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Given an undirected graph G=(V, E) and a partition [S, T] of V, an S&T con-
nector is a set of edges F�E such that every component of the subgraph (V, F )
intersects both S and T. If either S or T is a singleton, then an S&T connector is
a spanning subgraph of G. On the other hand, if G is bipartite with colour classes
S and T, then an S&T connector is an edge cover of G (a set of edges covering
all vertices). An S&T connector is a common spanning set of two graphic matroids
on E. We prove a theorem on packing common spanning sets of certain matroids,
generalizing a result of Davies and McDiarmid on strongly base orderable
matroids. As a corollary, we obtain an O({(n, m)+nm) time algorithm for finding
a maximum number of S&T connectors, where {(n, m) denotes the complexity of
finding a maximum number of edge disjoint spanning trees in a graph on n vertices
and m edges. Since the best known bound for {(n, m) is O(nm log(m�n)), this bound
for packing S&T connectors is as good as the current bound for packing spanning
trees. � 1998 Academic Press

1. INTRODUCTION

Let G=(V, E) be an undirected graph, S a subset of its vertices, and T
the complement of S in V. An S&T connector in G is a set F of edges such
that every component of the subgraph (V, F ) intersects both S and T.

Let GS be the graph obtained from G by shrinking the set S into a vertex
s, and let GT be the graph obtained from G by shrinking T into a vertex
t. The definition implies that F�E is an S&T connector in G if and only
if F contains a spanning tree of GS and a spanning tree of GT . Here, the
edges of G are identified with the edges (possibly loops) of GS and with the
edges of GT in the obvious way. It follows that an S&T connector is a
common spanning set of two matroids on E, namely the cycle matroids of
the graphs GS and GT . Recall that a spanning set in a matroid is a set con-
taining a basis. (For matroid theory we refer to [8].)

Let k denote a nonnegative integer. It follows from the above that if G
contains k edge-disjoint S&T connectors, then both GS and GT contain k
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edge-disjoint spanning trees. In this paper, we prove that the converse also
holds.

Theorem 1. G contains k edge-disjoint S&T connectors if and only if
both GS and GT contain k edge-disjoint spanning trees.

The proof of this theorem provides an O(nm) reduction of the problem
of finding a maximum number of edge-disjoint S&T connectors in a graph
to the problem of finding a maximum number of edge-disjoint spanning
trees in two smaller graphs. Here, n denotes the number of vertices and m
the number of edges of the graph.

Tutte [7] and Nash-Williams [6] characterized the graphs with k edge-
disjoint spanning trees.

Lemma 1 (Tutte and Nash-Williams). Let G=(V, E) be an undirected
graph. Then G contains k edge-disjoint spanning trees if and only if
|$(P)|�k( |P|&1) for every partition P of V into nonempty subsets.

Here, if P=[U1 , ..., Ut] is a (sub)partition of V (a subpartition is a
collection of pairwise disjoint nonempty subsets of V), then
$(P) :=� t

i=1 $(Ui), where $(Ui) denotes the set of edges with one end in
Ui and one end in V"Ui .

By Lemma 1, Theorem 1 is equivalent to the following characterization.

Theorem 2. G contains k edge-disjoint S&T connectors if and only if
|$(W)|�k |W| for every subpartition W of S or T.

For a short proof and a polyhedral interpretation of Theorem 2 the
reader is referred to [4]. The proof of Theorem 1 presented in this paper
is more elementary and it yields an efficient algorithm for packing S&T
connectors (using a subroutine for packing spanning trees as a black box).
Moreover, Theorem 1 is derived as a special case of a packing result for
matroids, which is interesting in its own right.

Theorem 2 has two important special cases. First, if G is bipartite with
colour classes S and T, then an S&T connector is nothing but an edge
cover of G (a set of edges covering all vertices), and Theorem 2 specializes
to a theorem of Ko� nig [5] and Gupta [3], saying that the maximum num-
ber of edge-disjoint edge covers in a bipartite graph is equal to the mini-
mum vertex degree. Second, if either S or T is a singleton, then an S&T
connector is a set of edges containing a spanning tree of G, and Theorem 2
specializes to Lemma 1.

Note that Lemma 1 is a special case of the well-known matroid base
packing theorem. However, Theorems 1 and 2 do not follow from any
known matroid base packing results.
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2. PACKING COMMON SPANNING SETS

Since S&T connectors are common spanning sets, matroid intersection
provides a min-max relation for the minimum cardinality (or weight) of an
S&T connector in G. However, for the packing of common spanning sets
of two matroids no general theorem is known. In the case of strongly base
orderable matroids, there is a theorem of Davies and McDiarmid [1].

Definition 1. A matroid M is said to be strongly base orderable if for
every two bases B1 and B2 of M there exists a bijection ?: B1 � B2 , such
that for every subset A of B1 the set (B1"A) _ ?(A) is a basis of M. (It
follows that for such a ?, also (B2"?(A)) _ A is a basis of M.)

Theorem 3 (Davies and McDiarmid). Let M and N be strongly base
orderable matroids on the same set E. Suppose that both M and N have k
pairwise disjoint bases. Then E contains k pairwise disjoint common spanning
sets of M and N.

Graphic matroids are generally not strongly base orderable: the reader
may verify that the cycle matroid of K4 is not strongly base orderable. In
fact, if M is the cycle matroid of K4 and N is the matroid with independ-
ent sets all sets of edges of K4 which are pairwise intersecting, then the edge
set of K4 can be partitioned into two bases of M and into two bases of N

but does not contain two disjoint common spanning sets of M and N.
To be able to formulate a generalization of Theorem 3 that can be

applied to graphic matroids, we need the following definition.

Definition 2. Let M be matroid on E and let E0 �E. Then E0 is said
to be an sbo-set for M if for every two bases B1 and B2 of M, there exists
an injective function ?: B1 & E0 � B2 , such that for every subset A of
B1 & E0 with |?(A)"E0 |�1, the sets (B1"A) _ ?(A) and (B2"?(A)) _ A are
bases of M.

It is not difficult to see that such a function ? must be the identity on
B1 & B2 & E0 .

The property defined in Definition 2 is preserved under taking duals and
minors in the following sense: if E0 is an sbo-set for M, then E0 is also an
sbo-set for the dual M* of M, and E0 & E$ is an sbo-set for the restriction
of M to E$, for any subset E$ of E. It follows that E0 & E$ is an sbo-set for
any minor M$ of M with ground set E$�E.

Also, if E0 is an sbo-set for M, then any subset of E0 is an sbo-set for
M. Moreover, every singleton subset of E is an sbo-set for M.

399PACKING CONNECTORS



Note that M is strongly base orderable if and only if E0=E is an
sbo-set for M. The following theorem therefore implies Theorem 3 (take
E1=E2=E=E0).

Theorem 4. Let M be a matroid on E1 and let N be a matroid on E2 .
Let E :=E1 _ E2 and E0 :=E1 & E2 . View M and N as matroids on E
(consider elements of E2"E1 as loops of M and elements of E1"E2 as loops
of N). Suppose that E0 is an sbo-set for M as well as for N, and suppose
that both M and N have k pairwise disjoint bases. Then E contains k
pairwise disjoint common spanning sets of M and N.

Proof. Let M1 , ..., Mk be k disjoint bases of M and let N1 , ..., Nk be k
disjoint bases of N, such that

+ := :
i{ j

|Ni & Mj |

is minimal.
Suppose +>0. Then there are indices r and b, r{b, with Mr & Nb {<,

say e0 # Mr & Nb . Observe that e0 # E0 .
We assume henceforth that E0=E0 & (Mr _ Mb _ Nr _ Nb). Since any

subset of an sbo-set is an sbo-set, this causes no loss of generality.
As E0 is an sbo-set for M, there is an injection

?: Mr & E0 � Mb

with the property that for every A�Mr & E0 with |?(A)"E0 |�1, both
(Mr"A) _ ?(A) and (Mb"?(A)) _ A are bases of M. For N, there is a
similar injection

?$: Nb & E0 � Nr .

Let D be the directed graph with vertex set E and arc set the set of pairs
(e, f ) from E_E with e # E0 and f =?(e) or f =?$(e). Moreover, define

Y :=(Nr"Mr) _ (Mb"Nb).

Then there exists a directed e0&Y path in D. Indeed, d +
D (e)�1 for each

e # E0"Y by definition of ? and ?$, d &
D (e)�1 for each e # E0"Y because ?

and ?$ are injective and their ranges in E0"Y are disjoint, and d &
D (e0)=0,

since e0 # Mr & Nb . Here, d +
D (e) denotes the outdegree and d&

D (e) denotes
the indegree of a vertex e of D.

Let P=(e0 , e1 , ..., en) be a shortest e0&Y path. Then n�1. Define

A :=[ei | 0�i<n, i odd]

B :=[ei | 0�i<n, i even].
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By definition either e1=?(e0) or e1=?$(e0). Without loss of generality
assume e1=?$(e0) # Nr . Then A�Mr & E0 and B�Nb & E0 . So by defini-
tion of ?, M$r :=(Mr"A) _ ?(A) and M$b :=(Mb"?(A)) _ A are bases of M.
Similarly, N$b :=(Nb"B) _ ?$(B) and N$r :=(Nr"?$(B)) _ B are bases of N

(note that ?(A) and ?$(B) are contained in E0 _ [en], so |?(A)"E0 |�1
and |?$(B)"E0 |�1).

Now if we set M$j=Mj and N$j=N j for j{r, b, then

.
i{ j

(M$i & N$j)� .
i{ j

(Mi & Nj)"[e0]. (1)

Indeed, by construction, e0 # (Mr & Nb) & (M$r & N$r), ei # (Mr & Nr) &
(M$b & N$b) for every i with 0<i<n and i odd, and ei # (Mb & Nb) &
(M$r & N$r) for every i with 0<i<n and i even. Moreover, either n is odd
and en # (Nr"Mr) & (N$b"M$r) or n is even and en # (Mb"Nb) & (M$r"N$b) (so
en � E0 , or en # (Mj & Nr) & (M$j & N$b) for some j{r, or en # (Mb & Nj) &
(M$r & N$j) for some j{b). Edges not on P are in M$j whenever they are in
Mj and in N$j whenever they are in N j , for any j.

From (1) it follows that

+$= :
i{ j

|M$i & N$j |< :
i{ j

|Mi & Nj |=+,

contradicting the minimality of +.
Therefore +=0 and the sets Si :=Mi _ Ni are disjoint common spanning

sets of M and N. K

Any matroid partition algorithm (see for example [2]) can be used to
obtain the disjoint bases M1 , ..., Mk of M and the disjoint bases N1 , ..., Nk

of N if they exist. The above proof suggests an algorithm for modifying the
Mi and the Ni in steps, such that after every step the Mi are disjoint bases
of M and the Ni are disjoint bases of N, and moreover the common span-
ning sets Mi _ Ni are disjoint after at most + steps. Each step consists of
finding a path in D and ``recolouring'' the elements of E that correspond to
vertices of the path. The vertices of the path can be found efficiently
provided that there are subroutines available that compute ?(e) for all
e # A and ?$(e) for all e # B in polynomial time, for any A�Mr & E0 with
|?(A)"E0 |�1 and B�Nb & E0 with |?(B)"E0 |�1. (Note that the sets A
and B are not input, but starting from e0 # B and computing ?$- and
?-values alternatingly, an element of A or B is identified at the moment we
want to compute its ?- or ?$-value.)

As a corollary of Theorem 4 we can derive Theorem 1. For this we need
the following lemma. We write $(v) instead of $([v]).
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Lemma 2. Let G=(V, E) be a graph and let s # V. Then $(s) is an
sbo-set for the cycle matroid M(G) of G.

Proof. Let Tr and Tb be the edge sets of two spanning trees in G. By
contracting the edges in Tr & Tb , we may assume that they are disjoint.

For any edge e of Tr & $(s) the e-branch of Tr is the component of
(V, Tr)&[s] incident with e. Define a function ?: Tr & $(s) � Tb as
follows: if e=[s, v] # Tr & $(s), let ?(e) be the first edge of the unique path
from v to s in Tb that leaves the e-branch of Tr . Then clearly, ? is injective,
since different edges in Tr & $(s) define different branches of Tr , and an
edge of Tb is traversed in the same direction by every v&s path in Tb that
uses it.

Let A�Tr & $(s) with |?(A)"$(s)|�1. It has to be shown that

T $r :=(Tr"A) _ ?(A) and T $b :=(Tb"?(A)) _ A

are spanning trees. Because ? is injective, T $r and T $b have the right car-
dinality.

Suppose T $r is not the edge set of a spanning tree. Then there exists a set
of vertices U�V with s � U such that T $r & $(U)=<. Consequently,
Tr & $(U)�A�$(s) (so every branch of Tr is contained in U or in its com-
plement) and ?(A) & $(U)=<. Hence, for every e # A & $(U), ?(e) is con-
tained in U. Since ? is an injection and |?(A)"$(s)|�1, there is at most one
edge in A & $(U). It is impossible to have exactly one edge e # A & $(U),
because ?(e)�U should connect two different branches of Tr , each con-
tained in U and defined by an edge of A & $(U). So A & $(U)=< and
hence Tr & $(U)=<, contradicting the fact that Tr is a spanning tree.

Finally, suppose that T $b is not the edge set of a spanning tree. Then
there is a cut $(U) (s � U) with T $b & $(U)=<. It follows that Tb & $(U)�
?(A) and that A & $(U)=<. Since Tb is a spanning tree, Tb & $(U){<.
Let e # Tb & $(U). Then e=?( f ) for some f # A�$(s)"$(U). Say f =[s, v].
By definition of ?, the path P from v to s in Tb traverses e. P intersects
$(U) in an even number of edges. So, there must be another edge e${e in
Tb & $(U)�?(A) on P. Since |?(A)"$(s)|�1, one of the edges e and e$, say
e, is in $(s). Then e$ is before e (going from v to s) on P and e$ # ?(A)"$(s).
Therefore, e$ connects two different branches of Tr . On the other hand, by
definition of ?, every edge on P before e=?( f ) has both ends in the same
branch of Tr . From this contradiction we derive that T $b is the edge set of
a spanning tree, as required. K

For the function ? defined in the proof of the above lemma, it is possible
to compute ?(A) (for any given A�Tr & E0 with |?(A)"E0 |�1) in time
O(n), where n is the number of vertices of the graph G. Indeed, for
e=[s, v] # A, to be able to identify ?(e), one has to find the e-branch of
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Tr , and the v&s path in Tb . Both can be found by a depth-first search on
the edge set Tr _ Tb of order O(n). Different edges in A determine different
branches of Tr , so every edge of Tr is visited at most once in a depth-first
search. Moreover, because |?(A)"E0 |�1, at most two elements of ?(A) are
in the same branch of Tb , so no branch of Tb has to be searched more than
twice for a path.

Proof of Theorem 1. Necessity is dealt with in the introduction. To see
sufficiency, suppose that both GS and GT contain k edge-disjoint spanning
trees. Now we can apply Theorem 4 with E1 the set of edges with at least
one end in S, and E2 the set of edges with at least one end in T. Indeed,
by Lemma 2, E0=$(S) is an sbo-set for M(GS) and for M(GT), both
viewed as matroids on E=E1 _ E2 (observe that E0=$(s) in GS and
E0=$(t) in GT). It follows that E contains k disjoint common spanning
sets of M(GS) and M(GT), that is, k edge-disjoint S&T connectors. K

In Fig. 1, a typical step in the algorithm for packing connectors is shown.
The vertices in S and T are the lower and upper vertices, respectively.
Spanning trees Nr and Nb of GS are indicated by dashed and solid lines
(different ``colours''), respectively. So are the spanning trees Mr and Mb of
GT . Every S&T edge has two colours: the colour of the upper half depends
on the spanning tree of GS the edge belongs to, the colour of the lower half
is determined by the spanning tree of GT it belongs to. Branches of the
trees in GS&s and GT&t are represented by ellipses of the corresponding
colour in the picture. Paths consisting possibly of more than one edge are
drawn wavy.

On the left, we have the situation that some S&T edge e0 is in Nb & Mr .
With the help of the sbo-injections ? and ?$, as defined in Lemma 2, we
find a sequence, as defined in Theorem 4, of edges alternatingly in Nr & Mr

and Mb & Nb , and in this case ending with an edge in Nr"Mr . Swapping
the colours of the edges in this sequence gives the situation on the right,
where one more S&T edge, namely e0 , has both its halfs the same colour.

By the complexity analysis after Theorem 4 and after Lemma 2, we
obtain an O({(n, m)+m$n) time algorithm for finding a maximum number
of disjoint S&T connectors in the graph G on n vertices, m edges, where
m$ :=|$(S)|�m. Here, {(x, y) denotes the complexity of finding the maxi-
mum number of edge-disjoint spanning trees in a graph on x vertices and

FIG. 1. A step in the algorithm for packing connectors.
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y edges. An algorithm for packing spanning trees due to Gabow and
Westermann [2] proves that {(n, m)�O(mn log(m�n)). So the bound we
obtain for packing S&T connectors does not exceed this best known
bound for packing spanning trees.
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