior if E is out of range).

Since expressions E : time now describe distributions instead of what we were
previously thinking of as deterministic durations, the language is easily modeled
within the Par semantics just presented: use a monoid of probability distributions
over time. But what kind of monoidal structure is meaningful? In particular, what
should we use for multiplication?

Consider how Kleisli composition should operate on a pair of sample denotations
in Set(−×ΠR+)⊥ , where we abbreviate T = (−× ΠR

+)⊥:

�Γ�T

�v := v + 1;wait exp(2)�v
T� �Γ�T

�v := v + 1; wait exp(4)�v
T� �Γ�T

Since the mean of exp(λ) is 1
λ , we expect this composition to increment v twice with

mean delay 1
2 + 1

4 = 3
4 . Put differently, if we define a random variable observing the

delay of each program, then we want the random variable of the composite to be
the sum of those for the first and second program. This suggests using convolution
of measures as our monoid multiplication.

Definition 4.5 Given μ, ν ∈ ΠR
+, their convolution μ ∗ ν ∈ ΠR

+ is:

μ ∗ ν = (μ × ν)+ = A �→
∫∫

χA(x + y) μ(dx) ν(dy)
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where χA(x) = 1 if x ∈ A and 0 otherwise.

Proposition 4.6 (ΠR
+, δ0, ∗) is a monoid in Set, where the unit δ0 is the point

mass at 0 and multiplication ∗ is convolution.

Generalizing this from R
+ to arbitrary monoids is straightforward: replace the

monoid (R+, 0,+) with any monoid (M, e, m) that is also a measurable space, and
the integral will be defined if multiplication m is measurable. More simply, we
can just ask for a monoid in Meas since the unit e is always measurable: given a
monoid (|M| , e,m) in Set where M is a measurable space,

1

e� |M| is measurable
since both subsets of the terminal object 1 are measurable.

Definition 4.7 A measurable monoid is a monoid in Meas.

We write M for measurable monoids and M for monoids in Set.
We can now generalize convolution to arbitrary measurable monoids and get a

monoidal structure on their spaces of probability distributions.

Definition 4.8 Given μ, ν ∈ ΠM over a measurable monoid (M, e,m), their con-
volution μ ∗m ν ∈ ΠM is:

μ ∗m ν = (μ × ν)m = A �→
∫∫

M2

χA(m(a, b)) μ(da) ν(db)

We write μ ∗m ν as μ ∗ ν when the monoid is clear from context.

Proposition 4.9 If (M, e,m) is a measurable monoid then (ΠM, δe, ∗m) is a monoid
in Set where the unit δe is the point mass at e and multiplication ∗m is convolution
of measures.

Equipped with a compelling monoidal structure over distributions, we can now
instantiate the Par semantics from §4.1 and derive a model for the (deterministic)
language with probabilistic delay. Type time now corresponds to distributions:

�time� � ΠM

Since expressions E : time now represent distributions and are interpreted as

�E : time�Γ : �Γ� → ΠM

the abstract semantics for wait becomes:

�wait E�Γ =
�Γ�

〈1, �E : time�Γ〉� �Γ�×ΠM
ηT
� T (�Γ�×ΠM)

With T = −⊥, the resulting Set(−×ΠM)⊥ semantics is very close to the Set(−×M)⊥
semantics except it uses a monoid of distributions to interpret stochastic delay
alongside deterministic behavior on states. The interpretation of statements is now

�S�Γ : �Γ� → (�Γ� × ΠM)⊥
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The wait statement terminates and records the expressed distribution over time:

�wait E�Γ(x) = (x, �E : time�Γ(x))

Sequenced statements combine their delay distributions by convolution. Pure state-
ments represent the fact that they incur no delay with δe, the point mass at the
monoid unit e.

5 Adding Delay to SRel

The language in the previous section expresses stochastic computations with prob-
abilistic delay but fails to capture systems that also have probabilistic behavior on
states. To achieve both we add delay to the probabilistic language ISLwhile,+ from
§2; probabilistic delay falls out of the combination. This section uses the method
from §3 to extend the SRel semantics for ISLwhile,+ to also model delay, giving a
semantics for a probabilistic language with stochastic temporal behavior.

Consider the SRel ∼= MeasΠ semantics for ISLwhile,+ described in §2. Following
the method in §3 is again straightforward: take a monoid M in Meas, construct
a strength for Π to make Π(−×M) a monad, and establish that the lifted monad
−×M : SRel → SRel preserves partial additivity.

Fix a measurable monoid M to model time. Strength for Π is straightforward:

Proposition 5.1 Π : Meas → Meas is a strong monad with tensorial strength

tX,Y : X × ΠY → Π(X × Y )
(x, ν), C �→ ν(Cx)

where Cx = {y : (x, y) ∈ C}. Equivalently, t maps to the product measure

tX,Y (x, ν) = δx × ν

The equation follows easily by considering both sides’ action on measurable rectan-
gles, which uniquely determines product measures. Working with product measures
then enables easy proofs of measurability and naturality, the former because the
product map

ΠX×ΠY

×� Π(X×Y )
is measurable. Finally, proving the required equali-

ties for strength is straightforward.
Proposition 5.1 gives a monad combining probability and delay:

Corollary 5.2 The functor Π(−×M) : Meas → Meas is a monad with unit and
multiplication

ηΠ(−×M) =
1

ηΠ ◦ η−×M
� Π(−×M)

μΠ(−×M) =
Π(Π(−×M)×M)

Πλ(−×M)� Π2(−×M)2
μΠ ◦ μ−×M

� Π(−×M)

where λ = t̄ is the distributive law obtained from strength for Π, and ◦ is horizontal
composition.
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It is worthwhile to spell these out in detail. The unit just introduces the point-mass
distribution and the monoid’s unit: η

Π(−×M)
X (x) = δ(x,e). Multiplication is more

interesting:

μ
Π(−×M)
X (P )(C) =

∫
Π(X×M)×M

ν({(x, b) : (x, m(b, a)) ∈ C}) P (dν, da)

where P ∈ Π(Π(X ×M)×M) and C ∈ ΣX×M. The behavior of μΠ(−×M) is similar
to μΠ, which averages a distribution over distributions down to a single distribution,
except μΠ(−×M) must also incorporate the monoid action.

Although the above multiplication is complicated, it corresponds to a nice Kleisli
composition and supports a satisfying direct presentation analogous to SRel:

Definition 5.3 The category TSRelM of M-timed stochastic relations has mea-
surable spaces as objects and an arrow

X

f� Y
is a function f : X × ΣY ×M → [0, 1]

such that every f(x,−) is a subprobability measure and every f(−, C) is measurable.
The identity arrow

X

1X� X
is 1X(x, C) = δ(x,e)(C), and the composition

X

f� Y

g� Z

is
(f ; g)(x, C) =

∫
Y ×M

∫
Z×M

f(x, d(y, a)) g(y, d(z, b)) χC((z, m(b, a)))

We think of a stochastic relation
X

f� Y
as giving the probability that a point in

X relates to a measurable subset of Y ; similarly, we think of a timed stochastic
relation

X

f� Y
as doing the same for measurable subsets of Y ×M—points in Y

and values in the monoid M, which we interpret as time delay. We can then read
composition as: f ; g relates x to C if f relates x to y with delay a, g relates y to z

with delay b, and z paired with the aggregate delay m(b, a) is in C. The probability
that f ; g relates x to C is then the sum of the probabilities of each of these sufficient
cases.

Since currying a timed stochastic relation
X×ΣY ×M

f� [0,1]
produces a Kleisli ar-

row
X

f̃� Π(Y ×M)
we expect to also have the isomorphism TSRelM ∼= MeasΠ(−×M).

Indeed, using change of variables and Fubini’s theorem it is a straightforward calcu-
lation to show that Kleisli composition is just a curried version of composition for
timed stochastic relations, and the isomorphism is then easy to construct. We freely
interchange MeasΠ(−×M) and TSRelM to take advantage of both the curried and
uncurried forms of timed stochastic relations.

Now that we have a category TSRelM capable of modeling probabilistic choice
and delay, the last step is to show that it can also interpret iteration by establishing
partial additivity. Because SRel is partially additive, it suffices to show that the
lifted monad −×M on SRel preserves partial additivity. This also follows by an
elementary measure-theoretic argument.

Proposition 5.4 The monad −×M : MeasΠ → MeasΠ preserves partial addi-
tivity.

Corollary 5.5 The category MeasΠ(−×M) is partially additive.
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Additionally, we recover the SRel semantics as TSRel1 which ignores delay by
collapsing everything in the one-element monoid.

TSRelM interprets delay statements wait E for deterministic durations as

�wait E�Γ =
�Γ�

〈1, �E : time�Γ〉� �Γ�×M
η� Π(�Γ�×M)

but what about probabilistic delays like in §4.2? The monad Π(− × M) gives
distributions over both state and time, so we expect to be able to model these as
well without taking M itself to be a space of distributions.

So that deterministic and probabilistic delay can coexist, we introduce a second
delay statement, pwait, and a new family of types:

Probabilistic Delay Extension for TSRelM: pwait

Syntax: Typing Rules:

τ ::= · · · | prob τ

S ::= · · · | pwait E

Γ � E : prob time

Γ � pwait E

The statement pwait E samples the time distribution E : prob time and delays
execution by the resulting number of time units. Types prob τ denote spaces of
probability distributions over values of type τ :

�prob τ� � Π�τ�

This means that prob τ expressions denote arrows into these spaces of distributions:

�E : prob τ�Γ : �Γ� → Π�τ�

As in §4.2, we assume expressions for exponential distributions exp(E) and Bernoulli
distributions bern(E), but now with type prob τ where E : τ .

We expect �pwait E�Γ to be a timed stochastic relation that relates a state x

only to itself with delay sampled from �E : prob time�Γ(x):

�pwait E�Γ(x, C) =
∫
M

χC(x, a) �E : prob time�Γ(x, da)

= (δx × �E : prob time�Γ(x))(C)

This semantics is concisely expressible using strength for Π.

TSRelM Semantics of pwait:

�pwait E�Γ �
�Γ�

〈1, �E : prob time�Γ〉� �Γ�×ΠM
t� Π(�Γ�×M)

We can even characterize probabilistic delay in TSRelM in terms of the orig-
inal probabilistic delay in Set(−×ΠM)⊥ given in §4.2 where state transitions were
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deterministic:

�pwait E�Γ =
�Γ�

�wait E�Γ� (�Γ�×ΠM)⊥
ϕ� Π(�Γ�×ΠM)

Πt� Π2(�Γ�×M)

μΠ
� Π(�Γ�×M)

where �wait E�Γ is the interpretation in Set(−×ΠM)⊥ of wait E from the language
of §4.2. We bridge the two semantic categories with a map ϕ : −⊥ → Π that sends
points to their point-mass distributions and failure to the distribution that measures
everything as 0:

ϕX : X⊥ → ΠX

x �→ δx

⊥ �→ 0

TSRelM models probabilistic choice and probabilistic delay, and both operators
are based on sampling a probability distribution. This suggests that extending the
language with a construct to sample probability distributions should enable us to
express both operators.

Sampling Extension: ←
Syntax: Typing Rules:

S ::= · · · | v ← E Γ, v : τ,Γ′ � E : prob τ

Γ, v : τ,Γ′ � v ← E
(v /∈ Γ)

The statement v ← E samples the distribution E : prob τ and assigns the result to
v. It is tempting to formulate this as an expression, like sample(E), but doing so
would introduce effects into the expression language and complicate our framework.

The sampling operator is easily modeled in our probabilistic categories. We
define �v ← E�Γ : �Γ� → ΠS�Γ� for any monad S on Meas that composes with Π;
taking S to be 1 gives a denotation in SRel, and − × M gives one in TSRelM.
Recall that distributions are interpreted as �E : prob τ�Γ : �Γ� → Π�τ�.
Monadic Semantics of ←:

�v ← E�Γ,v:τ,Γ′ �

�Γ�×�τ�×�Γ′�
〈π1, �E : prob τ�Γ,v:τ,Γ′

, π3〉� �Γ�×Π�τ�×�Γ′�
t̂� Π(�Γ�×�τ�×�Γ′�)

ΠηS
� ΠS(�Γ�×�τ�×�Γ′�)

The key is the arrow

t̂X,Y,Z =
X×ΠY ×Z

t × 1� Π(X×Y )×Z

t� Π(X×Y ×Z)

which reifies the distribution produced by �E : prob τ�Γ as a probability distribution
over the whole state space.

We can now express pwait E simply by sampling E and then waiting the length
of time specified by the result. Sampling also generalizes probabilistic choice: sam-
ple a Bernoulli distribution and branch. The following proposition captures these

D. Brown, R. Pucella / Electronic Notes in Theoretical Computer Science 249 (2009) 193–217212



intuitions using the TSRelM semantics, illustrating how our model can validate
equivalences between stochastic programs.

Proposition 5.6

(a) �pwait E�Γ = �let v : time = 0 in v ← E; wait v�Γ (v /∈ Γ)

(b) �S1 +p S2�
Γ = �let v : bool = true in v ← bern(p); if v then S1 else S2�

Γ (v /∈ Γ)

6 Related Work

Related work broadly falls into three categories: models for stochastic temporal
behavior, languages for expressing stochastic temporal behavior, and applications
of the probability monad to develop semantic models.

Several frameworks exist to describe and model stochastic temporal behavior,
including queueing systems [30], stochastic automata [15,16], generalised stochastic
petri-nets [36], and generalised semi-Markov processes [22]. Our approach shares
much in common with stochastic automata. Roughly speaking, stochastic automata
extend standard deterministic automata with clock variables, just like timed au-
tomata [3]. Upon entering a state, some of those clocks are set by sampling a prob-
ability distribution, and then all clocks decrement at the same rate. Transitions
are labeled with an input symbol and a set of clocks, and a transition is enabled
once its labeling clocks reach 0. Stochastic automata are usually interpreted us-
ing a probabilistic transition system with two classes of states, states from which
nondeterministic choices are made, and states from which probabilistic choices are
made, the latter essentially corresponding to probabilistic delays. It is possible to
view our work as a partial reframing of stochastic automata in a categorical setting,
providing them with a direct transition semantics.

As far as languages for stochastic temporal behavior are concerned, much of
the original impetus came from finding reasonable languages in which to composi-
tionally and finitely represent models for the study of stochastic temporal behavior
in systems with soft constraints. Stochastic process calculi, with their support for
concurrency and their ready compositionality, have proved popular [23,43,26,8,27].
Stochastic process calculi, especially derived from the stochastic pi calculus [43],
are especially popular for biological modeling [46,45,14,10,17]. In the tradition of
process calculi, the semantics of those languages is operational, using an annotated
reduction semantics that records the rate of reaction (which correspond, roughly,
to the time delays introduced in the reduction). Stochastic process calculi generally
use exponential distributions to model delays, and the reduction semantics can be
shown to yield continuous-time Markov processes. Restricting to Markov processes
implies that we can reason more efficiently about the resulting processes expressed
in the stochastic pi calculus, or stochastic automata, for that matter; see, for in-
stance, Bryans et al. [13]. Priami [44] shows how to extend the stochastic pi calculus
to general distributions. Recently, Klin and Sassone [31] developed a general oper-
ational reduction semantics for stochastic process calculi that unifies much of the
ad hoc presentation in earlier papers. Our work is essentially denotational and can
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be seen as complementary. We have not yet applied it to process calculi.
Variants of the Giry probability monad [21], based on earlier work by Law-

vere [34], have been the basis of most denotational semantics for probabilistic lan-
guages [48,28,41,50]. Doberkat [18] offers an exhaustive overview of the probability
monad and stochastic relations from a categorical perspective. Doberkat extends
stochastic relations with monoids to model software architectures, but he consid-
ers component pipelines without cycles, whereas iteration is central to our study.
Ramsey and Pfeffer [47] use the probability monad as a semantic foundation for
a stochastic lambda calculus. The interaction between the probability monad and
other monads has been studied in a few contexts. Breugel [50] shows that a distribu-
tive law between the Giry probability monad and the partiality monad −⊥ gives
rise to the subprobability monad Π. Other distributive laws relate the probability
monad to nondeterminism—see Varacca and Winskel [51] and references therein.
Our work can be seen as studying the interaction of the probability monad with
various forms of monoid tensor addition.

7 Conclusion

Our paper presents an approach to adding delay to a categorical semantics for
languages of while loops by generalizing the category of stochastic relations SRel
to a family of categories of timed stochastic relations TSRelM. Our approach is
suitable for modeling both probabilistic choice and stochastic temporal behavior in
a single categorical framework.

Our work is preliminary, and several questions remain. For instance, TSRelM
is parameterized by a monoid M; what is the role of the “re-timing” functors
TSRelM → TSRelN induced by monoid homomorphisms? What is the exact
relationship between TSRelM and continuous-time Markov chains, which must
appear in TSRelM in some form? Another question relates to time dependence.
Our transitions cannot depend on the time at which a transition occurs since time
is not provided in the domains of arrows in our categories. Making transitions
time dependent is not difficult, but in some sense everything would then collapse
down to SRel, at least in the probabilistic case: time-dependent transitions can be
encoded by including time as part of the state and restricting to morphisms that
update the time correctly. We have not explored the exact relationship between
time-dependent models and our own. In addition, it would be interesting to explore
extensions to higher-order recursive languages.

Finally, we need to examine the relationship between our models and the more
operational models used in the stochastic process calculus literature. A starting
point is to use our categories or variants thereof to give a semantics to stochastic
process calculi. We hope to report on this research in the near future.
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Différentielle Catégoriques 24 (1983), pp. 381–391.

[50] van Breugel, F., The metric monad for probabilistic nondeterminism (2005), unpublished manuscript,
available from http://www.cse.yorku.ca/~franck/research/drafts.

[51] Varacca, D. and G. Winskel, Distributing probability over non-determinism, Mathematical Structures
in Computer Science 16 (2006), pp. 87–113.

[52] Winskel, G., “The Formal Semantics of Programming Languages,” MIT Press, 1993.

D. Brown, R. Pucella / Electronic Notes in Theoretical Computer Science 249 (2009) 193–217 217

http://www.cse.yorku.ca/~franck/research/drafts

	Introduction
	Categories for Imperative Languages with Effects
	Adding Delay
	Adding Delay to Par
	Deterministic Delay
	Probabilistic Delay

	Adding Delay to SRel
	Related Work
	Conclusion
	Acknowledgement 
	References

