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Abstract 

A drilling process with different degrees of wear in the drill bit was studied to find relationships between acoustic emission (AE) 

and torque measured during the drilling process, and also with the degree of wear of the tool.  

SAE 1040 steel samples were drilled, making holes with 5 mm diameter twist drill bits in continuous feed. The drill bits were 

modified with “artificial” (produced by spark-erosion) and “real” (obtained by regular mechanical use) failures such as different

degrees of wear in the cutting edge and the outer corner. For every drilled hole, torque and AE were simultaneously measured 

and acquired.  

In the first part of this work, the correlation between the AE parameters and torque measured during the drilling process is 

studied. Torque was measured as a control parameter to follow the dynamic behaviour of the drill bit. An alternative AE feature,

called Mean Power (MP) showed a good correlation with torque when the moving average (MA) was computed. 

In the second part, the AE mean power (MP) was related to different degrees of wear in drill bits. Clusters for the different levels 

of wear in a 2-D plot were obtained. In that plot the moving variance of the MP vs. the moving average of the MP, for each case

of wear, were represented.  

This application aims at repetitive manufacturing operations, where many signals per second may be obtained with fixed 

parameters as shape, drill bit diameter, spindle speed, feed, and a good statistical study can be done. 
PACS: : 43.40 Ls, 46.30 Pa, 81.20 Wk 
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1. Introduction 

Tool condition monitoring is an important point in manufacturing industry, because it allows: an increase in the 
quality of the products, an optimization of the cost and a good control of the process [1]. Drilling is one of the most 
commonly used machining processes in the manufacturing industry, and many tool condition monitoring methods 
are applied to drilling [2]. Tool wear in a machining process can be assessed by direct and indirect methods such as: 
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measurement of tool wear, vibrations, power consumption, torque and load (thrust) and acoustic emission (AE).

These methods can be applied to study tool wear in turning, milling, drilling, etc. [3]-[5] 

AE is the spontaneous release of localized strain energy in stressed material. The elastic waves are recorded by 

piezoelectric sensors on the material surface. The obtained electrical signal is parameterized and/or stored and 

analyzed with an AE system. AE signals can be burst or continuous type. AE feature parameters are typically 

defined for burst signals (but some of them can be extended for continuous signals). In machining, AE is produced 

by many sources such as: plastic deformation during cutting (in the workpiece and chip), friction (tool rake and chip, 

tool flank and workpiece), work material and chip breaking, tool fracture, and collisions between chip and tool. Both 

continuous and burst emissions are produced depending on the sources. [3],[6]-[8] Beyond the definition in the wide 

sense of the word wear by Kannatey-Asibu and Dornfeld [8], in this work the term is particularly referred to cases 

associated only to the flank or edge wear.  

In the literature, waveform and features of AE signals are studied to extract information about drill bit wear in 

drilling [10]-[13]. 

Many AE parameters are defined for burst type signals and do not make sense for continuous signals, except 

RMS, average frequency and amplitude. In this work other basic and representative AE parameters were tested, to 

extract the essential information of the development of the cutting process. That is the AE parameter named mean 

power (MP), defined as the ratio between AE Energy and hit duration, can be applied to burst and continuous 

signals. MP was evaluated as a complementary parameter added to the more commonly used parameters.  

Other way to study AE in drilling is analyzing the waveform by mathematical tools such as power spectra, 

wavelets, auto-similarity, etc. At present, these complementary studies of this work are under elaboration. Some 

preliminary results for turning were presented by the authors in a previous work [12]. 

 In this work the suitability of AE features as indicators of the evolution of a drilling process is evaluated. In the 

first part, all the computed AE parameters were correlated with the torque signal. Torque has been widely studied in 

literature as an important parameter to evaluate the dynamics of the cutting process. The idea of this work is to find 

the AE parameters more correlated with the torque, in order to assess the tool condition. 

2. Experimental Method 

2.1. Material and machining 

2.1.1. Workpiece samples 

Thirty SAE 1040 steel specimens, 95 mm length, 14mm width, were used as workpieces. Homogeneity of the 

material, grain size and low quantity of inclusions was verified by metallographic studies, to ensure repeatability of 

measurements. In all samples a 1.5 mm pilot hole 10mm deep was prepared. 

2.1.2. Drill bits  

Six high speed steel (HSS) 5 mm diameter twist drills were used. “Healthy” drills were modified, adding artificial 

and real defects in flank and outer corner. The type and degree of drill bit damage was examined and measured by 
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SEM. The condition of the drill bits is represented in Table 1. WS1 and WS2 (cases 1 and 2 of spark-eroded edges) 

refer to different wear angles. 

Table 1. Kinds of Drill bit wear

Drill bit Condition Label 

1 New. Regular edge. NRE 

2 New. Irregular edge. 

(defective manufacture) 

NIE

3 Worn cutting edge 

by spark-erosion (case 1). 

WS1 

4 Worn cutting edge. 

by spark-erosion (case 2) 

WS2 

5 Worn outer corner 

by mechanical wear 

WOC

6 Crater wear in edges 

by mechanical wear. 

CWE 

2.1.3. Drilling machine  

The specifications of the drilling machine were: LC-50RS vertical machine, continuous feed, spindle speed: 470 

RPM, feed rate: 0.25 mm/seg, average final length of drilled holes: 15 mm, continuous lubrication with soluble oil. 

2.1.4. Drilling procedure  

Every specimen sample was drilled, one at a time with different drill bits. At least, three tests were made for each 

wear condition in order to obtain statistically representative results. 

The test was performed in four stages: 

First stage: drill bit approach to the sample, contact between the drill bit and the sample and start of drilling.  

Second stage: stationary performance of the drilling process aided by the pilot hole.  

Third stage: end of the pilot hole and start of cutting beyond the pilot hole. 

Fourth stage: steady state drilling in the zone beyond the pilot hole. 

2.2. Torque and AE measurements 

For all the drilling tests, the AE was measured with an 18-bits resolution PAC PCI-2 system. The elastic waves 

produced in the cutting process were converted to electrical signals by a PAC differential wideband piezoelectric 

sensor and conditioned with a 40 dB preamplifier. The torque was measured with an Instron torque cell, and the 

electrical signal obtained was conditioned and registered as an external parameter of the AE system. The AE was 

A/D converted, acquired with a sampling rate of 5 Msamples/sec and parameterized. The measured parameters 

were: energy, counts, duration, amplitude and RMS. In view of the fact that the drilling AE signals are continuous, 

for the three first mentioned parameters, the mean power and the average frequency were computed.  
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AE parameters, waveforms and torque obtained for each drilled bar with each drill bit with different condition of

wear were saved in a PC computer to be further processed with mathematical and statistical analysis. 

For the torque analysis, linear correlation was applied to amplitude, RMS, average frequency (Avg freq) and

MAMP. The moving average of the MP was calculated in order to smooth the scattered MP, as a low pass filter. The

results were plotted and analyzed.

For the wear degree evaluation of the drill bit by means of the AE parameters, the MAMP and the moving

variance of the MP were the appropriate parameters.

3. Results

3.1. Part I. Torque vs. AE

The correlation between torque and AE parameters is displayed in Fig.1 for all the measured cases with different

worn drill bits: new (NIE and NRE), worn edge with spark-erosion (WS1 and WS2), worn outer corner (WOC) and 

craterized edge (CWE). The red squares represent the torque-MAMP correlation, the brown circles the torque-RMS

correlation, the green triangles the torque-Avgfreq correlation and the blue diamonds the torque-amplitude

correlation. The best correlation was for MAMP, better than the RMS, the most commonly used parameter to study

the AE in machining. Although the mathematical procedure to obtain both parameters is comparable, the MP

analysis showed better results than RMS. 
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Fig.1 Linear correlation between torque and AE typical parameters (features) amplitude, RMS, average frequency (avg freq), moving average of 

mean power (MAMP). MAMP shows a better matching with the torque than RMS in a wide range of the MA. CC refers to an extra case for a drill

bit with craterized chisel.

In Fig.2 the torque and the MAMP versus time were shown for two cases, as examples. The similarity between

torque and MAMP behaviour over the test is evident. This is obviously related to the results in Fig.1. Both graphs in

Fig.2 show the different stages of the cutting process detailed above, by means of both indirect methods. For

example watching the AE signal the drilling machine operator can infer if the tool is entering the material (first

stage), reaching the end of the pilot hole (second stage), leaving the pilot hole (third stage) or finishing the cut

(fourth stage).

In the stationary regimen, second stage (in this case the main part of the duration of the machining process)

irregularities could be observed in the signal related with anomalies of the cutting process.

The energy of the rotating drill is transmitted to the sample through the friction of the chisel, the friction of the

flute with the wall, and in proper cutting of the material (plastic deformation). This is actually measured by the
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torque. It is outstanding how accurately the AE follows these mechanical changes giving place to an important

correlation.
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Fig.2  a) Torque and MAMP vs. time for a drilling process for NIE lubricated, 470 rpm, b) Torque and MAMP vs time for a drilling process for

WS1 lubricated, 470 rpm.

3.2. Part II. AE MP vs. wear

This part of the analysis was made for 25 drilling tests for the same conditions of feed rate, lubrication, spindle

speed, and with different states of the drill bit as described in Table 1. 

To avoid the wide spreading of this feature, the MP was filtered by means of moving average, as in the previous
part, obtaining the MAMP (Moving Averaged Mean Power). The degree of variation of the signal was measured by
the Moving Variance of Mean Power (MVMP). The MVMP were represented as a function of MAMP. The
obtained results are displayed in Fig.3. The blue up triangles corresponds to NIE and NRE cases of new drills, the 
red diamonds to WS1, the green circles to WS2, the cyan squares to WOC and the violet down triangles to CWE.
Each point in this graph was obtained using a sliding window including 10 AE hits. The dependence with the
quantity of averaged points was evaluated, and the procedure works correctly in a wide range. In the processing of 
each drilling test data, only 20 seconds of the stationary part (second stage) of the AE signal were considered. This 
method may be useful for repetitive processes, for example in manufacturing the same workpiece, with the same
material, at constant conditions of speed, lubrication, size of tool, etc. AE from drilling is a stochastic process and 
the results for each test appear as clusters in a 2D plot, and the points corresponding to a definite state of the tool are
located around the center of mass of the cluster.

In this work it was established that the behavior of the MVMP can be related to the fracture of chip, the most

scattered the results the highest the chip breakage. A similar result is shown in literature for the RMS parameter. The

regular edges made a regular cut while the damaged edges as WS, WOC and CWE produced irregular, small chip

pieces.
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Fig.3  AE MVMP vs. MAMP measured and computed for different tool wear condition in 25 drilling tests at the same cutting parameters. The

color of the marker represents the wear case of the drill bit. The blue up triangles corresponds to NIE and NRE cases of new drills, the red

diamonds to WS1, the green circles to WS2, the cyan squares to WOC and the violet down triangles to CWE. The average was performed with

the 10 nearest points of each calculated point for highest number of nearest points the clustering is better. 

4. Conclusion

An analysis of the relationship between torque and AE parameters shows the best correlation for MAMP.

Although the mathematical procedure to obtain both parameters is similar, the MP analysis showed better results

than the most commonly used parameter in continuous AE signals, the RMS.

AE from drilling is a stochastic process and the results for each test appear as clusters of points in a MVMP-

MAMP 2D-plot. The points corresponding to signals obtained from a definite state of the tool are located around the 

center of mass of the related cluster. This method may be useful for repetitive manufacturing processes. The

behaviour of the MVMP vs. MVMP can be related to the fracture of chip, the most scattered the results the highest

the chip breakage. A similar result is shown in literature for the RMS parameter variation. The dependence with the

numbers of averaged points was evaluated, and the procedure works correctly in a wide range. The next steps of this

work are to add new measurements in different conditions to corroborate the validity of the method, and to include

the results obtained from the waveforms study.
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