
Why the Usual Candidates of Reducibility Do

Not Work for the Symmetric λμ-calculus

René David

Equipe de Logique, Université de Savoie
73376 Le Bourget du Lac, France

Karim Nour

Equipe de Logique, Université de Savoie
73376 Le Bourget du Lac, France

Abstract

The symmetric λμ-calculus is the λμ-calculus introduced by Parigot in which the reduction rule
μ′, which is the symmetric of μ, is added. We give examples explaining why the technique using
the usual candidates of reducibility does not work. We also prove a standardization theorem for
this calculus.

Keywords: λμ-calculus, reducibility.

1 Introduction

Since it has been understood that the Curry-Howard isomorphism relating
proofs and programs can be extended to classical logic, various systems have
been introduced: the λc-calculus (Krivine [11]), the λexn-calculus (de Groote
[6]), the λμ-calculus (Parigot [17]), the λSym-calculus (Barbanera & Berardi
[1]), the λΔ-calculus (Rehof & Sorensen [23]), the λμμ̃-calculus (Curien &
Herbelin [3]), ...

1
Email: david@univ-savoie.fr

2
Email: nour@univ-savoie.fr

Electronic Notes in Theoretical Computer Science 140 (2005) 101–111

1571-0661 © 2005 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.06.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82825666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:david@univ-savoie.fr
mailto:nour@univ-savoie.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

The first calculus which respects the intrinsic symmetry of classical logic
is λSym. It is somehow different from the previous calculi since the main
connector is not the arrow as usual but the connectors or and and. The
symmetry of the calculus comes from the de Morgan laws.

The second calculus respecting this symmetry has been λμμ̃. The logical
part is the (classical) sequent calculus instead of natural deduction.

Natural deduction is not, intrinsically, symmetric but Parigot has intro-
duced the so called Free deduction [16] which is completely symmetric. The
λμ-calculus comes from there. To get a confluent calculus he had, in his ter-
minology, to fix the inputs on the left. To keep the symmetry, it is enough to
keep the same terms and to add a new reduction rule (called the μ′-reduction)
which is the symmetric rule of the μ-reduction and also corresponds to the
elimination of a cut. We get then a symmetric calculus that is called the
symmetric λμ-calculus.

The μ′-reduction has been considered by Parigot for the following rea-
sons. The λμ-calculus (with the β-reduction and the μ-reduction) has good
properties : confluence in the un-typed version, subject reduction and strong
normalization in the typed calculus. But this system has, from a computer
science point of view, a drawback: the unicity of the representation of data
is lost. It is known that, in the λ-calculus, any term of type N (the usual
type for the integers) is β-equivalent to a Church integer. This no more true
in the λμ-calculus and we can find normal terms of type N that are not
Church integers. Parigot has remarked that by adding the μ′-reduction and
some simplification rules the unicity of the representation of data is recovered
and subject reduction is preserved, at least for the simply typed system, even
though the confluence is lost.

Barbanera & Berardi proved the strong normalization of the λSym-calculus
by using candidates of reducibility but, unlike the usual construction (for ex-
ample for Girard’s system F), the definition of the interpretation of a type
needs a rather complex fix-point operation. Yamagata [24] has used the same
technique to prove the strong normalization of the βμμ′-reduction where the
types are those of system F and Parigot, again using the same ideas, has
extended Barbanera & Berardi’s result to a logic with second order quantifi-
cation.

The following property trivially holds in the λμ-calculus:
If (λxM N P1...Pn)�∗ (λxM ′ N ′ P ′

1...P
′
n)� (M ′[x := N ′] P ′

1...P
′
n), then we may

start the reduction by reducing the β redex, i.e (λxM N P1...Pn) � (M [x :=
N] P1...Pn) �∗ (M ′[x := N ′] P ′

1...P
′
n). This point is the key in the proof of two

results for this calculus:

(1) If N and (M [x := N] P1...Pn) are in SN , then so is (λxM N P1...Pn). Sim-

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111102

ilarly, if N and (M [α =r N] P1...Pn) are in SN , then so is (μαM N P1...Pn).
They are at the base of the proof of the strong normalization of the typed
calculus.

(2) The standardization theorem.

Even though this result remains (trivially) true in the symmetric λμ-
calculus and the standardization theorem still holds in this calculus, point
(1) above is no more true. This simply comes from the fact that an infinite
reduction of (λxM N) does not necessarily reduce the β redex (and similarly
for (μαM N)) since it can also reduce the μ′ redex.

The other key point in the proof of the strong normalization of typed
calculus is the following property which remains true in the symmetric λμ-
calculus.

(3) If M1, ..., Mn are in SN , then so is (x M1... Mn).

This paper is organized as follows. Section 2 defines the symmetric λμ-
calculus and its reduction rules. We give the proof of (3) in section 3. Section
4 gives the counter-examples for (1). Finally we prove the standardization
theorem in section 5.

2 The symmetric λμ-calculus

The set (denoted as T) of λμ-terms or simply terms is defined by the following
grammar where x, y, ... are λ-variables and α, β, ... are μ-variables:

T ::= x | λxT | (T T) | μαT | (α T)

Note that we adopt here a more liberal syntax (also called de Groote’s
calculus) than in the original calculus since we do not ask that a μα is imme-
diately followed by a (β M) (denoted [β]M in Parigot’s notation).

Even though this paper is only concerned with the un-typed calculus, the
λμ-calculus comes from a Logic and, in particular, the μ-constructor comes
from a logical rule. To help the reader un-familiar with it, we give below the
typing and the reduction rules.

The types are those of the simply typed λμ-calculus i.e. are built from
atomic formulas and the constant symbol ⊥ with the connector →. As usual
¬A is an abbreviation for A →⊥.

The typing rules are given by figure 1 below where Γ is a context, i.e. a set
of declarations of the form x : A and α : ¬A where x is a λ (or intuitionistic)
variable, α is a μ (or classical) variable and A is a formula.

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111 103

Γ, x : A � x : A
ax

Γ, x : A � M : B

Γ � λxM : A → B
→i

Γ � M : A → B Γ � N : A

Γ � (M N) : B
→e

Γ, α : ¬A � M : ⊥

Γ � μαM : A
⊥e

Γ, α : ¬A � M : A

Γ, α : ¬A � (α M) : ⊥
⊥i

Figure 1.

Note that, here, we also have changed Parigot’s notation but these typing
rules are those of his classical natural deduction. Instead of writing

M : (Ax1

1 , ..., Axn

n � B, Cα1

1 , ..., Cαm

m)

we have written

x1 : A1, ..., xn : An, α1 : ¬C1, ..., αm : ¬Cm � M : B

The cut-elimination procedure corresponds to the reduction rules given
below. There are three kinds of cuts.

• A logical cut occurs when the introduction of the connective → is immedi-
ately followed by its elimination. The corresponding reduction rule (denoted
by β) is:

(λxM N) � M [x := N]

• A classical cut occurs when ⊥e appears as the left premiss of a →e. The
corresponding reduction rule (denoted by μ) is:

(μαM N) � μαM [α =r N]

where M [α =r N] is obtained by replacing each sub-term of M of the
form (α U) by (α (U N)).

• A symmetric classical cut occurs when ⊥e appears as the right premiss of a
→e. The corresponding reduction rule (denoted by μ′) is:

(M μαN) � μαN [α =l M]

where N [α =l M] is obtained by replacing each sub-term of N of the form
(α U) by (α (M U)).

Remark

It is shown in [17] that the βμ-reduction is confluent but neither μμ′ nor
βμ′ is. For example (μαxμβy) reduces both to μαx and to μβy. Similarly
(λzx μβy) reduces both to x and to μβy.

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111104

The following property is straightforward.

Theorem 2.1 If Γ � M : A and M � M ′ then Γ � M ′ : A.

3 If M1, ..., Mn are in SN , then so is (x M1... Mn)

The proofs are only sketched. More details can be found in [10] where an
arithmetical proof of the strong normalization of the βμμ′-reduction for the
simply typed calculus is given.

Definition 3.1 • cxty(M) is the number of symbols occurring in M .

• We denote by N ≤ M (resp. N < M) the fact that N is a sub-term (resp.
a strict sub-term) of M .

• The reflexive and transitive closure of � is denoted by �∗.

• If M is in SN i.e. M has no infinite reduction, η(M) will denote the length
of the longest reduction starting from M .

• We denote by N ≺ M the fact that N ≤ M ′ for some M ′ such that M �∗M ′

and either M �+ M ′ or N < M ′. We denote by � the reflexive closure of ≺.

Lemma 3.2 (i) If (M N)�∗ λxP , then M �∗λyM1 and M1[y := N]�∗ λxP .

(ii) If (M N) �∗ μαP , then either (M �∗ λyM1 and M1[y := N] �∗ μαP) or
(M �∗ μαM1 and M1[α =r N]�∗ P) or (N �∗ μαN1 and N1[α =l M]�∗ P).

Proof Easy. �

Lemma 3.3 Assume M, N ∈ SN and (M N) 	∈ SN . Then, either (M �∗

λyP and P [y := N] 	∈ SN) or (M �∗μαP and P [α =r N] 	∈ SN) or (N �∗μαP

and P [α =l M] 	∈ SN).

Proof By induction on η(M) + η(N). �

Lemma 3.4 The term (x M1 ... Mn) never reduces to a term of the form
λyM .

Proof By induction on n. Use lemma 3.2. �

Definition 3.5 • Let M1, ..., Mn be terms and 1 ≤ i ≤ n. We will denote
by M [α =i (M1 ... Mn)] the term M in which every sub-term of the form
(α U) is replaced by (α (x M1 ... Mi−1 U Mi+1 ... Mn)) .

• We will denote by Σx the set of simultaneous substitutions of the form
[α1 =i1 (M1

1 ... M1
n), ..., αk =ik (Mk

1 ... Mk
n)].

Lemma 3.6 Assume (x M1 ... Mn) �∗ μαM . Then, there is an i such that
Mi �∗ μαP and P [α =i (M1 ... Mn)] �∗ M .

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111 105

Proof By induction on n. Use lemmas 3.2 and 3.4. �

Lemma 3.7 Assume M1, ..., Mn ∈ SN and (x M1 ... Mn) 	∈ SN . Then,
there is an 1 ≤ i ≤ n such that Mi �∗ μα U and U [α =i (M1 ... Mn)] 	∈ SN .

Proof Let k be the least such that (x M1 ... Mk−1) ∈ SN and (x M1 ... Mk)
	∈ SN . Use lemmas 3.3, 3.4 and 3.6. �

Lemma 3.8 Let M be a term and σ ∈ Σx. If M [σ] �∗ μαP (resp. M [σ] �∗

λxP) , then M �∗ μαQ (resp. M �∗ λxQ) for some Q such that Q[σ] �∗ P .

Proof By induction on M . �

The next lemma is the key of the proof of theorem 3.10. Though intuitively
clear (if the cause of non SN is the substitution δ =i (P1...Pn), this must come
from some (δ M ′) ≺ M) its proof is rather technical.

Lemma 3.9 Let M be a term and σ ∈ Σx. Assume δ is free in M but not
free in Im(σ). If M [σ] ∈ SN but M [σ][δ =i (P1...Pn)] 	∈ SN , there is M ′ ≺ M

and σ′ such that M ′[σ′] ∈ SN and (x P1...Pi−1 M ′[σ′] Pi+1...Pn) 	∈ SN .

Proof See [10] for more detail. �

Theorem 3.10 Assume M1, ..., Mn are in SN . Then (x M1 ... Mn) ∈ SN .

Proof We prove a more general result. Let M1, ..., Mn be terms and
σ1, ..., σn be in Σx. If M1[σ1], ..., Mn[σn] ∈ SN , then (x M1[σ1] ... Mn[σn]) ∈
SN . This is done by induction on (Ση(Mi), Σcxty(Mi)). Assume (x M1[σ1]
... Mn[σn]) 	∈ SN . By lemma 3.7, there is an i such that Mi[σi] �∗ μα U and
U [α =i (M1[σ1] ... Mn[σn])] 	∈ SN . By lemma 3.8, Mi �

∗ μαQ for some Q such
that Q[σi] �∗ U . Thus Q[σi][α =i (M1[σ1] ... Mn[σn])] 	∈ SN . By lemma 3.9,
let M ′ ≺ Q � Mi and σ′ be such that M ′[σ′] ∈ SN and (x M1[σ1]...Mi−1[σi−1]
M ′[σ′] Mi+1[σi+1]...Mn[σn]) 	∈ SN . This contradicts the induction hypothesis
since (η(M ′), cxty(M ′)) < (η(Mi), cxty(Mi)). �

4 The counter-examples

Definition 4.1 Let U and V be terms.

• U ↪→ V means that each reduction of U which is long enough must go
through V , i.e. there is some n0 such that, for all n > n0, if U = U0 � U1 �

... � Un then Up = V for some p.

• U � V means that U has only one redex and U � V .

Remark

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111106

It is easy to check that if U ↪→ V (resp. U � V) and V ∈ SN , then
U ∈ SN .

Definition 4.2 • Let M0 = λx(x P 0) and M1 = λx(x P 1) where 0 =
λxλyy, 1 = λxλyx, P = λxλyλz (y (z 1 0) (z 0 1) λd1 Δ Δ) and Δ =
λx(x x).

• Let M = 〈(x M1), (x M0)〉, M ′ = 〈(β λx(x M1)), (β λx(x M0))〉 where
〈T1, T0〉 denotes the pair of terms, i.e. the term λf(f T1 T0) where f is a
fresh variable.

• Let N = (α λz(α z)).

Lemma 4.3 (i) (M1 M0), (M0 M1) 	∈ SN .

(ii) (M0 M0), (M1 M1) ∈ SN .

Proof

(i) Assume i 	= j, then

(Mi Mj) �∗ (P P j i)

�∗ (j (i 1 0) (i 0 1) λd1 Δ Δ)

�∗ (0 λd1 Δ Δ)

�∗ (Δ Δ)

and thus (Mi Mj) 	∈ SN .

(ii) It is easy to check that (Mi Mi) ↪→ (1 λd1 Δ Δ) � (λyλd1 Δ Δ) �

(λd1 Δ) � 1. �

Proposition 4.4 M [x := μαN] ∈ SN but (λxM μαN) 	∈ SN .

Proof (a) Since M [x := μαN] = 〈(μαN M1), (μαN M0)〉, by theorem 3.10,
to show that M [x := μαN] ∈ SN , it is enough to show that (μαN Mi) ∈ SN .

(μαN Mi) � μα(α(λz(α (z Mi))Mi))

� μα(α (α (Mi Mi)))

↪→μα(α (α 1))

(b)

(λxM μαN) �∗ μα(α (λxM λz(α (λxM z))))

�∗ μα(α (λxM λz(α 〈(z M1), (z M0)〉)))

�∗ μα(α 〈(α 〈(M1 M1), (M1 M0)〉), (α 〈(M0 M1), (M0 M0)〉)〉)

�∗ μα(α 〈(α 〈1, (Δ Δ)〉), (α 〈1, (Δ Δ)〉)〉)

and thus (λxM μαN) 	∈ SN .
�

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111 107

Proposition 4.5 M ′[β =r μαN] ∈ SN but (μβM ′ μαN) 	∈ SN .

Proof (a) (λx(x Mi) μαN) has two redexes thus
either

(λx(x Mi) μαN) � (μαN Mi)

� μα(α(λz(α (z Mi)) Mi))

� μα(α (α (Mi Mi)))

↪→μα(α (α 1))

or

(λx(x Mi) μαN) � μα(α(λx(x Mi) λz(α (λx(x Mi) z))))

↪→μα(α (α (Mi Mi)))

↪→μα(α (α 1))

Thus (λx(x Mi) μαN) ↪→ μα(α (α 1)) and, by theorem 3.10, it follows that
M ′[x := μαN] = 〈(β (λx(x M1) μαN)), (β (λx(x M0) μαN))〉 ∈ SN .

(b)

(μβM ′ μαN) �∗ μα(α (μβM ′ λz(α (μβM ′ z))))

�∗ μα(α (μβM ′ λz(α μβ〈(β (z M1)), (β (z M0))〉)))

�∗ μα(α μβ〈(β (α μβ〈(β 1), (β (Δ Δ))〉)),

(β (α μβ〈(β (Δ Δ)), (β 1)〉))〉)

and thus (μβM ′ μαN) 	∈ SN .
�

5 Standardization

In this section we give a standardization theorem for the βμμ′-reduction. It
also holds for the μμ′-reduction and its proof simply is a restriction of the
other one.

Definition 5.1 (i) The sequence (Mi)1≤i≤n is standard iff one of the fol-
lowing cases hold:
(a) For all i, Mi = λxNi (resp. Mi = μαNi, Mi = (x Ni), Mi = (α Ni))

and the sequence (Ni)1≤i≤n is standard
(b) There are standard sequences (Ni)1≤i≤k and (Pi)k≤i≤n such that, for

1 ≤ i ≤ k, Mi = (Ni Pk) and, for k ≤ i ≤ n, Mi = (Nk Pi).
(c) There is a standard sequence (Ni)1≤i≤k and Q such that,

either, for 1 ≤ i ≤ k, Mi = (Ni Q) and Nk = λxP and Nk−1 does not
begin with λ and Mk+1 = P [x := Q] and the sequence (Mi)k+1≤i≤n

is standard.

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111108

or, for 1 ≤ i ≤ k, Mi = (Ni Q) and Nk = μαP and Nk−1 does not
begin with μ and Mk+1 = P [α =r Q] and the sequence (Mi)k+1≤i≤n

is standard.
or, for 1 ≤ i ≤ k, Mi = (Q Ni) and Nk = μβP and Nk−1 does not
begin with μ and Mk+1 = P [β =l Q] and the sequence (Mi)k+1≤i≤n

is standard.

(ii) M �st M ′ iff there is a standard sequence (Mi)1≤i≤n such that M = M1

and M ′ = Mn.

Remarks and notation

• The clauses in 1 above correspond to a definition by induction on the ordered
pair (n, cxty(M1)).

• It is easy to check that, restricted to the λ-calculus, this definition is equiv-
alent to the usual definition of a standard reduction.

• Clearly, if M �st M ′ then M �∗ M ′. In this case, we will denote the length
of the reduction by lg(M �st M ′).

Lemma 5.2 Assume M �st P and N �st Q. Then : (a) μαM �st μαP , (b)
λxM �st λxP , (c) (M N) �st (P Q), (d) M [x := N] �st P [x := Q] and (e) for
j ∈ {l, r}, M [α =j N] �st P [α =j Q].

Proof (a), (b) and (c) are immediate. (d) and (e) are proved by induction
on (lg(M �stP), cxty(M)) and a straightforward case analysis on the definition
of a standard sequence bringing from M to P . �

Lemma 5.3 Assume M �st P and P � Q. Then M �st Q.

Proof This is proved by induction on (lg(M �st P), cxty(M)) and by case
analysis on the reduction M �st P . The only case which is not immediate is
the following: M = (M1 M2) �∗ (N1 M2) �∗ (N1 N2) = P where M1 �st N1

and M2 �st N2. If the redex reduced in P � Q is in N1 or N2 the result follows
immediately from the induction hypothesis. Otherwise, assume, for example
that N1 = μαR and Q = R[α =r N2]. Let the reduction M1 �st N1 be as
follows: M1 �st μαR1 �st μαR where μαR1 is the first term in the reduction
that begins with μ. It follows then from lemma 5.2 that the following reduction
is standard. M = (M1 M2) �st (μαR1 M2) � μαR1[α =r M2] �st μαR[α =r N2].

�

Theorem 5.4 Assume M �∗ P . Then M �st P .

Proof By induction on the length of the reduction M �∗ M1. The result
follows immediately from lemma 5.3. �

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111 109

References

[1] F. Barbanera and S. Berardi. A symmetric lambda-calculus for classical program extraction. In
M. Hagiya and J.C. Mitchell, editors, Proceedings of theoretical aspects of computer software,
TACS’94. LNCS (789), pp. 495-515. Springer Verlag, 1994.

[2] R. Constable and C. Murthy. Finding computational content in classical proofs. In G. Huet
and G. Plotkin, editors, Logical Frameworks, pp. 341-362, Cambridge University Press, 1991.

[3] P.L. Curien and H. Herbelin. The duality of computation. Proc. International Conference on
Functional Programming, September 2000, Montral, IEEE, 2000.

[4] J.-Y. Girard. A new constructive logic: classical logic. MSCS (1), pp. 255-296, 1991.

[5] P. de Groote. A CPS-translation of the lambda-mu-calculus. In S. Tison, editor, 19th
International Colloquium on Trees in Algebra and Programming, CAAP’94, volume 787 of
Lecture Notes in Computer Science, pp. 85-99. Springer, 1994.

[6] P. de Groote. A simple calculus of exception handling. In M. Dezani and G. Plotkin, editors,
Second International Conference on Typed Lambda Calculi and Applications, TLCA’95,
volume 902 of Lecture Notes in Computer Science, pp. 201-215. Springer, 1995.

[7] R. David. Normalization without reducibility. Annals of Pure and Applied Logic (107), pp.
121-130, 2001.

[8] R. David and K. Nour. A short proof of the strong normalization of the simply typed lambda
mu calculus. Schedae Informaticae n12, pp. 27-34, 2003.

[9] R. David and K. Nour. A short proof of the strong normalization of classical natural deduction
with disjunction. The Journal of Symbolic Logic n 68.4, pp. 1277-1288, 2003.

[10] R. David and K. Nour. Arithmetical proofs of strong normalization results for the symmetric
λμ-calculus. To appear in TLCA’05.

[11] J.-L. Krivine. Classical logic, storage operators and 2nd order lambda-calculus. Annals of Pure
and Applied Logic (68), pp. 53-78, 1994.

[12] C.R. Murthy. An evaluation semantics for classical proofs. In Proceedings of the sixth annual
IEEE symposium on logic in computer science, pp. 96-107, 1991.

[13] K. Nour. La valeur d’un entier classique en λμ-calcul. Archive for Mathematical Logic (36),
pp. 461-471, 1997.

[14] K. Nour. A non-deterministic classical logic (the λμ++-calculus). Mathematical Logic
Quarterly (48), pp. 357-366, 2002.

[15] K. Nour and K. Saber. A semantical proof of the strong normalization theorem of full
propositionnal classical natural deduction. Manuscript 2004.

[16] M. Parigot. Free Deduction: An analysis of ”computations” in classical logic. Proceedings.
Lecture Notes in Computer Science, Vol. 592, Springer, pp. 361-380, 1992.

[17] M. Parigot. λμ-calculus: An algorithm interpretation of classical natural deduction. Lecture
Notes in Artificial Intelligence (624), pp. 190-201. Springer Verlag, 1992.

[18] M. Parigot. Strong normalization for second order classical natural deduction. In Proceedings,
Eighth Annual IEEE Symposium on Logic in Computer Science, pp. 39-46, Montreal, Canada,
19–23 June 1993. IEEE Computer Society Press.

[19] M. Parigot. Classical proofs as programs. In G. Gottlob, A. Leitsch, and D. Mundici, eds.,
Proc. of 3rd Kurt Godel Colloquium, KGC’93, vol. 713 of Lecture Notes in Computer Science,
pp. 263-276. Springer-Verlag, 1993.

[20] M. Parigot. Proofs of strong normalization for second order classical natural deduction. Journal
of Symbolic Logic, 62 (4), pp. 1461-1479, 1997.

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111110

[21] E. Polonovsky. Substitutions explicites, logique et normalisation. PhD thesis, Paris 7, 2004.

[22] W. Py. Confluence en λμ-calcul. PhD thesis, University of Chambéry, 1998.

[23] N.J. Rehof and M.H. Sorensen. The λΔ-calculus. In M. Hagiya and J.C. Mitchell, editors,
Proceedings of the international symposium on theoretical aspects of computer software,
TACS’94, LNCS (789), pp. 516-542. Springer Verlag, 1994.

[24] Y. Yamagata. Strong normalization of second order symmetric lambda-mu calculus. TACS
2001, Lecture Notes in Computer Science 2215, pp. 459-467, 2001.

R. David, K. Nour / Electronic Notes in Theoretical Computer Science 140 (2005) 101–111 111

	Introduction
	The symmetric -calculus
	If M1, ..., Mn are in SN, then so is (x M1 ... Mn)
	The counter-examples
	Standardization
	References

