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Abstract

We propose a version of the 2D Regge calculus, in which the areas of all triangles are equal to each other. In this discre
Lund–Regge measure over link lengths is simplified considerably. Contrary to the usual Regge models with Lund
measure, where this measure is nonlocal and rather complicated, the models based on our approach can be investi
the numerical simulations in a rather simple way.

 2005 Elsevier B.V.

One of the main difficulties in quantization of gravity is the wideness of its gauge group, that is the gr
general coordinate transformations. Due to this wideness it is not possible to put the theory into a regula
and express it in terms of metrics without loss of gauge invariance. At the present moment the only gauge
discretization of quantum gravity is Regge calculus. However, the price for the explicit gauge invariance
problems with the definition of measure. Here instead of metrics, which was local field in continuum, the
of the links are fundamental gauge invariant dynamical variables. Metrics is composed of these variab
nonlocal way. Therefore, measure is also expected to be nonlocal. Although in[1] and related publications the
were argued that certain choices of local measures over link lengths can survive as appropriate, the poin
of the author of the present Letter is different. Namely, we accept that the correct measure over link lengt
be constructed in the spirit of construction of the so-called Lund–Regge measure (see, for example,[2], where it is
also called DeWitt like measure). As was mentioned above, this measure in general case is nonlocal. Ac
form is so complicated, that it seems not possible to use it in real numerical simulations.

However, in the present Letter we suggest the way to overcome this difficulty, at least, in two dimens
order to do this we accept the compromise decision. Namely, we start discretization of gravity from the p
gauge fixed version of the theory, where the conformal mode is fixed via using diffeomorphism invarianc
result, we propose a version of the Regge calculus, in which areas of all triangles are kept equal to ea
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Within this discretization of gravity Lund–Regge measure is simplified considerably, which allows to perfor
numerical investigation of the correspondent models using Monte Carlo methods.

To begin the description of our approach let us remind main facts about the measure in quantum gravity
First of all, what is the original space of continuous geometries? We suppose here that our basic space
cretized is the set of all compactD-dimensional Riemannian manifolds of certain implied smoothness prope
There is the following metrics on this set.

(1)‖δg‖2 = 1

2

∫
dDx

√|g|(gµνgρη + gρνgµη + Cgµρgνη
)
δgµρδgνη.

It is well known that in finite-dimensional case any metrics (on the compact space) produces the only measµ. In
a few words the procedure of its construction works as follows. First we set a certainε. Next, we put balls of radiu
ε into the space. These balls should be putted in such a way that they intersect each other only by their bo
They should be arranged is such a way that their total number is maximal. After that for any given setΩ ⊂ Λ (we
denote the entire space byΛ) we count the number of balls situated insideΩ . Let us denote it asnε(Ω). Finally

(2)µ(Ω) = lim
ε→0

nε(Ω)

nε(Λ)
.

In principle this procedure might be generalized to infinite-dimensional case. The spaces could be rep
as a limit of finite-dimensional ones.1 Namely, each Riemannian manifold could be thought of as a limit
sequence of piecewise linear manifolds constructed of larger and larger number of simplices. This proc
known as Regge discretization. The set of all Riemannian spaces is then thought of as a limit of the seq
finite-dimensional ones (each that space corresponds to the given fixed triangulation with varying link le
Then the continuum measure should be the limit of measures on these finite-dimensional approximating
Our aim now is to construct these finite-dimensional measures in such a way that the result correspon
norm(1).

First of all we note that(1) induces the so-called Lund–Regge norm on space of Regge skeleton
fixed triangulation[2]. To calculate it explicitly let us equip each simplex[Γ0Γ1 . . . ΓD] with the basis{ Γ0Γ1|Γ0Γ1| ,
Γ0Γ2|Γ0Γ2| , . . . ,

Γ0ΓD|Γ0ΓD | }. In this basis metrics is

(3)gij = 1

2

(|Γ0Γi |2 + |Γ0Γj |2 − |ΓiΓj |2
)
.

Here|ΓiΓj | is the distance between pointsΓi andΓj . We can substitute(3) into (1) and obtain the form quadrat
in variations of link lengths (we denote link lengths asai ).

Before doing so let us rewrite(1) in the following way:

‖δg‖2 = 1

2

∫
dDx

√|g|(gµνgρη + gρνgµη + Cgµρgνη
)
δgµρδgνη

(4)=
∫

dDx
√|g|

(
−δgµρδgµρ + C

2

[
δ log|g|]2

)
.

We used here, thatδ|g| = |g|gikδgik andgjiδg
ik = −gikδgji .

Let us representgij as

(5)gkl = 1

(D − 1)!g εkab...dεlvg...sgavgbg . . . gds .

1 This construction is, however, much more complicated and is not yet elaborated in sufficient details for most cases of interest (a
author of the present Letter is not aware of the correspondent research).
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Then, we substitute(5) into (4) and obtain:

(6)‖δg‖2 =
∫

dDx

[
−εkab...dεlvg...sδgklδgavgbg . . . gds√|g|(D − 2)! + C + 2

2

(
δ log|g|)2√|g|

]
.

Now let us introduce new variablêgij = |g|−1/Dgij . The determinant|ĝ| is equal to unity by construction. Th
original field variablegij is, therefore, represented as a product of this new variable and the conformal factor|g|1/D .
As a result(6) can be rewritten as

(7)‖δg‖2 =
∫

dDx

[
−εkab...dεlvg...sδĝklδĝavĝbg . . . ĝds

(D − 2)! + C + 2
D

2

(
δ log|g|)2

]√|g|.

Here we can see, that the conformal mode|g| is orthogonal to the field̂gij .
On the simplicial manifold expression(6) has the form:

(8)‖δa‖2 =
∑

simplices

[
−εkab...dεlvg...sδgklδgavgbg . . . gds√|g|(D − 2)! + C + 2

2

(
δ log|g|)2√|g|

]
.

Here2 at each simplexgij is expressed through link lengthsam.
Collecting all terms quadratic inδam one might obtain the final result

(9)‖δa‖2 =
∑

i,j∈C1

Oij [a]δ(a2
i

)
δ
(
a2
j

)
,

with the matrixO, which (in general) depends on link lengths in rather complicated way. Further we shall
however, that in two dimensions this expression can be greatly simplified if we impose rather restrictive b
natural constraint on the approximating Regge skeleton.

From(9) it follows that the resulting measure is given by3 [1,2]:

(10)Da = Det
1
2 O[a]

∏
i∈C1

da2
i .

Expression(10) was called in[2] DeWitt like measure. However, we guess it more appropriate to call it Lu
Regge measure, as it is derived from the expression for metrics, which was given first by Lund and R
their unpublished preprint. As we already told, unfortunately, in general case,(10) is not suitable for practica
calculations due to its nonlocal and rather complicated form. The main purpose of this Letter is to show
two dimensions the considerable simplification may be achieved, which allows to use Lund–Regge measu
computer simulations.

So, let us turn to the two-dimensional case. In order to set up the model, let us first come back to the co
formulation. Our point is that before discretizing the theory we perform partial gauge fixing. The gauge co
is that the conformal mode|g| has a value, which does not depend upon the point of the surface:

(11)
√∣∣g(x)

∣∣ =
√∣∣g(x0)

∣∣,
2 It is worth mentioning that in a similar way expression(7) can be transferred to the simplicial manifold. However, there the main pro

of (7) is lost. Namely, on the lattice again we may introduce new variables (instead of the link lengths). These new variables are trian
and the remaining angle variables. Naively one would expect, that in analogy withĝij and |g| the subspaces spanned on these two se
variables are orthogonal. But this is not true, because now the inducedĝij on the simplices functionally depend both upon mentioned a
variables and on the areas of the triangles.

3 In this Letter we denote the set of links of the lattice asC1 and the set of triangles asC2. The number of sites is denoted asN0, the number
of triangles is denoted asN , the number of links is denoted asN .
2 1
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whereg(x) is the metric tensor, whilex0 is the fixed point of the surface. The Faddeev–Popov procedure (
applying to the partition function of the model with the actionS[g]) gives

Z =
∫

Dg exp
(−S[g])∫

Df δ
(
log

√∣∣gf
∣∣ − log

√∣∣gf (x0)
∣∣ )∆FP[g]

=
∫

Dgf −1
Df exp

(−S
[
gf −1])

δ
(
log

√|g| − log
√∣∣g(x0)

∣∣ )∆FP
[
gf −1]

(12)=
∫

Dg exp
(−S[g])δ(log

√|g| − log
√∣∣g(x0)

∣∣ )∆FP[g].
Here4 the reparametrization is denoted asf , and its action on metrics is denoted asgf . We take into account tha
the actionS[g], the measureDg, and the Faddeev–Popov determinant∆FP[g] are reparametrization invariant.

The Faddeev–Popov determinant is expressed as (the reparametrization is written here asx → x − y(x)):

∆−1
FP[g]|√|g(x)|=√|g(x0)| =

∫
Dy δ

(
log

|g(x − y(x))|1/2(1+ 1
2∂µyµ(x))

|g(x0 − y(x0))|1/2(1+ 1
2∂µyµ(x0))

)

(13)=
∫

Dy δ

(
log

1+ 1
2∂µyµ(x)

1+ 1
2∂µyµ(x0)

)
= const.

Thus,∆FP(g) does not depend upon metrics.
So, we start discretization of quantum gravity from the model with the partition function

(14)Z =
∫

Dg exp
(−S[g])δ(log

√∣∣g(x)
∣∣ − log

√∣∣g(x0)
∣∣ ).

In Regge discretization of(14) we use Lund–Regge measure(10) instead ofDg. Instead of the delta functio
δ(log

√|g(x)| − log
√|g(x0)|) we use its discretized version:

(15)Θ[a] =
∏

J∈C2,J �=J0

δ
(
logAJ − logAJ0

)
,

where the product is over the triangles (all but the given triangleJ0) of the simplicial manifold andAJ is the area
of the triangle. Equivalently, we can represent the last expression in the following form:

(16)Θ[a] =
∫ ∏

J∈C2

δ
(
logAJ − log(V/N2)

)dV

V
,

whereV is the overall invariant volume.
So, the partition function of the discretized model is

(17)Z =
∫

Da exp
(−S[a]),

whereS[a] is the discretized action andDa is the measure:

(18)Da =
{

Det
1
2 O[a]dV

V

}{ ∏
i∈C1

da2
i

}{ ∏
J∈C2

δ
(
logAJ − log(V/N2)

)}
.

In (18) the additional constraint on the link variables has appeared. We keep areas of all triangles equa
other. Initially we hadN1 degrees of freedom. There areN2 additional conditions. At each site there are als

4 It is important to note, that the definition of delta function on the Riemannian manifold requires the background metricg0 to be con-

cretized. Namely, this function can be represented asδ(h(x)) = limt→∞ exp(−t
∫

h2(x)
√

g0(x) d2x). In our formulas we imply that a certai
background metric is chosen. And this metric has nothing to do with our main dynamical variableg. (Of course, in the same way the measu
over reparametrizationsDf is defined with respect to this background metrics.)
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local redundant degrees of freedom. It is most simple to understand their nature if we consider flat surfac
local movements of each lattice site within this surface live the approximated manifold unchanged. Th
number of local redundant degrees of freedom is 2N0 = N2 + 4(1 − h), whereh is genus of the surface. For th
case of torus the number of additional conditions is equal to the number of local redundant degrees of free
case of sphere the number of additional conditions is less than the number of redundant degrees of free
h > 1, however, our constraint may become too restrictive. Therefore, for the surface of genush > 1 the number
of additional conditions must be reduced. Further we restrict ourselves with the casesh = 0,1.

The main simplification is achieved in the expression for the determinant DetO[a] in the special caseC = −2
when the areas of all triangles are equal to each other. In this case(8) has the form:

(19)‖δa‖2 = − N2

2V

∑
J∈C2

εkaεlvδgJ
klδg

J
av.

This expression can be easily rewritten in terms of the link lengthsai :

(20)‖δa‖2 = 1

V

∑
ij

U ij δ
(
a2
i

)
δ
(
a2
j

)
,

where the matrixU depends upon the triangulation and does not depend on the link lengths. So, in th
DetO[a] ∼ 1/V N1.

That is why we came to the following

Conclusion. In two dimensions (forh = 0,1; C = −2) the measure over discretized geometries5 is

(21)Da = {
V −1+N1/2 dV

}{ ∏
i∈C1

d

[
a2
i

V /N2

]}{ ∏
J∈C2

δ
(
logAJ − log(V/N2)

)}
.

The formula(21)can be considered as the main result of this Letter.
Now let us turn to the description of the particular example of the 2D model, which can be investigated in ord

to examine the measure(21). Namely, we are going to consider theR2 discretized model. Its partition function ha
the form:

(22)Z =
∫

Da exp

(
−β

∑
i∈C0

θ2
i

Bi[a]
)

.

The deficit angle at the pointi is denoted asθi . Here we use the traditional definition of discretized squa
curvatureθi/Bi[a] (whereBi[a] = ∑

i∈J
1
3AJ is the sum over triangles incident at the pointi).

Now let us consider the partition function for the fixed invariant volume (we rescaleda asa → √
2V/N2a):

(23)Z(V ) = V N1/2−1Ẑ(V̂ ),

where

(24)Ẑ(V̂ ) =
∫ ∏

i∈C1

da2
i exp

(
− 1

V̂

N2

2

∑
i∈C0

θ2
i

Bi[a]
) ∏

J∈C2

δ
(
2AJ [a] − 1

)
,

andV̂ = V
β

.

5 Here and below we consider measure up to the factor, which depends upon the triangulation only.
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In order to calculateZ(V ) and extract the string susceptibility we have to investigate the correlator

(25)F(V,β) = ∂ logZ

∂ logV
−

(
N1

2
− 1

)
= N2

2ẐV̂

〈 ∑
i∈C0

θ2
i

Bi[a]
〉
,

where the averaging is over the model defined by the partition function(24).
At V̂ 	 1 the structure ofZ(V ) is expected to match the following expression

(26)Z(V ) ∼ V −3+γ exp(mV ),

whereγ is the so-called string susceptibility whilem is the renormalized cosmological constant[3].
On the other hand, we expect that in the limitN2 	 V̂ 	 1 the system in leading order behaves like a collec

of Nd oscillators, whereNd is the effective number of degrees of freedom. Thus the leading part of(25) is

(27)F(V̂ ) = Nd

2
+ o(N2).

Naively one would suppose, thatNd = N1 − N2. However, close to the continuum limit the number of degr
of freedom may be reduced due to the restored symmetry (which is lost in the discretized model). Neverthe
expect, that this change in the number of degrees of freedoms remains finite atN2 → ∞ because we have alread
eliminated most of redundant degrees of freedom via the constraint on the triangle areas. Under this as
we can representγ as (we used here, thatN1 = 3

2N2):

(28)γ = N2 + γfin + O

(
1

N2

)
,

whereγfin does not depend uponN2. From(28)it follows, that, strictly speaking, the string susceptibility is infini
Moreover, this statement would remain valid even if the number of degrees of freedom is reduced by a num
depends onN2. That is why we came to the conclusion that value of string susceptibility in our model contr
with the one given by the KPZ formula[3]:

(29)γ = 2− 5

2
(1− h).

Thus from our analysis it follows that the only possibility to compare KPZ result with the string suscept
calculated via the discretized model given by(22) is to consider its finite part (which under mentioned ab
assumptions can be given, say, byγfin of (28)).

It is important to notice that usual Metropolis algorithm applied to the system(24)must be redefined in order t
implement the constraints on the triangle areas. While updating link lengths the conditionAi = 0.5 is resolved as
follows. When the link to update is chosen at random, we consider the two triangles having it as a comm
In each of these two triangles we choose the vertex, that does not belong to the given link. Next we cons
set of all triangles having one of these two points as one of their vertices. The resulting figure consists of t
with the given two points as their centers.

If there aren1 internal links in this figure (the links that do not belong to the boundary of the figure), then
are eithern1 − 1 orn1 − 2 triangles that belong to the figure. So, keeping lengths of boundary links and the
of the first updated link, in both cases we might be able to resolve the constraintsAJ = 0.5 within the figure.
However, triangle inequalities may forbid these constraints to be resolved for certain choices of the first
link length. If so, we change it and repeat resolving constraints (at least for its initial value they may be re
by the initial conditions).

In practice we use the constraint

(30)
∣∣AJ − 0.5

∣∣ < δ
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on each triangle. Hereδ is chosen to be sufficiently small. (In principle it could be made as small as nece
However, this may cause considerable increasing of the computer time. So we must adjustδ and, as a result, fina
accuracy of calculations in order to keep CPU time acceptable.)

In order to resolve the constraints, we make several steps over all links of the constructed figure that are
to be changed. Adjusting each link, we minimize the quantity(A2

1 − 1
4)2 + (A2

2 − 1
4)2, whereA1 andA2 are the

areas of the triangles having the given link as common. This minimization is achieved via direct solving o
equation. So this procedure is repeated iteratively until the requirement(30) is achieved at each triangle.

After this procedure is completed, the suggestion is formed, which includes the update of the initially
link and the calculated update of all other internal links of the constructed figure. Then, this suggestion is a
or rejected with the usual probability (p = 1 if �S < 0, andp = e−�S otherwise, where�S is the corresponden
change in the action).

To conclude, we have proposed in this Letter the modification of the 2D Regge calculus, in which the are
of all triangles are equal to each other. As a result the Lund–Regge measure over link lengths (atC = −2) is
simplified considerably and becomes local. The discretized quantum gravity models with this measure
investigated numerically in a relatively simple way contrary to the models with Lund–Regge measure defi
the conventional Regge lattice. As a result of brief consideration of the squared curvature model we arg
the string susceptibility contains an infinite part. And this is reasonable to compare it with the KPZ resu
modulo this infinite part. We also have described changes in the Metropolis algorithm necessary for imple
the constraints on the triangle areas.

It is important to note, that in order to obtain the mentioned simplification we were forced to start the disc
tion of gravity from the partially gauge-fixed version of the theory. Namely, we used the gauge condition,
makes the conformal mode|g| of the metric field constant along the surface. The correspondent Faddeev–
determinant is shown to be independent of metric field. So, we lost a part of reparametrization invarianc
coming to our version of Regge discretization. This was the price for the simplification of measure. We
think this loss to be a pathology, keeping in mind that, say, Lorentz invariance is lost in any model defined
tangular lattice. Nevertheless, it would be important to check if the mentioned part of reparametrization inv
is restored or not when a continuum limit of the discretized model is approached.
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