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In this article, the notion of pentagonal fuzzy number (PFN) is introduced in a generalized way. A few
articles have been published based on this topic, but they have some ambiguities in defining this type of
fuzzy number. Here, we proposed the logical definition in developing a pentagonal fuzzy number, along
with its arithmetic operations. Based on PFN, the structure of pentagonal fuzzy matrices (PFMs) is
studied, together with their basic properties. Some special type of PFMs and their algebraic natures (trace
of PFM, adjoint of PFM, determinant of PFM, etc.) are discussed in this article. Finally, the notion of
nilpotent PFM, comparable PFM, and constant PFMs, with their many properties, are highlighted in this
article.
Copyright © 2016, Far Eastern Federal University, Kangnam University, Dalian University of Technology,
Kokushikan University. Production and hosting by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Decision making problems in the real world are very often un-
certain or vague in most cases. Fuzzy numbers are used in various
fields, namely, fuzzy process modelling, control theory, decision
making, expert system reasoning and so forth. Previous authors'
studies on fuzzy numbers highlighted the arithmetic and algebraic
structure based on triangular fuzzy numbers and trapezoidal fuzzy
numbers. Fuzzy systems, including fuzzy set theory (Zadeh, 1965)
and fuzzy logic, have a variety of successful applications. Fuzzy set
theoretic approaches have been applied to various areas, from fuzzy
topological spaces to medicine and so on. However, it is easy to
handle the matrix formulation to study the various mathematical
models. Due to the presence of uncertainty in many mathematical
formulations in different branches of science and technology, we
introduced the concept of pentagonal fuzzy number (PFN) and
corresponding pentagonal fuzzy matrices (PFMs). Several authors
have presented results of the properties of a determinant, adjoint of
fuzzy matrices, and convergence of the power sequence of fuzzy
matrices. A brief review on fuzzy matrices is given below.

The concept of fuzzy matrices was introduced for the first time
by Thomason (Thomason, 1977) in the article entitled convergence
of power of fuzzy matrix; later, Hashimoto (Hashimoto, 1983a)
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studied the fuzzy transitive matrix. The theoretical development of
the fuzzy matrix was influenced through an article on some
properties of the determinant and adjoint of a square fuzzy matrix
proposed by Ragab et al. (Ragab and Eman, 1994). Moreover, some
important results of the determinant of a fuzzy matrix were pro-
posed by Kim (Kim et al., 1989). Several authors studied the ca-
nonical form and generalized fuzzy matrix (Hashimoto, 1983b; Kim
and Roush, 1980), application of fuzzy matrices in a system of linear
fuzzy equations (Buckley, 1991, 2001), etc. Some of the interesting
arithmetic works on fuzzy numbers can be found in (Bhowmik
et al., 2008; Dubois and Prade, 1979; Dubois and Prade, 1980).
Conversely, some other articles studied different types of fuzzy
numbers, namely, L-R type fuzzy number, triangular fuzzy number,
and trapezoidal fuzzy number (Bansal, 2010). Thereafter, these
types of fuzzy numbers were applied as a mathematical tool in the
various fields of applied mathematics. The notion of a triangular
fuzzy matrix was proposed for the first time by Shyamal and Pal
(Shayamal and Pal, 2007) and was made familiar through intro-
ducing some newoperators on triangular fuzzymatrices (Shayamal
and Pal, 2004). The progression of fuzzy numbers became so fruitful
that it spread into intuitionistic fuzzy matrices (Adak et al., 2012a;
Adak et al., 2012b; Bhowmik and Pal, 2012; Bhowmik and Pal, 2008;
Mondal and Pal, 2014; Pal, 2001; Pradhan and Pal, 2014a; Pradhan
and Pal, 2014b; Pradhan and Pal, 2012; Shayamal and Pal, 2002) and
interval valued fuzzy set theory (Mondal and Pal, 2015; Pal and
Khan, 2005; Shayamal and Pal, 2006).

In this article, we introduce the notion of pentagonal fuzzy
number in awell-definedmanner by generalizing some other types
University of Technology, Kokushikan University. Production and hosting by Elsevier
ons.org/licenses/by-nc-nd/4.0/).
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of fuzzy numbers and studied the basic arithmetic and algebraic
properties of the pentagonal fuzzy number. In Section 2, several
preliminaries regarding the fuzzy number are presented. In Section
3, fundamentals of the pentagonal fuzzy number are established.
Based on the pentagonal fuzzy number, the concept of pentagonal
fuzzy matrix (PFM) is presented in Section 4. Someworks related to
nilpotent PFMs, comparable PFMs, and constant PFMs are studied
in the remaining sections.
Fig. 2. Trapezoidal fuzzy number.

2. Preliminaries

We first recapitulate some underlying definitions and basic re-
sults of fuzzy numbers.

Definition 1. Fuzzy set. A fuzzy set is characterized by its mem-
bership function, taking values from the domain, space or universe of
discourse mapped into the unit interval [0,1]. A fuzzy set A in the
universal set X is defined as A ¼ (x,m(x);x2X). Here, mA:A/[0,1] is the
grade of the membership function and mA(x) is the grade value of x2X
in the fuzzy set A.

Definition 2. Normal fuzzy set. A fuzzy set A is called normal if
there exists an element x2X whose membership value is one, i.e.,
mA(x) ¼ 1.

Definition 3. Fuzzy number. A fuzzy number A is a subset of real
line R, with the membership function mA satisfying the following
properties:

(i) mA(x) is piecewise continuous in its domain.
(ii) A is normal, i.e., there is a x02A such that mA(x0) ¼ 1.
(iii) A is convex, i.e., mA(lx1 þ (1�l)x2) � min(mA(x1),mA(x2)). c

x1,x2 in X.

Due towide applications of the fuzzy number, two types of fuzzy
number, namely, triangular fuzzy number and trapezoidal fuzzy
number, are introduced in the field of fuzzy algebra.

Definition 4. Triangular fuzzy number. A fuzzy number A¼ (a,b,c)
is said to be a triangular fuzzy number if it has the following mem-
bership function

Thus, the triplet (a,b,c) forms a triangular fuzzy number under
this membership function. Graphically, its membership function
looks like a triangle, which is depicted in Fig. 1.

Definition 5. Trapezoidal fuzzy number. A fuzzy number
A ¼ (a,b,c,d) is called a trapezoidal fuzzy number if it possesses the
following membership function

Graphically, the trapezoidal fuzzy number has a trapezoidal
shape with four vertices (a,b,c,d), as depicted in Fig. 2.

However, real-life problems are sometimes concerned with
more than four parameters. To resolve those problems, we propose
another concept of the fuzzy number, called pentagonal fuzzy
number (PFN). We discuss PFN in the next section.
Fig. 1. Triangular fuzzy number.
3. Pentagonal fuzzy number

Due to error inmeasuring technique, instrumental faultiness, etc.,
some data in our observation cannot be precisely or accurately
determined. Let us consider that we measure the weather temper-
ature and humidity simultaneously. The temperature is approxi-
mately 35�C with normal humidity, i.e., the temperature is not
perfect either more or less than 35�C, which affects normal humidity
in the atmosphere. Thus, variation in temperature also affects the
percentage of humidity. This phenomenon happens in general. This
concept of variation leads to a new type of fuzzy number called the
pentagonal fuzzy number (PFN). Generally, a pentagonal fuzzy
number is a 5-tuple subset of a real number R having five parameters.

A pentagonal fuzzy number A is denoted as A ¼ (a1,a2,a3,a4,a5),
where a3 is the middle point and (a1, a2) and (a4, a5) are the left and
right side points of a3, respectively. Now, we construct the math-
ematical definition of a pentagonal fuzzy number.

Definition 6. Pentagonal fuzzy number. A fuzzy number
A ¼ (a1,a2,a3,a4,a5) is called a pentagonal fuzzy number when the
membership function has the form

where the middle point a3 has the grade of membership 1 and
w1,w2 are the respective grades of points a2,a4. Note that every PFN
is associated with two weights w1 and w2. To avoid confusion, we
use the notation wiA for i ¼ 1,2 to represent w1 and w2 as the
weights of the PFN A.
3.1. Geometrical representation

From Fig. 3, it is clear that mA(x) has a piecewise continuous
graph consisting of five points in its domain, forming a pentagonal
shape. As chosen, the points in the domain have the ordering
a1 � a2 � a3 � a4 � a5; a1,a2,a3,a4,a52R. We have to choose the
value of the membership function at a2,a4 in such a way that w1 �
a2�a1
a3�a1 and w2 � a1�a5

a3�a5. Otherwise, the convexity properties of the
fuzzy number fail for the pentagonal fuzzy number.

Remark 1. We define a pentagonal fuzzy number in a generalized
way so that we can easily visualize two special fuzzy numbers, namely,
triangular fuzzy number and trapezoidal fuzzy number, as follows:

Case I When w1 ¼ w2 ¼ 0, then the pentagonal fuzzy number is
reduced to a triangular fuzzy number, i.e.,
~A ¼ ða1; a2; a3; a4; a5Þy (a2,a3,a4); in this case

mAðxÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

0; x � a2

1� a2 � x
a2 � a3

; a2 < x � a3

1; x ¼ a3

1� a4 � x
a4 � a3

; a3 < x � a4

0 x � a4



Fig. 3. Pentagonal fuzzy number.
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Case II When w1 ¼ w2 ¼ 1, then the pentagonal fuzzy number
becomes a trapezoidal fuzzy number, i.e., A ¼ ða1; a2;
a3; a4; a5Þy (a1,a2,a4,a5),

and then mAðxÞ ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0 for x � a1
x� a1
a2 � a4

for a1 < x � a2

1 for a2 � x � a4
a4 � x
a5 � a4

for a4 < x � a5

0 for x> x5
3.2. Arithmetic operations of PFN

Formation of an arithmetic operation is crucial in the study of
fuzzy numbers; the author tries to establish some basic arithmetic
operations of PFN. Note that every PFN is associated with two
weights:w1 andw2. To avoid confusion, we use the notationwiA for
i ¼ 1, 2 to represent w1 and w2 as the weights of the PFN A.

(1) Addition: Let A ¼ (a1,a2,a3,a4,a5) and B ¼ (b1,b2,b3,b4,b5) be
two PFNs; then,

Aþ B ¼ ða1 þ b1; a2 þ b2; a3 þ b3; a4 þ b4; a5 þ b5Þ;
with wiðAþBÞ � maxðwiA;wiBÞ for i ¼ 1;2:
(2) Subtraction: We define the subtraction of two PFNs
A ¼ (a1,a2,a3,a4,a5) and B ¼ (b1,b2,b3,b4,b5) as

A� B ¼ ða1 � b1; a2 � b2; a3 � b3; a4 � b4; a5 � b5Þ;
with wiðA�BÞ � maxðwiA;wiBÞ for i ¼ 1;2:
(3) Scalar Multiplication: Let A ¼ (a1,a2,a3,a4,a5) be a PFN and
k2R be any scalar. If k � 0,kA ¼ (ka1,ka2,ka3,ka4,ka5)
k � 0; kA ¼ ðka5; ka4; ka3; ka2; ka1Þ
(4) Multiplication: Let A¼ (a1,a2,a3,a4,a5) and B¼ (b1,b2,b3,b4,b5)
be two PFNs; then,

AB ¼ ða1b1; a2b2; a3b3; a4b4; a5b5Þ
with wiðABÞ � maxðwiA;wiBÞ; i ¼ 1;2:
(5) Inverse: We define the inverse of a PFN when all its com-
ponents are non-zero. Suppose A ¼ (a1,a2,a3,a4,a5) is a PFN;
then,

A�1z
1
A
z

�
1
a5

;
1
a4

;
1
a3

;
1
a2

;
1
a1

�
:

If one of the components of a PFN becomes zero, thenwe cannot
find its inverse.

(6) Division: The division of two PFNs A ¼ (a1,a2,a3,a4,a5) and
B¼ (b1,b2,b3,b4,b5) is approximated as themultiplicationwith
inverse.

A
B
zAB�1z

�
a1
b5

;
a2
b4

;
a3
b3

;
a4
b2

;
a5
b1

�
:

Note that a PFN A is divisible by B only when B is a non-null PFN
having non-zero components.

(7) Exponent: The exponent of a PFN A ¼ (a1,a2,a3,a4,a5) is
defined as the power of its components. Anzðan1; an2; an3;
an4; a

n
5Þ, with n being a real number.

Remark 2. We choose the “max” relation of the weights of PFNs in all
the above arithmetic operations because otherwise addition, subtrac-
tion, multiplication, division, etc., between two PFNs cannot be closed
under these operations, i.e., the operations between two PFNs never
produce another PFN. To verify, we assume that A ¼ (�1,0,1,2,5) and
B ¼ (1,2,4,5,6), with w1A � 0.5, w2A � 0.7 and w1B � 0.3, w2B � 0.5;
then, the value of w1(AþB), w1(A�B), w1(AB) are all greater than
min(0.5,0.3) ¼ 0.3, which violates the convexity condition of the
pentagonal fuzzy number.

Definition 7. Positive PFN. A PFN A ¼ (a1,a2,a3,a4,a5) is said to be
positive if all its entries are positive. Similarly, A ¼ (a1,a2,a3,a4,a5) is
negative if all of its entries are negative.

Definition 8. Null PFN. A PFN A is called a Null PFN if all of its entries
are zero, i.e., A ¼ (0,0,0,0,0).

Definition 9. Null equivalent PFN. A PFN A¼ (a1,a2,a3,a4,a5) is said
to be null equivalent if its middle entry is at the point 0, i.e., of the form
(d1,ε1,0,ε2,d2), where d1$ε1s0, d2$ε2s0. It is denoted by ~0.

Definition 10. Unit equivalent PFN. A PFN A is said to be a unit
equivalent PFN when its middle entry is at 1, i.e., of the form
(d1,ε1,1,ε2,d2), where d1$ε1s0, d2$ε2s0.

From our previous arithmetic operations of PFN, we observed
that subtraction of two PFNs with a common middle entry pro-
duces a null equivalent PFN, while their division yields another unit
equivalent PFN. Additionally, we have the basic operations, i.e.,
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addition and multiplication of PFNs are both commutative and
associative, while multiplication is also distributive over addition.

Now, we construct a pentagonal fuzzy matrix whose elements
are considered as pentagonal fuzzy numbers. This type of fuzzy
matrix plays a vital role in fuzzy algebra.
4. Pentagonal fuzzy matrix

Definition 11. Pentagonal fuzzy matrix. A fuzzy matrix
A ¼ (aij)m�n of order m � n is called a pentagonal fuzzy matrix if the
elements of the matrix are pentagonal fuzzy numbers, i.e., of the form
(a1ij,a2ij,a3ij,a4ij,a5ij).

Through classical matrix algebra, we achieve some algebraic
operations of PFM. Let A ¼ (aij) and B ¼ (bij) be two PFMs of the
same order; then, we have the following results:

(i) A þ B ¼ (aij þ bij)
(ii) A�B ¼ (aij�bij)
(iii) for A ¼ (aij)m�r and B ¼ (bij)r�n, we have A$B ¼ (cij)m�n, where

ðcijÞ ¼
Pn

k¼1aikbkj for i ¼ 1,2,…,m, j ¼ 1,2,…,n.
(iv) AT ¼ (aji), the transpose of A.
(v) kA ¼ (kaij), where k is any scalar.

Some special types of pentagonal fuzzy matrices corresponding
to classical matrices are now introduced in this section. However, in
fuzzy matrix algebra, we define some other types of pentagonal
fuzzy matrices and their algebraic properties.

Definition 12. Pure null PFM. A PFM is said to be a pure null PFM if
all its entries are null PFNs, i.e., all the elements are (0,0,0,0,0). It is
denoted by O.

Definition 13. Null equivalent PFM. A PFM A ¼ (aij) is said to be a
null equivalent PFM if all its elements are of the form
aij ¼ (d1,ε1,0,ε2,d2), where d1$ε1s0, d2$ε2s0. It is denoted as ~O.

Definition 14. Pure unit PFM. A square PFM A ¼ (aij) is said to be a
pure unit PFM if aii¼ (0,0,1,0,0) and aij ¼ ~0, isj for all i,j¼ 1,2,...,n. It is
denoted by I.

Definition 15. Unit equivalent PFM. A square PFM A ¼ (aij) is said
to be a unit equivalent PFM if aii¼ (d1,ε1,1,ε2,d2) and aij ¼ ~0, isj, where
d1$ε1s0, d2$ε2s0 for all i,j ¼ 1,2,...,n.

Definition 16. Pure triangular PFM. A square PFM A ¼ (aij) is
called a pure triangular PFM if either aij ¼ 0 for i> j or aij ¼ 0
for i< j: c i; j ¼ 1;2; :::; n.

When aij ¼ 0 for i > j, then it is said to be a pure upper triangular
PFM. Otherwise, for aij ¼ 0, i < j, it is called a pure lower triangular
PFM, i,j ¼ 1,2,...,n.

Definition 17. Fuzzy triangular PFM. A square PFM A¼ aij is called
a fuzzy triangular PFM if either aij ¼ ðd1; ε1;0; ε2; d2Þ for i> j or
aij ¼ ðd1; ε1;0; ε2; d2Þ for i< j; where d1$ε1s0; d2$ε2s0.

Definition 18. Strictly fuzzy triangular PFM. A square PFM
A ¼ (aij) is called a strictly fuzzy triangular PFM if either
aij ¼ ~0 for i � j or aij ¼ ~0 for i � j; ~0 being the null equivalent PFN.

Definition 19. Symmetric PFM. A square PFM A ¼ (aij) is called a
symmetric PFM if A ¼ AT, i.e., aij ¼ aji.

Definition 20. Pure skew symmetric PFM. A square PFM A ¼ (aij)
is called a pure skew symmetric PFM if A ¼ �AT.

Definition 21. Fuzzy skew symmetric PFM. A square PFM A ¼ (aij)
is called a fuzzy skew symmetric PFM if A¼�AT and aii¼ (d1,ε1,0,ε2,d2)
for all i ¼ 1,2,...,n, i.e., aij ¼ �aji and aii ¼ ðd1; ε1;0; ε2; d2Þ;
d1$ε1s0; d2$ε2s0: c i; j ¼ 1;2; :::;n.

5. Fundamental properties of PFM

Here, we introduce some fundamental properties of pentagonal
fuzzy matrices. Here, we furnish the commutative and associative
laws, which are well defined, for PFM under the arithmetic oper-
ations addition and multiplication.

Property 1. For any three square PFMs P,Q,R of the same order s � n,
we have the following results:

(i) P þ Q ¼ Q þ P.
(ii) P þ (Q þ R) ¼ (P þ Q) þ R.
(iii) P þ P ¼ 2P.
(iv) P � P ¼ ~O, a null equivalent PFM.
(v) P þ O ¼ P�O ¼ P.
Property 2. Let P and Q be any two PFNs of the same order and s,t be
any two scalars. Then,

(i) s(tP) ¼ (st)P.
(ii) s(P þ Q) ¼ sP þ sQ.
(iii) ðsþ tÞP ¼ sP þ tP;cs; ts0:
(iv) s(P�Q) ¼ sP�sQ.
Property 3. Let P and Q be any two PFMs such that P þ Q and P,Q
are well defined. Then,

(i) (PT)T ¼ P.
(ii) (P þ Q)T ¼ PT þ QT.
(iii) (P$Q)T ¼ QT$PT.
Property 4. Let P and Q be any two PFNs of the same order and s,t be
any two scalars. Then,

(i) (sP)T ¼ sPT.
(ii) (sP þ tQ)T ¼ sPT þ tQT.
Property 5. Let, P be any square PFM. Then,

(i) PPT and PTP are both symmetric.
(ii) P þ PT is a fuzzy symmetric PFM.
(iii) P�PT is a fuzzy skew-symmetric PFM.
6. Trace of a PFM

Definition 22. Trace of a PFM. The trace of a square PFM A¼ (aij) is
defined as the sum of the elements of the principle diagonal. It is
denoted by tr(A), i.e., trðAÞ ¼Pn

i¼1aii.

Property 6. Let P ¼ (pij) and Q ¼ (qij) be two square PFMs of the
same order m; then, the following holds well.

(i) tr(P þ Q) ¼ tr(P) þ tr(Q).
(ii) tr(P) ¼ tr(PT).
(iii) tr(P$Q) ¼ tr(Q$P).

Proof. (i) Let P and Q be two PFMs of order m, where
pij ¼ (p1ij,p2ij,p3ij,p4ij,p5ij) and qij ¼ (q1ij,q2ij,q3ij,q4ij,q5ij). Now, trðPÞ ¼
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Pm
i¼1pii ¼

Pm
i¼1ðp1ii; p2ii; p3ii; p4ii; p5iiÞ and trðQÞ ¼Pm

i¼1qii ¼Pm
i¼1ðq1ii; q2ii; q3ii; q4ii; q5iiÞ.

Thus; trðP þ QÞ ¼
Xm
i¼1

ðpii þ qiiÞ ¼
Xm
i¼1

ðpiiÞ þ
Xm
i¼1

ðqiiÞ

¼
Xm
i¼1

ðp1ii; p2ii;p3ii; p4ii; p5iiÞ

þ
Xm
i¼1

ðq1ii; q2ii; q3ii; q4ii; q5iiÞ

¼ trðPÞ þ trðQÞ
Hence the result.
(ii) We know that the principle diagonal of a PFM remains

invariant under transposition. Hence, the proof is obvious.
(iii) We know that for any two PFM of the same order, their

multiplication is well defined. Let P¼ (pij) and Q¼ (qij) be two PFMs
of the same order m, where (pij) ¼ (p1ij,p2ij,p3ij,p4ij,p5ij) and
(qij) ¼ (q1ij,q2ij,q3ij,q4ij,q5ij). Again, let C ¼ (cij), where ðcijÞ ¼Pm

r¼1pirqrj, for i,j ¼ 1,2,…,m. Now, trðCÞ ¼Pm
i¼1cii ¼

Pm
i¼1

ðPn
r¼1pirqriÞ. Again, let D ¼ (dij) ¼ Q$P, where dij ¼

Pm
r¼1qirprj, for

i,j ¼ 1,2,…,m. Therefore, trðDÞ ¼ trðQ$PÞ ¼Pm
i¼1dii

¼ Pn
i¼1

 Pm
r¼1

qirpri

!

¼ Pm
r¼1

 Pm
i¼1

pirqri

!
ðinterchanging the dummy indices i and rÞ

¼ trðP$QÞ ¼ trðCÞ

Hence the proof.

Property 7. The product of two pure upper triangular PFMs of order
k � k is a pure upper triangular PFM.

Proof. Let P ¼ (pij) and Q ¼ (qij) be two pure upper triangular
PFMs of the same order k, where (pij) ¼ (p1ij,p2ij,p3ij,p4ij,p5ij) and
(qij) ¼ (q1ij,q2ij,q3ij,q4ij,q5ij). Because P,Q are both upper triangular
PFMs, pij ¼ (0,0,0,0,0) and qij ¼ (0,0,0,0,0) for i > j, i,j ¼ 1,2,...,k. Let
N ¼ P$Q ¼ (nij); then, ðpijÞ ¼

Pk
r¼1pirqr j ¼Pk

r¼1ðp1ij; p2ij; p3ij; p4ij;
p5ijÞðq1ij; q2ij; q3ij; q4ij; q5ijÞ. Now, it is enough to establish that
(nij) ¼ (0,0,0,0,0) for i > j, i,j ¼ 1,2,...,k. For i > r, we have
pir ¼ (0,0,0,0,0), r ¼ 1,2,...,i�1, and qir ¼ (0,0,0,0,0), r ¼ i,i þ 1,...,k

Therefore;
�
nij
� ¼Xk

r¼1

pirqrj ¼
Xi�1

r¼1

pirqrj þ
Xk
r¼i�1

pirqrj

¼ ð0;0;0;0;0Þ:

Now;nii ¼
Xk
r¼1

pirqri

¼ Pi�1

r¼1
pirqrj þ

Xk
r¼i�1

pirqrj

¼ pii$qii ¼ ð0;0;0;0;0Þ

because pir ¼ (0,0,0,0,0), r ¼ 1,2,...,i�1 and qir ¼ (0,0,0,0,0),
r ¼ i,i þ 1,...,k. Hence the result.

Property 8. The product of two pure lower triangular PFMs is also a
pure lower triangular PFM.

Property 9. Let P be any square PFM of order m.

(i) If P is a pure upper triangular PFM, then PT is a pure lower
triangular PFM.

(ii) If P is a pure lower triangular PFM, then PT is a pure upper
triangular PFM.
(iii) If P and Q are both pure upper triangular PFMs, then P$Q and
Q$P both hold well.

7. Determinant of a PFM

In this section, we introduce another important algebraic
property, i.e., the determinant of a PFM, together with its several
postulates. Also we mention the characteristic of an adjoint,
cofactor, minor, etc., and classify their properties.

Definition 23. Determinant of a PFM. The pentagonal fuzzy
determinant of a pentagonal fuzzy matrix A of order n � n is denoted

by det(A) or jAj and defined as jAj ¼ P
s2Sn

ðsgns$
Yn
i¼1

aisiÞ, where

aisi ¼ (a1isi,a2isi,a3isi,a4isi,a5isi) are PFNs and Sn denotes the symmetric
group of all permutation of indices 1,2,...,n. Additionally, sgn is the
signature of the permutation, defined as sgn s ¼ 1 or �1 if the per-
mutation is even or odd, respectively.

There are several products and additions of PFNs in the
computation of det(A), and the value of PFNs generates another
PFN. Thus, the determinant value of a PFM yields a pentagonal
fuzzy number.

Definition 24. Minor. Let A be a square PFM of order n � n. The
minor of an element aij in det(A) is the determinant of order
(n�1) � (n�1), which can be obtained by deleting the ith row and jth

column from A. The minor of A is denoted by Mij.

Definition 25. Cofactor. Let A be a square PFM of order n � n. The
cofactor of an element aij in A is denoted by Aij and is defined by
Aij ¼ (�1)iþjMij.

Definition 26. Adjoint of a PFM. Let A ¼ (aij)n�n be a square PFM.
The adjoint of a PFM A is denoted by adj(A) and is defined as bij ¼

��Aji
��,

where
��Aji
�� is the determinant of a (n�1) � (n�1) PFM formed by

deleting row j and column i from A, i.e., B ¼ adj(A).
This can be defined as

adjðAÞ ¼ B ¼ bij ¼
X

p2Sninj

Y
t2nj

atpðtÞ

where nj ¼ 1,2,...,n�j and p is an arbitrary permutation chosen from
the set of all permutations Sni nj of set ni over nj.

Here, det(A) contains n! terms, out of which n!
2 are positive and

the remaining same number of terms are negative. All these n!
terms contain n quantities at a time in product form, subject to the
condition that from the n quantities in the product, exactly one is
taken from each row and exactly one is taken from each column.
Another way of representing the pentagonal fuzzy determinant of a
PFM A¼ (aij) is to expand it to the form

P
aijAji, i¼ (1,2,…,n), where

Aij is the cofactor of aij in det(A). Thus, the pentagonal fuzzy
determinant is the sum of the product of the elements of any row
(column) and the co-factors of the corresponding elements of the
same row (column).

In classical matrix algebra, the value of a determinant can be
computed using any one of the above-mentioned two processes,
with both yielding the same result. The simplest way to determine
the value of the pentagonal fuzzy determinant is given by the for-
mula as in definition. We now study the important properties of
pentagonal fuzzy matrices.

Property 10. Let P ¼ (pij) be a PFM of order m � m.

(i) If all the elements of a row (column) of P are (0,0,0,0,0), then
jPj ¼ ð0;0;0;0;0Þ.

(ii) If a row (column) is multiplied by a scalar l, then det(P) is also
multiplied by l.
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(iii) If P is a pure triangular PFM, then jPj ¼
Ym
i¼1

ðp1ii; p2ii
; p3ii; p4ii; p5iiÞ.

Proof. (i)Let P ¼ (pij)m�m be a square PFM, where
(pij) ¼ (p1ii,p2ii,p3ii,p4ii,p5ii). We define the determinant in the
following way: EiðAÞ ¼

Pn
j¼1aijAij ¼

Pn
j¼1ða1ij; a2ij; a3ij; a4ij; a5ijÞAij,

where Aij is the cofactor of pij in det(P). Obviously,
E1ðPÞ ¼ E2ðPÞ ¼ / ¼ EmðPÞ ¼ jPj. Now, assume that all the ele-
ments of the rth row, 1 � r � m, are pure null PFN. Then,
Er(P) ¼ (0,0,0,0,0). Because prj ¼ (0,0,0,0,0) for all j ¼ 1,2,...,m,
jPj ¼ ErðPÞ ¼ ð0;0;0;0;0Þ.

Hence the result.
(ii)If l ¼ 0, then P has a zero row (column). Thus,

jPj ¼ ð0;0;0;0;0Þ. Thus, the result is obviously as follows.
Let Q ¼ (qij) be a square PFM of order m obtained from P by

multiplying its rth row by a non-zero scalar l. Then, clearly qij ¼ (q1ij
,q2ij,q3ij,q4ij,q5ij) ¼ l(p1ij,p2ij,p3ij,p4ij,p5ij) ¼ (lp1ij,lp2ij,lp3ij,lp4ij,lp5ij)
when l is a positive scalar and qij¼ (lp5ij,lp4ij,lp3ij,lp2ij,lp1ij) when l

is a negative scalar.

Now; jQ j ¼ P
s2Sm

sgns
�
q1ð1s1Þ; q2ð1s1Þ; q3ð1s1Þ; q4ð1s1Þ; q5ð1s1Þ

�
…�

q1ðrsrÞ; q2ðrsrÞ; q3ðrsrÞ; q4ðrsrÞ; q5ðrsrÞ
�
…�

q1ðnsnÞ; q2ðmsmÞ; q3ðnsnÞ; q4ðnsnÞ; q5ðmsmÞ
�

¼ P
s2Sm

sgns
�
p1ð1s1Þ; p2ð1s1Þ; p3ð1s1Þ; p4ð1s1Þ; p5ð1s1Þ

�
/�

lp1ðrsrÞ; lp2ðrsrÞ; lp3ðrsrÞ; lp4ðrsrÞ; lp5ðrsrÞ
�
…�

p1ðmsmÞ; p2ðnsnÞ; p3ðmsmÞ; p4ðmsmÞ;p5ðmsmÞ
�

¼ l
P

s2Sm
sgns$

Ym
i¼1

pisi

¼ ljPj

When l is a negative scalar,

jQ j ¼ P
s2Sm

sgns
�
q1ð1s1Þ; q2ð1s1Þ; q3ð1s1Þ; q4ð1s1Þ; q5ð1s1Þ

�
…�

lp5ðrsrÞ; lp4ðrsrÞ; lp3ðrsrÞ; lp2ðrsrÞ; lp1ðrsrÞ
�
…�

p5ðmsmÞ; p4ðmsmÞ; p3ðmsmÞ; p2ðmsmÞ;p1ðmsmÞ
�

¼ l$
P

s2Sm
sgns

�
p1ð1s1Þ; p2ð1s1Þ; p3ð1s1Þ; p4ð1s1Þ; p5ð1s1Þ

�
…�

lp1ðrsrÞ; lp2ðrsrÞ; lp3ðrsrÞ; lp4ðrsrÞ; lp5ðrsrÞ
�
…�

p1ðmsmÞ; p2ðmsmÞ; p3ðmsmÞ; p4ðmsmÞ;p5ðmsmÞ
�

¼ l
P

s2Sm
sgns$

Ym
i¼1

pisi

¼ ljPj
Hence the result.
(iii)Let P¼ (aij)m�m be an upper (lower) triangular PFM. Then, for

i � j, pij ¼ (0,0,0,0,0). Now consider a term t in jPj; then,

t¼
Ym
i¼1

ðp1 isi; p2 isi;p3 isi; p4 isi; p5 isiÞ. Let s(1)s1, i.e., 1� s(1), so that

p11s1 ¼ 0, p21s1 ¼ 0, p31s1 ¼ 0, p41s1 ¼ 0, p51s1 ¼ 0. Consequently,
pisi ¼ 0 for i ¼ 1. Again, let s(1) ¼ 1 but s(2)s2; then, p2s2 ¼ 0.
Hence, t ¼ (0,0,0,0,0). This means that for each term,
jPj ¼ ð0;0;0;0;0Þ, if s(1)s1, s(2)s2. Preceding in this way, we
have for s(i)si t ¼ (0,0,0,0,0). Therefore,

jPj ¼
Ym
i¼1

ðp1ii; p2ii; p3ii; p4ii;p5iiÞ.

This implies that the product of the diagonal entries is the value
of the determinant for a triangular PFM.
Property 11. The determinant of a diagonal PFM is the product of its
diagonal entries.

Property 12. If any two rows (columns) of a square PFM A are
interchanged, then only the sign of determinant jAj of A changes.

Proof. Let A ¼ (aij) be a square PFM of order n � n. If P ¼ (pij) is
obtained from A by interchanging the rth and sth row (r < s) of A,
then it is clear that pij ¼ aij, isr, iss and prj¼ asj, psj ¼ arj. Now, jPj ¼P
s2Sn

sgnsðp1sð1Þp2sð2Þ…prsðrÞ…pssðsÞ…pnsðnÞÞ ¼
P

s2Sn
sgnsða1sð1Þ

a2sð2Þ…arsðsÞ…assðrÞ…ansðnÞÞ

Let g ¼
�
1 2 … r … s … n
1 2 … s … r … n

�

Then, g is a transposition of interchanging r and s. Thus, g is an
odd permutation; thus, sgnl ¼ �1. Let gs ¼ d. As s runs through all
permutations on (1,2,...,n), d also runs over the same permutations
because s1g ¼ s2g or s1 ¼ s2.

Now, d ¼ sg ¼
�

1 2 … r … s … n
sð1Þ sð2Þ … sðrÞ … sðsÞ … n

�
�
1 2 … r … s … n
1 2 … s … r … n

�
.Therefore, s(i) ¼ i; isr,s;

s(r) ¼ s(s), s(s) ¼ s(r). Because g is an odd permutation, d is even or
odd if s is even or odd, i.e., sgnd ¼ �sgns.

Then; jPj ¼ P
s2Sn

sgns

 Yn
i¼1

aisi

!

¼ � P
d2Sn

sgnd

 Yn
i¼1

aisi

!

¼ �jAj:
Hence the result.

Property 13. If A is a square PFM, then the determinant value of A
equals to that of its transpose, i.e., jAj ¼ ��AT

��.
Proof. Let A ¼ (aij) be a square PFM of order n and let P ¼ AT be

the transpose of A. Then, by the definition of a pentagonal fuzzy

determinant, we have jPj ¼ P
s2Sn

ðsgns$
Yn
i¼1

pisðiÞÞ ¼
X
s2Sn

ðsgns$
Yn
i¼1

asðiÞiÞ. Let f be a permutation on 1,2,...,n such that fs ¼ I, I being the
identity permutation. Thus, f¼ s�1. Let s(i) ¼ j; then, i ¼ s(j)�1 and
as(i)i ¼ ajs(j), c i,j.

Therefore; jPj ¼ P
s2Sn

ðsgns
Yn
i¼1

�
p1sðiÞi; p2sðiÞi; p3sðiÞi;p4sðiÞi; p5sðiÞi

�

¼ P
s2Sn

sgns
Yn
j¼1

�
a1jsðjÞ; a2jsðjÞ; a3jsðjÞ; a4jsðjÞ; a5jsðjÞ

�

¼ P
s2Sn

sgns
Yn
i¼1

�
a1isðiÞ; a2isðiÞ; a3isðiÞ; a4isðiÞ; a5isðiÞ

�
½interchanging indices� ¼ jAj:

Hence the result.

Property 14. For a square PFM A of order n:

(i) If A contains a zero row, then adj(A)A is a null equivalent PFM.
(ii) adj(AT) ¼ [adj(A)]T.

Proof. (i) Let A ¼ (aij) be a square PFM of order n � n, where
aij ¼ (a1ij,a2ij,a3ij,a4ij,a5ij). Let B ¼ adj(A); then, by the definition of
the adjoint of a PFM, the (ij)th element of bij of B is

��Aij
��, where Aij is

the sub matrix obtained from A by suppressing the ith row and jth
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column, i.e., Aij is the cofactor of aij in A. Without loss of generality,
we assume that the kth row of A is the zero row. Therefore, the el-
ements of the kth row are of the form (ε1kj,d1kj,0,d2kj,ε2kj), d1kj$d2kjs0
and ε1kj$ε2kjs0 for all j. Then, all elements of adj(A) are of the form��Aij
�� ¼ ðε1kj; d1kj;0; d2kj; ε2kjÞ, except jsk. Let P ¼ (adjA)A. Then, the

(ij)th element of P is of the form
pij ¼

Pn
m¼1jAimjamj ¼

P
msk

jAimjamj þ
Pn

m¼1jAikjakj. Now all jAimj,

msk, are of the form of the null equivalent PFN. Hence, pij is of the
form of a null equivalent PFN for all i,j ¼ 1,2,...,n. Thus, (adjA)A is a
null equivalent PFM.

(ii) The proof for this part obviously follows from the definition.

Property 15. Let A be a square PFM of order n.

(i) If A is a symmetric PFM, then adj(A) is a symmetric PFM.
(ii) If A is a null equivalent PFM, then adj(A) is also a null

equivalent PFM.
(iii) If A is a pure unit PFM, then adj(A) is a unit equivalent PFM.

Proof. (i) From Property 15, it is clear that the adjoint property
for a PFM preserves transposition, i.e.,adj(AT) ¼ [adj(A)]T. Because A
is a symmetric PFM, AT ¼ A. Now [adj(A)]T ¼ adj(AT) ¼ adj(A). Hence,
adj(A) is a symmetric PFM.

(ii) Let A be a null equivalent PFM of order n; then, all the
elements of A are null equivalent PFNs, i.e., aij ¼ ~0. Again, adj(A)
is the transpose of the cofactor matrix of A. Thus,
adjðAÞ ¼ ½Aij�T ¼ ð�1ÞiþjMji. Additionally, Mij is the determinant
of an (n�1) � (n�1) order matrix, deleting the ith row and jth

column from A. Because each aij is a null equivalent PFN, the
cofactors of the elements of A are null equivalent PFNs and
hence its transpose. Finally, we conclude that adj(A) is a null
equivalent PFM.

(iii) Because A is a pure unit PFM of order n, its diagonal entries
are of the form aii ¼ (0,0,1,0,0) and aij ¼ ~0, isj. It is now clear that
the cofactors of diagonal elements are nothing but the determinant
value of a pure unit PFM of order (n�1) � (n�1), which is a unit
equivalent PFN and null equivalent PFN of non-diagonal elements.
Hence, adj(A) is a unit equivalent PFM.
8. Fuzzy comparable PFM

In this section, we newly introduce fuzzy comparable PFM to
resolve the fuzzy order preference problems. Between any two
matrices, there is an ordering relation: either they are equal or
different. This deals with pairwise comparison of matrices under
elementary-order priority. Pairwise comparison is applied when-
ever the decision maker is not sure regarding the evaluation of
relative importance.

Here, we adopt the concept of fuzzy order relations between two
elementsofafuzzyset,i.e.,forafuzzysetTandx, y2T;theorderrelation
denotedbyorderlattice“�”holdswheneverx�yory�x.

Definition 27. Fuzzy comparable PFM. Let P and Q be two PFMs of
order n � n. We say that P is comparable to Q if either P � Q or Q � P,
i.e., when pij � qij0P � Q or pij � qij0Q � P. When both are equal,
we called them equivalent PFM.

Property 16. Let P and Q be two PFMs of order m � n. Then, we have
the following:

(i) For any PFM T of order m � n, we have P � Q, which implies
P þ T � Q þ T and vice versa.

(ii) For any PFM R of order n � p, we have P � Q, which implies
P$R � Q$R.
(iii) If P1 � P2 and Q1 � Q2, then their product is also comparable,
i.e., P1$Q1 � P2$Q2 for the compatible matrix product of P1$Q1
and P2$Q2.

Proof. (i) Because P � Q, then we have pij � qij, which implies
(p1ij,p2ij,p3ij,p4ij,p5ij) � (q1ij,q2ij,q3ij,q4ij,q5ij)

Now; P þ T ¼ pij þ tij ¼
�
p1ij;p2ij; p3ij; p4ij; p5ij

�
þ�t1ij; t2ij; t3ij; t4ij; t5ij�

0pij þ tij � qij þ tij½because P � Q �
0P þ T � Q þ T

Conversely, let P þ T � Q þ T. Then,

pij þ tij � qij þ tij
0
�
p1ij;p2ij; p3ij; p4ij;p5ij

�
þ �t1ij; t2ij; t3ij; t4ij; t5ij�

�
�
q1ij; q2ij; q3ij; q4ij; q5ij

�
þ �t1ij; t2ij; t3ij; t4ij; t5ij�

0P � Q :

(ii) Here, P, Q are comparable PFMs of order m � n. Let R be any
PFM of order n � p.

Because pij � qij; ðpik$rkjÞ � ðqik$rkjÞ c i; j; k: Therefore,
Pn

k¼1

ðpik$rkjÞ �
Pn

k¼1ðqik$rkjÞ; i.e., P$R � Q$R. Hence the result.
(iii) By a similar approach, we can get the result. It is observed

that (ii) is the particular case of (iii) only when Q1 ¼ Q2.
9. Some results of nilpotent PFM

Nilpotent matrices are of great importance in fuzzy algebra.
Here, we define the nilpotent matrix in the fuzzy sense based on
the pentagonal fuzzy matrix and study some properties that hold
especially for pentagonal fuzzy matrices.

Definition 28. Nilpotent PFM. Let A ¼ (aij)n�n be a square PFM of
order n. A is said to be nilpotent for the index l if l is the least positive
integer such that Al ¼ ~O.

Property 17. Let A and B be two nilpotent PFM of index m,n,
respectively. Then, A$B and A þ B are both nilpotent whenever
A$B ¼ B$A.

Proof. Let A and B be two nilpotent PFMs of index m,n, respec-
tively. Then, Am ¼ ~O and Bn ¼ ~O. Again, let k ¼ lcm(m,n).

Now; ðA$BÞk ¼ ðA$BÞðA$BÞðA$BÞ/k times:
¼ ðAABBÞ½ðA$BÞðA$BÞ/ðk� 2Þ times:�
¼ �A2$B2

�½ðA$BÞðA$BÞ/ðk� 2Þ times:�
¼ �A3$B3

�½ðA$BÞðA$BÞ/ðk� 3Þ times:�
¼
�
Ak$Bk

�
; ½because A$B ¼ B$A�

¼ ~O:

Thus, the product of two nilpotent PFMs is also a nilpotent PFM.
Second part. The nilpotency of Aþ B can be shown directly from

the Binomial theorem.

Property 18. Every strictly fuzzy triangular PFM of order n is
nilpotent for index n.

Proof. Let us consider an n � n strictly fuzzy upper triangular
PFM A¼ (aij), where (aij)¼ (a1ij,a2ij,a3ij,a4ij,a5ij). Let A be of the form

A ¼

0
BB@

~0 ~0 / / ~0
a21 ~0 / / ~0
« 1 «

an1 an2 / an n�1
~0

1
CCA

Let the entries of A2 be bij; then, ðbijÞ ¼
Pn

k¼1aikakj, for
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i,j¼ 1,2,...,n. Because A is strictly upper triangular, aij ¼ ~0, i� j. Thus,

by looking at the entries of A, we have bij ¼ ~0, c i � j. Now, for

j ¼ i�1, bii�1 ¼Pn
k¼1aikaki�1 ¼ a1ka1i�1 þ ai2aki�1 þ/ainani�1.

Because each ain or ai n�1 will lie on or above the principle diagonal

of A, bii�1 ¼ ~0. A2 ¼

0
BBBB@

~0 ~0 / / ~0
~0 ~0 / / ~0
b21

~0 / ~0
« 1 « 1 «

bn1 / / bn n�2
~0 ~0

1
CCCCA

That is, bij ¼ ~0, for i�1� j. We see that each timewe raise A to its
power, the next diagonal under the principle diagonal becomes
zeros. Again, let us assume that this occurs for the power of A, i.e., for
Ak, the kth diagonals, including themain diagonal, become zeros.We
assume theentriesofAk tobegij; then,gij ¼ ~0 for i�kþ1� j. Now it is
sufficient to prove that the (k þ 1)th power of A is a strictly upper
triangular PFM having the next k diagonals until the principle di-
agonal vanishes. Let the elements of Akþ1 be dij because Akþ1 ¼ AAk.
Thus, we have dij ¼

Pn
k¼1aikgkj because for all i� j, aij ¼ ~0. Thus, it is

clear that dij ¼ ~0; c i � j for i,j ¼ 1,2,...,n. Again, dij ¼
Pn

k¼1aikgkj.
We see that for i�k þ 1 � j, dii�kþ1 ¼
ai1g1i�kþ1 þ ai2g2i�kþ1 þ/þ aingni�kþ1 c i; j ¼ 1;2;…;n. From
the above expression, we have ain or gni�kþ1 vanishes for gij ¼ ~0,
i�k þ 1 � j.

Therefore, Akþ1 gives the PFM whose (k þ 1)th diagonals under
the main diagonal are zero, i.e., of the form

Akþ1 ¼

0
BBBBBB@

~0 ~0 / / ~0
~0 ~0 / / ~0
/ / / /

gkþ1 1
~0 / / ~0

« 1 «
gn 1 / gn n�kþ1

~0/ ~0

1
CCCCCCA

Hence, the result is true for n ¼ k þ 1 when it is true for n ¼ k.
Additionally, the result is true for n¼ 2. Therefore, by mathematical
induction, we conclude that the result is true for all n. Thus, An

finally produces a pure null PFM, i.e., An ¼ ~O.
Hence, a strictly fuzzy triangular PFM of order n is nilpotent for

the index that is exactly n.

Property 19. (i) If A and B are both strictly fuzzy triangular PFMs,

then the block matrix
�
A C
~O B

�
is nilpotent.

(ii)Generally,

0
BB@

A11
A22

1
Ann

1
CCA is nilpotent whenever Aii’s

are strictly fuzzy triangular PFMs.
Proof. (i) Let us introduce the concept of block matrix P of the

form P ¼
�
A C
~O B

�
, where A,B are strictly fuzzy triangular PFMs of

order m, n, respectively. Thus, based on the property, A and B are
both nilpotent for index m and n, respectively.

Now; P2 ¼
�
A C
~O B

��
A C
~O B

�
¼
�
A2 AC þ BC
~O B2

�

P3 ¼
�
A2 AC þ BC
~O B2

��
A C
~O B

�

¼
�
A3 A2C þ B2C þ ABC
~O B2

�

Thus, note that when we raise the power to P, the elements p11
and p22 increase their power that of element p12, i.e., in general, we

have Pk ¼
 
Ak �a
~O Bk

!
, with k being a positive integer and assuming
“�a” as the value of the element p21 in Pk. A and B are nilpotent for
index m,n, respectively; therefore, Am ¼ ~O, Bn ¼ ~O. Taking

l ¼ lcm(m,n) (say), ðPkÞl ¼
 
Akl �a
~O Bkl

!
¼
 

~O �a
~O ~O

!
, which is a

strictly fuzzy triangular PFM; hence, based on Property 18, P is a
nilpotent PFM. Hence the proof.

Second Part. (ii) It follows from the previous properties.
10. Singular and constant PFM

Definition 29. Singular PFM. A square PFM A is said to be singular if
the determinant value is a pure null PFN, i.e., jAj ¼ ð0;0;0;0;0Þ.
Definition 30. Semi-singular PFM. A square PFM is called semi-
singular when its determinant value produces a null equivalent PFN,
i.e., jAj ¼ ðd1; ε1;0; ε2; d2Þ; d1$ε1s0; d2$ε2s0: c i; j ¼ 1;2;…;n.

Definition 31. Constant PFM. A square PFM A ¼ (aij) of order n � n
is called a constant PFM if all the rows are equal to each other, i.e.,
ða1ij; a2ij; a3ij; a4ij; a5ijÞ ¼ ða1rj; a2rj; a3rj; a4rj; a5rjÞ c i; r; j.

Example 1. For example, we consider a constant square PFM A of
order 3 as

A ¼
0
@ ð � 1;0;1;2;4Þ ð0;1;2;4;5Þ ð1;2;3;4;5Þ

ð � 1;0;1;2;4Þ ð0;1;2;4;5Þ ð1;2;3;4;5Þ
ð � 1;0;1;2;4Þ ð0;1;2;4;5Þ ð1;2;3;4;5Þ

1
A

Property 20. Let A and B be two constant PFMs of the same order.
Then, the following holds.

(i) A þ B is a constant PFM.
(ii) A,B is also a constant PFM.

Proof. (i) Let A ¼ (aij) and B ¼ (bij), where (aij) ¼ (a1ij,a2ij,
a3ij,a4ij,a5ij) and bij ¼ (b1ij,b2ij,b3ij,b4ij,b5ij) are two constant PFMs of
order n. Then, (a1ij,a2ij,a3ij,a4ij,a5ij) ¼ (a1rj,a2rj,a3rj,a4rj,a5rj) and
(b1ij,b2ij,b3ij,b4ij,b5ij) ¼ (b1rj,b2rj,b3rj,b4rj,b5rj)

Let C ¼ �cij� ¼ �aij þ bij
� ¼ �a1ij; a2ij; a3ij; a4ij; a5ij�þ�

b1ij; b2ij; b3ij; b4ij; b5ij
�
: i; r; j ¼ 1;2;…;n

¼ �a1rj; a2rj; a3rj; a4rj; a5rj�þ �b1rj;b2rj; b3rj;b4rj; b5rj�
½because A;B are constant:�

¼ �c1rj; c2rj; c3rj; c4rj; c5rj� ¼ crj c i; r; j:

Thus, the rows of (A þ B) are similar to each other.
Hence the proof.
(ii) The proof for this part follows from the definition.

Property 21. Let A be any square PFM; then, the following results hold:

(i) [adjA]T is constant.
(ii) A.adjA is constant.
(iii) A.adj(AT) is constant.
(iv) (AT,adjA)T is constant.
(v) (AT,adjA) is constant.
(vi) The determinant value of a constant PFM is a null equivalent

PFM.

Proof. (i) Because A ¼ (aij) is a constant PFM of order n � n,
where (aij) ¼ (a1ij,a2ij,a3ij,a4ij,a5ij), then (a1ij,a2ij,a3ij,a4ij,a5ij) ¼
(a1rj,a2rj,a3rj,a4rj,a5rj). Now, let bij ¼ adj(A).

Then,
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bij ¼
X

p2Sninj

Y
t2nj

atpðtÞ

and

bik ¼
X

p2Snink

Y
t2nk

atpðtÞ

It is obvious that bij ¼ bik because the numbers p(t) of the col-
umns cannot be changed in the two expansions of bij and bik. Thus,
[adjA]T is constant.

(ii) Because A is a constant PFM, both Ajk ¼ Aik and det(Ajk) ¼
det(Aik) hold for every i, j2{1,2,...,n}. Again, let C ¼ A$adjA. Thus,

cij ¼
Xn
k¼1

aik$det
�
Ajk

�
¼
Xn
k¼1

aik$detðAikÞ

Additionally, from the definition of the determinant of a PFM in
terms of the adjoint, detðAÞ ¼Pn

k¼1aik$detðAikÞ. Thus, cij ¼ det(A).
Thus, similar to the fuzzy matrix, this result also holds well for a
pentagonal fuzzy matrix.

(iii)/(iv) These proofs can be obtained via transpose opera-
tions and also by transposing of the constant PFM to remain
constant.

(v) We earlier proved (Property 14) that the determinant of a
PFM A having a zero row is a null equivalent PFN. Additionally, for
a constant PFM A, the rows are equal to each other. Thus, one can
get a zero row via the elementary row operation. Hence the
result.
11. Conclusion

In this article, special attention is paid to the pentagonal fuzzy
number (PFN) and the corresponding pentagonal fuzzy matrix
(PFM), along with the related mathematical expressions. Based on
applying elementary algebraic operations to the PFM, we studied
various types of PFM and their properties (determinant, adjoint,
trace, etc.). Second, this paper addresses the nature of nilpotent
PFM and comparable PFM, with some interesting properties. There
are several opportunities to develop the applications of such
pentagonal fuzzy number. We are trying to investigate such
applications.
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