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Abstract  

The Wireless Sensor Networks (WSNs) deployment introduces many issues and challenges mainly in terms of energy 
independence. In this context, we adopted the IBM control loop which is composed of four steps (Monitor, Analyze, Plan and 
Execute) to manage Quality of Service (QoS) 1. This paper focuses on the first step which consists in sending periodically QoS 
values such as the value of power remaining in the battery of each sensor. We notice that the transmission process is very costly 
in terms of energy and reduces the battery lifetime. In this work, we propose a probabilistic approach that estimates a part of 
these QoS monitoring values and therefore economizes their transmission energy. Our approach is based on the hidden Markov 
chain and the fuzzy logic. It is composed of two steps: (i) learning which allows apprehending the WSNs behavior and (ii) 
prediction which estimates QoS monitoring values. A WSN application deployed in a datacenter is studied as an illustration. The 
carried out experiments over AZEM1 WSN simulator show that the gain varies from 25% to 75% of the battery energy. 
© 2014 The Authors. Published by Elsevier B.V. 
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1. Introduction 

WSNs are composed of nodes that monitor and control the environment. The collected information is transmitted to 
the base station to process their analysis and exploitation2. However, the architecture of WSN is influenced by 
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several constraints especially the energy consumption due to the fact that nodes are battery powered and generally it 
is impossible to recharge or change them given that sensors are deployed in a large scale and in inaccessible areas. 

An autonomic enabled-architecture according to the IBM control loop3 should be adopted in order to adapt 
WSNs applications and increase the WSNs lifetime. The autonomic loop is composed of four steps, namely: 
Monitoring, Analysis, Planning and Execution. The first step relies on monitors able to transmit periodically 
measurements such as the value of power remaining in the sensor battery. The transmission of these QoS values 
consumes a great part of the residual battery energy. Optimizing this process allows reducing the energy 
consumption of sensors and maximizing their lifetime and therefore the life of WSNs applications.  

In this paper, we focus on predicting a part of these values. We propose MPaaS: Monitoring values Prediction as 
a Service which uses the hidden Markov chains (HMC) and the fuzzy logic to optimize the energy consumption 
without too much computational overhead. To illustrate the application of our approach, we used the WSNs 
datacenter monitoring case study. Our purpose is to monitor the battery of each sensor and estimate the value of 
power remaining in order to increase the whole application lifetime. 

The reminder of this paper is organized as following. In section 2, we introduce the related work. In section 3, we 
detail our approach and explain how to rationalize energy consumption. Section 4 describes the case study, and the 
experimentation results. We evaluate the performance of our approach in section 5 while calculating the prediction 
rate error. The last section concludes the paper. 

2. Related work 

Several researches in WSN have looked at various ways of saving energy. In particular, S. Goel et al.4 proposed a 
mechanism called Prediction-based monitoring for energy efficient monitoring. This approach focuses only on 
identifying correlation in monitoring data, eliminating their transmission and predicting them at the monitored node. 

The work proposed by P.Hu et al.5 is an estimation model based on the HMC to predict the energy level of a 
sensor node. The proposed process contains two main parts: a first part to train the protocol-specific HMC via the 
Baum -Welch algorithm and a second part to predict energy levels via Viterbi algorithm. This approach suffers from 
several limits. It does not predict the value of power remaining in the battery of sensor. Also, the algorithms used are 
very expensive and complex6. Additionally, it does not focus on optimizing the process of the QoS values 
transmission. 

3. Proposed approach 

As shown in Fig. 1, our approach is based on two main steps: learning and prediction and aims at estimating a 
part of monitoring values to save sensing and transmission energy.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.Proposed approach 
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3.1. Learning step 

The first step in our approach starts by storing collected values from embedded monitors in a Google cloud 
datastore. Then, we calculate the transition matrix that we use later in the second step. Collecting sufficient numbers 
of monitoring values is necessary to ensure the stabilization of transition matrix. 

We denote by S the set of states of the battery: S= {FC, C, PL, L, VL},V is the observed variable: V = {VEnergy: 
value of power remaining in the battery.}, B is the current probability distributions of observing VEnergy at different 
states at t instant: Bt = {P (FC), P (C), P (PL), P (L), P (VL)}. 

 To model the transition between these states, we present the transition 
matrix A associated to the HMC as follow: 
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 is the probability of transition from state i at t instant to the state j at t +1 instant, where nij is the 

number of sensors with battery level in state i. For instance, PFCPL means the probability of transition from fully 
charged state at t instant to partially loaded state at t+1 instant. 

3.2. Prediction step 

Now suppose that we are at t instant and we received monitoring value from the monitors deployed on sensor. 
Instead of asking the monitor for sensing and transmitting the value at t +1 instant, we estimate it.  

3.2.1. Fuzzification of monitoring value at t instant 
Initially, we compute the current probability distributions of observing VEnergy at different states via 

fuzzification process. To describe the variable domain of VEnergy, we have used five triangular membership 
functions defined through five items (threshold1, threshold2, threshold3, threshold4, threshold5), as shown in Fig. 2 
(a). The variable domain is divided equally to five sub-domains following the standard designation in fuzzy logic of 
five items triangular membership7. These functions are associated with battery states: (FC - C - PC - L – VL). In 
fact, simple functions are used to build membership function because using complex function causes a high 
computational cost and they do not add more precision.  

 
 

 
 
 

Fig. 2. (a) General form of our discourse universe; (b) The deployment architecture 
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3.2.2. Estimation of probability distributions at t+1 instant 
The estimating probability distribution Bt+1 at t+1 instant is equal to the multiplication of the probability distribution 
obtained in the previous step Bt with the transition matrix A. 

1 .t tB B A+ =   (1) 

3.2.3. Estimation of the monitoring value at t+1 instant 
The last phase of the second step is the estimation of the monitoring value at t+1 instant which is calculated based 

on this equation 8:  

1 1
( * )M

t i
E Pi Ei+ =

=∑   (2) 

Where M is the number of states (five states), Pi is the probability that a sensor will enter in state i at t+1 instant 
and Ei denotes the energy remaining in the battery of sensor when it is 100% in state i (threshold1, threshold2, 
threshold3, threshold4, threshold5). 

4. Illustrations 

In what follows, we describe the implementation details of our approach. Then, we detail the case study based on 
the deployment of a WSN in a datacenter and we present experimental results.  

4.1. Architecture of our implementation 

To illustrate our approach, we developed a service oriented web application using Google App Engine platform. 
The deployment architecture of our implementation is illustrated in Fig. 2 (b). Our implementation relies on two 
infrastructures namely: embedded sensors infrastructure and cloud infrastructure. Sensors infrastructure enables us 
to collect monitoring values arising from monitors deployed on sensor. These monitors consist of a service oriented 
device level that we call Device as a Service (DaaS). The collected values are stored in the Google Cloud database 
(called DataStore). These data enable computing transition matrix that is used in the computing of estimated 
monitoring values. To perform our experimentation, we used AZEM WSNs simulator to emulate sensor 
infrastructure.  

4.2. Case study 

To illustrate our approach, we used a case study based on the deployment of a WSN in a datacenter. The sensors 
deployed in the datacenter are battery powered to get an optimal availability in case of a power interruption and to 
provide a greater flexibility and operational speed by deploying these sensors in different and difficult accessibility 
place without being worried of wiring constraint. Thus, the life duration of a sensor is highly dependent on the life 
of its battery, so monitoring the state of charge of the battery of sensors, optimizing energy consumption and taking 
preventive measures and decisions are very important. Our approach aims to achieve these goals by predicting the 
monitoring values and subtracting the cost of sending these values. To test our approach, we carry out experiments 
using our WSNs simulator AZEM on sensors deployed in a data center that incorporates periodic, event-based and 
hybrid applications. 

4.3. Experimental results 

Our experiments are ensured using those properties: the sent message size is equal to 10 000 bit, the initial energy 
value for each sensor is equal to 3 joules and AZEM is the used WSN simulator. We use three energy models, 
namely μAMPS Specific Model 9, Mica2 Specific Model 10 and Mica2 Specific Model with actual measurement 11. 
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We carried out experiments for periodic (P), event-based (Evt) and hybrid (H) applications. First, we perform 
these experiments with an estimation frequency equal to the half of monitoring values dealing with periodic 
application, this means that sensor sends the monitoring value at t instant, and we estimate the monitoring value at 
t+1 instant as shown in Fig. 3 (a). In the second case we carried out these experiments with an estimation frequency 
equal to two-thirds of monitoring values as shown in Fig. 3 (b). Finally, we perform experiments with an estimation 
frequency equal to three-quarters of monitoring values dealing with Hybrid application (see Fig. 4). Realizing these 
experiments on three energy models with maintaining the same application type, we notice that estimated values are 
around the curve of the received monitoring values. That’s proving the efficiency of these estimated values. 

Fig. 3. (a) Estimation result of half of values in P application; (b) Estimation result of two-third of values in Evt application 

 

 

 

 

 

Fig. 4. Estimation result of three-quarters of values in H application 

5. Evaluation 

In order to determine the accuracy of our approach, we calculate the estimation error defined as:  

| |Error MV EstV= −   (3) 

 Where MV is the real monitoring value and EstV is the estimated value. We also compute the average error for 
each application and for each energy model. For example following μAMPS Specific Model, for periodic 
application, the average error is equal to 0.0135, for event-based application, the average error is equal to 0.0246, 
while for hybrid application, the average error is equal to 0.0171. 

In conclusion, we note that the average error in periodic applications types is less than the average error in the 
other two ones, since energy consumption is almost stable over time due to the absence of random events that affect 
the behavior of the battery and therefore the transition matrix is more stable and the estimation is better. 
We remark that as the number of estimated values increases, the average error increases. We also note that when 
there is a sudden change in the behavior of the battery, the error of estimation increases at this instant. However, 
through continuous learning, the transition matrix is updated each instant and our prediction approach adjusts itself 
and therefore the error rate decreases. 

Our approach increases the life duration of sensors battery by reducing the cost of transmitting monitoring values. 
As shown in Table 1, we save 50% of the cost of the transmission process with the prediction of the half of 
monitoring values. For instance, according to μAMPS Specific Model, the required energy to send a message is 
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Legend 
MV1: Monitoring values following μAMPS Specific Model 
MV2: Monitoring values following Mica2 Specific Model 
MV3: Monitoring values following Mica2 Specific Model 
with actual measurements 
EstV1: Estimated values following μAMPS Specific Model 
EstV2: Estimated values following Mica2 Specific Model 
EstV3: Estimated values following Mica2 Specific Model 
with actual measurements 
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equal to 1.04 μJ. To send 100 messages of one bit, the sensor consumes 104 μJ (1.04 μJ * 100, see Table 4). With 
our approach, when we estimate the half of the sensed values, the sensor consumes only 52 μJ (1.04 μJ * 50). When 
we estimate the two-thirds of the sensed values, the sensor consumes 34.32 μJ (1.04 μJ * 33). In this case we save 
66% of the cost of the transmission process. When we estimate three-quarters of the monitoring values, we can save 
75% of the transmission cost. In addition, there is no additional power cost for the sensor because we separate the 
application logic of WSN from the prediction logic ensuring that the prediction layer is not bound to the application 
layer. In this way the implementation of our method does not effect on the sensors energy. 

     Table 1. The energy consumption of a sensor with and without estimation. 

                            Frequency 

Model 

Without estimation Half of values Two-third of 
values 

μAMPS Specific Model 104 μJ 52 μJ 34.32 μJ 

Mica2 Specific Model 27 μJ 13.5 μJ 8.91 μJ 

Mica2 Specific Model with actual 
measurement. 

460.2 μJ 230.1 μJ 151.68 μJ 

6. Conclusion 

In this paper, we presented the MPaaS approach, which allows optimizing energy consumption of WSNs. The 
optimization process is based on the prediction of monitoring values, that enables to economize their sensing and the 
transmission energy cost. Our approach relies on rigorous reasoning over the hidden Markov chain and the fuzzy 
logic. It is composed of two steps. The first allows learning the behavior of the WSNs application energy 
consumption model. The second predicts a part of the sensed values. The learning process is continuously updated in 
order to get better prediction results. The use case of WSN deployed in a datacenter is used to illustrate the feasibility 
of our approach. The carried out experiment shows that we can increase battery lifetime and the negligible computed 
estimation error proves the correctness of the proposed approach. Our future work will focus on deploying and 
assessing our approach in a real and a large scale environment. 
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