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ShortestPaths in Distance-regular Graphs

ENRIQUE BENDITO, ANGELESCARMONA AND ANDRÉS M. ENCINAS

We aim here to introduce a new point of view of the Laplacian of a graph,0. With this purpose
in mind, we considerL as a kernel on the finite spaceV(0), in the context of the Potential Theory.
Then we prove thatL is a nice kernel, since it verifies some fundamental properties such as maximum
and energy principles and the equilibrium principle on any proper subset ofV(0). If 0 is a proper
set of a suitable host graph, then the equilibrium problem for0 can be solved and the number of the
different components of its equilibrium measure leads to a bound on the diameter of0. In particular,
we obtain the structure of the shortest paths of a distance-regular graph. As a consequence, we find
the intersection array in terms of the equilibrium measure. Finally, we give a new characterization of
strongly regular graphs.

c© 2000 Academic Press

1. INTRODUCTION

The discrete Laplacian on a graph and the solution of some associated Dirichlet problems
have been widely considered for solving miscellaneous problems including conductance of an
electrical network and bounds on the diameter of a graph, among others [1, 4, 5, 8, 9, 11, 14,
15]. The discrete Laplacian on a graph is usually seen as the discrete version of the Laplace
operator onRiemannian manifolds and the spectral methods are the main tool.

On the other hand, the quadratic form associated with the Laplace operator, which is closely
related to the spectral theory via the Rayleigh quotient, has also been considered to analyse
some extremal problems in electrical networks [10, 16–18]. These results are obtained when
the quadraticform is seen as a Dirichlet form on a Dirichlet space [3]. The elements of this
spaceare potentials with respect to the Green kernel of the Laplace operator. However, as
this kernel is formally expressed as a power series, it is difficult to derive properties of the
potentials from it, so most properties of the potentials are directly obtained from the Dirichlet
forms.

We aim here to introduce another aspect of the relation between Potential and Graph The-
ories. We consider the discrete Laplacian on a graph as a kernel instead of an operator and
we develop the associated Potential Theory. The Laplacian kernel verifies some fundamental
principles of the Potential Theory. These principles allow us to obtain information about the
connection between a subset of vertices and its complementary as well as about the distance
between vertices.

There is no question that the Laplacian of a graph contains information about the connection
between vertices. A positive measure on the vertices of a graph, determines a subset of points
(its support) as well as a positive weight for each of them. Therefore, if we choose a uniform
measure, for example, the characteristic of a subset of the graph, the potential in each vertex
of the subset coincides with its exterior degree. Among all the positive measures with support
in a subset of vertices that we can consider, the measure that gives equal potential in each
vertex of the subset must give the maximum information about the exterior connection of the
subset. The existence and uniqueness of such a measure, the so-called equilibrium measure
of the subset, will be proven in Section3. As we may expect, this equilibrium measure is
uniform if and only if the exterior degree of each vertex is constant.

In addition, the mass of the equilibrium measure, i.e., the Wiener capacity of the subset,
provides information not only about the inner connection of the subset, but also about the
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connection with its complementary. In particular, we prove that the capacity is additive with
respect tothe connected components of the subgraph induced by a subset.

It is not possible to obtain an equilibrium measure for the whole vertex set of a graph.
Therefore, we cannot know connection properties of the whole graph by applying the above
mentioned tools directly. To do so, we embed it into a host graph by employing a commonly
used technique in the context of electrical networks (see [3, 6].) It consists of adding a new
vertex joined to the graph through a new edge. Although this embedding partly modifies the
structure of the initial graph, its equilibrium measure can recognize some properties of the
connection between the vertices of the graph. For instance, when this technique is applied to a
distance-regular graph, the equilibrium measure recovers its intersection array. Furthermore,
in this case the equilibrium measure assigns a mass to each vertex which only depends on its
distance to the exterior. This allow us to build shortest paths between any pair of vertices. The
results related to distance-regular graphs are developed in Section4, which concludes with a
complete characterizationof strongly regular graphs.

To sum up, the results obtained here by considering the discrete Laplacian of a graph as
a kernel, mainly hinges on the knowledge of the equilibrium measures. Let us point out that
the effective computation of such measures can be accomplished using standard techniques of
Mathematical Programming (see [2]). Specifically, the computation can be performed in two
ways,either by solving a linear mathematical programming problem related to the potentials
of the measures or by solving a convex quadratic mathematical programming problem related
to the energy of the measures.

Throughout the paper,0 = (V, E) denotes a (simple and finite) connected graph, with
vertex setV , |V | = n, and edge setE. The distance fromx to y is denoted byd(x, y) and
d = d(0) = max{d(x, y) : x, y ∈ V(0)} stands for thediameterof 0. Givenx ∈ 0, we write
as0i (x) the set of verticesy such thatd(x, y) = i . In particular,0(x) = 01(x) denotes the
set of vertices adjacent tox. Its cardinal is thedegreeof x, δ(x) = |0(x)|. A graph is called
k-regular if each vertex has the same degreek. Given F ⊂ V , 〈F〉 stands for the induced
subgraph. Moreover, we denote byFc its complementary inV and we consider the subsets
∂(F) = {x ∈ Fc

: (x, y) ∈ E for somey ∈ F} and Ext(F) = Fc
\∂(F). In addition, for

x ∈ F , we call theexterior degree of x with respect to Fthe number∂−(x) = |0(x) ∩ Fc
|.

TheLaplacian matrixof 0 is the(n × n)-matrixL = L(0) indexed by the vertices of0,
whose entriesLxy are given byLxy = −1 if x is adjacent toy, (x ∼ y), Lxx = δ(x) and
Lxy = 0 otherwise. The matrixL is symmetric and positive semidefinite.

2. SOME BASIC CONCEPTS OFPOTENTIAL THEORY

This section is devoted to introduce the main definitions and results of Potential Theory
that we will use later. We only expose those properties which will have repercussions on the
rest of the paper. For our purposes, it suffices to consider the potential and the energy of
mass distribution on a compact spaceX with respect to a continuous and symmetrickernel,
K : X × X −→ R. All results and their proofs can be found in Fuglede [12].

If µ is apositive Radon measure, itssupportand itsmasswill be denoted byS(µ) and||µ||,
respectively. For eachF ⊂ X we denote byM+(F) the set of positive Radon measures with
support inF and we consider the setM1(F) = {µ ∈M+(F) : ||µ|| = 1}.

Givenµ ∈ M+(X), we call thepotential ofµ and energy ofµ with respect toK, the
function and the value given, by

Uµ(x) =
∫

X
K(x, y)dµ(y) and I (µ) =

∫
X

Uµ(x)dµ(x),
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respectively. Also, we consider the functionsU,W :M+(X) −→ R given by

U (µ) = max
x∈X

Uµ(x) and W(µ) = max
x∈S(µ)

Uµ(x)

and for eachF ⊂ X, the values

I (F) = inf
µ∈M1(F)

I (µ), U (F) = inf
µ∈M1(F)

U (µ) and W(F) = inf
µ∈M1(F)

W(µ).

WhenK satisfiesI (X) ≥ 0, the value

cap(F) =
1

I (F)

is known as theWiener capacityof F . Note that cap(F) is strictly positive for all non-empty
setsF ⊂ X, but it is not necessarily finite.

For each compact setF ⊂ X, the following extremal problems are posed:

find σ, ν, λ ∈M1(F) such thatI (σ ) = I (F), U (ν) = U (F) andW(λ) = W(F).

It is well known thatW(F) = I (F) for every compact setF ⊂ X. Moreover, their associ-
ated extremal measures are equal and they will be calledcapacitary measuresfor F . A kernel
K is said to satisfy themaximum principleif U (µ) = W(µ) for everyµ ∈M+(X). Hence,
if K verifies the maximum principle, then for every compact setF

I (F) = U (F) = W(F)

and they have the same extremal measures. In addition, ifI is strictly convex onM1(F) (i.e.,
K verifies theenergy principleon F), there exists a unique capacity measure.

For each compact setF ⊂ X, a measureµ ∈M1(F) verifies thatI (µ) = I (F) if and only
if its potential satisfies the following inequalities

Uµ(x) ≥ I (F) in F,

Uµ(x) ≤ I (F) in S(µ). (1)

If K satisfies themaximum principle, thenUµ(x) ≤ I (F) in X anda fortiori Uµ(x) = I (F)
in F .

Finally, suppose thatK is a continuous symmetric kernel onX satisfying the maximum
principle andI (X) ≥ 0. If F is a non-empty compact subset ofX with finite capacity andK
verifies the energy principle onF , then there exists a unique measureν ∈M+(F) solution
of the so-calledequilibrium problem:

find µ ∈M+(F) such thatUµ(x) = 1 in F.

Clearly, if σ satisfiesI (σ ) = I (F) = U (F) (i.e., σ is the capacitary measure), thenν =
cap(F)σ and it is called theequilibrium measurefor F .

3. THE LAPLACIAN KERNEL

The purpose of this section is to construct a Potential Theory in the context of Graph Theory
in such a way that we can apply the results of the previous section.

Let 0 = (V, E) be a graph. We consider the vertex set of0 as the underlying space,
i.e., X = V . SinceV is a finite set, kernels and positive measures onV are identified with
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symmetric matrices and vectors of the positive cone ofR
n, respectively. So, ifµ ∈M+(V),

thenS(µ) = {x ∈ V : µ(x) > 0} and||µ|| =
∑

x∈V µ(x).

For eachF ⊂ V , let 1F ∈M+(F) denote the measure given by1F (x) =
{

1 if x ∈ F
0 if x /∈ F .

If F = V the subscript will be omitted. We say that a measureµ ∈ M+(F) is a uniform
measureon F if µ = a1F for somea > 0.

If K is a kernel andµ ∈M+(V), then the potential and the energy ofµ can be identified
with the vectorKµ and the value〈Kµ,µ〉, respectively, where〈·, ·〉 denotes the standard inner
product inRn. Therefore,K fulfills the energy principle onF ⊂ V if and only ifK is strictly
positive definite on{µ ∈ Rn

: µ(x) = 0 if x /∈ F and
∑

x∈V µ(x) = 0}.
The extremal problems described in Section2 consist of findingσ, η ∈M1(F) such that

I (σ ) = min
µ∈M1(F)

〈Kµ,µ〉 and U (η) = min
µ∈M1(F)

max
x∈V
Kµ(x).

The energy extremal problem becomes a Quadratic Programming Problem, sinceM1(F) is
described by means of linear constraints. On the other hand, the potential extremal problem
can be re-written as

U (η) = min
µ∈M1(F)
Kµ≤u1

u. (2)

Therefore, it becomes a Linear Programming Problem.
In thesequel, we will consider the Laplacian of0, L, as a kernel onV . Then, the potential

of µ ∈M+(V) is given by

Lµ(x) =
∑
y∼x

(µ(x)− µ(y)) = δ(x)µ(x)−
∑
y∼x

µ(y),

and the energy ofµ ∈M+(V) is the value

I (µ) =
∑

(x,y)∈E

(µ(x)− µ(y))2.

The following results establish thatL is a kernel verifying the maximum and energy princi-
ples. This will enable us to tackle the equilibrium problem for all proper subsetsF ⊂ V .

PROPOSITION3.1. The Laplacian kernel verifies the maximum principle.

PROOF. Givenµ ∈M1(F), thenLµ(x) = 0 if x ∈ Ext(F) andLµ(x) = −
∑

y∼x µ(y) ≤
0 if x ∈ ∂(F). Therefore, it suffices to prove that there exists a vertexx ∈ F such that
Lµ(x) ≥ 0. If we choosex ∈ F such thatµ(x) = maxy∈F µ(y), thenLµ(x) ≥ 0. 2

PROPOSITION3.2. For each F⊂ V , the Laplacian kernel verifies the energy principle on
F. Moreover, if F is a proper subset, I(F) > 0.

PROOF. Note that〈Lµ,µ〉 ≥ 0 and〈Lµ,µ〉 = 0 if and only ifµ = a1, a ∈ R. Therefore,
L is strictly positive definite on{µ ∈ Rn

: 〈µ,1〉 = 0}. On the other hand, ifF is a proper
subset ofV , for eachµ ∈M1(F) there existsx ∈ Fc such thatµ(x) = 0, which implies that
I (µ) > 0 and hence,I (F) > 0. 2

From the proof of the above proposition, we find thatI (V) = 0 and its unique capacity

measure is uniform, i.e.,σ =
1

n
1.
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COROLLARY 3.3. For each proper subset F⊂ V there exists a unique equilibrium mea-
sureν, i.e.,

Lν(x) = 1 ∀x ∈ F.

Moreover, S(ν) = F.

PROOF. The first part is a consequence of Propositions3.1and3.2.
Assume thatν(x) = 0 for somex ∈ F . ThenLν(x) = −

∑
y∼x ν(y) ≤ 0, which contra-

dicts thatν is the equilibrium measure. 2

As pointed out in the continuous case, the equilibrium measureν is equal to cap(F)σ ,
whereσ is the capacitary measure forF . In this case, we have that(I (F), σ ) is either the
solution of the Quadratic Programming Problem related to the energy or the solution of the
Linear Programming Problem (2).

Up tonow we have shown the basic structure of the Potential Theory on a graph that arises
when the Laplacian kernel is considered. Our next goal is to derive properties of the equi-
librium measures as well as of the Wiener capacities of subsets. Firstly, we characterize the
conditions for an equilibrium measure to be uniform.

PROPOSITION3.4. Let F ⊂ V be a proper subset. Then, its equilibrium measure is uni-
form if and only if∂−(x) = ∂−(y) for all x, y ∈ F.

PROOF. It suffices to observe thatL1F (x) = ∂−(x) for all x ∈ F . 2

Thefollowing proposition will be useful for later results.

PROPOSITION3.5. Let F be a proper subset of V andν its equilibriummeasure. Then,

|F | =
∑
x∈F

∂−(x)ν(x).

PROOF. As ν is the equilibrium measure, thenLν(x) = 1, for all x ∈ F and hence,

|F | =
∑
x∈F

Lν(x) =
∑
x∈F

∑
y∼x

(ν(x)− ν(y))

=

∑
x∈F

∑
y∼x
y∈F

(ν(x)− ν(y))+
∑
x∈F

∑
y∼x
y/∈F

ν(x) =
∑
x∈F

∂−(x)ν(x). 2

PROPOSITION3.6. Let F ⊂ V such that F =
⋃s

i=1 Fi , where Fi , i = 1, . . . ,s are the
vertex sets of the connected components of〈F〉. Then,

cap(F) =
s∑

i=1

cap(Fi ).

PROOF. If F = V , thens= 1, because0 is connected. Hence, the result holds.
Suppose thatF is a proper subset ofV . For eachi = 1, . . . ,s, let µi be the capacitary

measure forFi . If β =
∑s

i=1 cap(Fi ) and we considerµ ∈M1(F) defined by

µ =
1

β

s∑
i=1

cap(Fi )µ
i ,
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thenLµ =
1

β

s∑
i=1

cap(Fi )Lµi . If x ∈ F , there existsk such thatx ∈ Fk. Moreover,x ∈

Ext(F j ), for all j 6= k. Then,

Lµi (x) =

{
I (Fk) if i = k,
0 if i 6= k.

Hence,Lµ(x) =
1

β
for all x ∈ F , which implies thatI (F) =

1

β
and theresult follows. 2

COROLLARY 3.7. Let F = {x1, . . . , xs} be a set of independent vertices. Then,

cap(F) =
s∑

i=1

1

δ(xi )
.

PROOF. If µ = 1xi , theDirac measure onxi , thenLµ(xi ) = δ(xi ). Therefore,I (xi ) =

δ(xi ). The result follows by applying the previous proposition. 2

The result of Proposition3.6states that the capacity is additive with respect to the connected
components ofa induced subgraph. However, it is not true for an arbitrary union of subsets of
V as the following example shows.

LEMMA 3.8. Let F = {x, y} such that(x, y) ∈ E. Then

cap(F) > cap(x)+ cap(y).

PROOF. The capacitary measure forF , σ , mustsatisfyδ(x)σ (x) − σ(y) = δ(y)σ (y) −

σ(x) andσ(x) + σ(y) = 1. Then,σ(x) =
δ(y)+ 1

δ(x)+ δ(y)+ 2
andσ(y) =

δ(x)+ 1

δ(x)+ δ(y)+ 2
.

Therefore,

cap(F) =
δ(x)+ δ(y)+ 2

δ(x)δ(y)− 1
>

1

δ(x)
+

1

δ(y)
. 2

The above lemma says that the Wiener capacity for the Laplacian kernel, is not subadditive.
This is due to the fact that the Laplacian is not a positive matrix. However, this example
verifies the following equality:

1

I ({x, y})+ 1
=

1

I (x)+ 1
+

1

I (y)+ 1
.

If F ⊂ V , thevalue(I (F)+1)−1 can be seen as the Wiener capacity ofF with respect to the
positive kernelL+ J, whereJ denotes the matrix whose entries are equal to one. In fact, the
Wiener capacity is subadditive for a positive kernel, (see [12, p. 157].) In particular, we have
the following result.

PROPOSITION3.9. Let F1, . . . , Fs ⊂ V and F=
⋃s

i=1 Fi . Then,

(I (F)+ 1)−1
≤

s∑
i=1

(I (Fi )+ 1)−1.

COROLLARY 3.10. Let F ⊂ V be a proper subset. Then,cap(F)cap(Fc) ≥ 1.
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TABLE 1.
Some capacities and capacitary measures.

0 F σ(xi ) cap(F)

complete graph,Kn
1

s

s

n− s

bipartite complete
graph, K p,q

|F ∩ V0| = s0

|F ∩ V1| = s1

p+ s1

ps0 + qs1 + 2s0s1

q + s0

ps0 + qs1 + 2s0s1

ps0 + qs1 + 2s0s1

pq− s0s1

path,Pn δ(xs) = 1 3
2is− i (i − 1)

s(s+ 1)(2s+ 1)

1

6
s(s+ 1)(2s+ 1)

path, Pn
or

cycle,Cn

δ(xi ) = 2 6
is− i (i − 1)

s(s+ 1)(s+ 2)

1

12
s(s+ 1)(s+ 2)

Before ending this section let us determine the Wiener capacities and the capacitary mea-
sures forproper subsets of some nice graphs which help us to study the sharpness of the lower
bound in the above corollary. Table1 shows such capacities and measures for connected sub-
setsF = {x1, . . . , xs} of cardinals< n.

Note that the product cap(F)cap(Fc) can be much larger that one. For instance in a cy-
cle cap(F)cap(Fc) ≥

n(n2
−1)

24 . However, in a complete graph this product is equal to one.
The differences in the behaviour of the capacity products are due to the different degrees of
connection between the vertices ofF andFc. In particular, the following result characterizes
when equality holds in Corollary3.10.

PROPOSITION3.11. Let F ⊂ V be a proper subset. Then,

cap(F)cap(Fc) = 1⇐⇒ max{d(x, y) : x ∈ F, y ∈ Fc
} = 1.

Moreover, the capacitary measures for F and Fc are the uniform measures on F and Fc,
respectively.

PROOF. Note that max{d(x, y) : x ∈ F, y ∈ Fc
} = 1 if and only if ∂−(x) = |Fc

| for
all x ∈ F and∂−(y) = |F | for all y ∈ Fc. In addition, the uniform measures onF andFc,
µ1 =

1
|F |1F andµ2 =

1
|Fc|

1Fc, satisfyLµ1 =
|Fc|
|F | on F andLµ2 =

|F |
|Fc|

on Fc, respectively.
Therefore, they are the capacitary measures forF andFc and cap(F)cap(Fc) = 1.

Conversely, ifK = L+ J and we consider1= 1F + 1Fc, then

n2
= 〈K1,1〉 = 〈K1F , 1F 〉 + 〈K1Fc, 1Fc〉 + 2〈K1F ,1Fc〉

≥ (I (1F )+ |F |
2)+ (I (1Fc)+ |Fc

|
2) ≥ |F |2(I (F)+ 1)+ |Fc

|
2(I (Fc)+ 1)

≥
(|F | + |Fc

|)2

1

I (F)+ 1
+

1

I (Fc)+ 1

=
n2

1

I (F)+ 1
+

1

I (Fc)+ 1

,

where thelast inequality has been obtained by applying the Cauchy–Schwarz inequality in

the form:(a+ b)2 ≤ (c+ d)

((
a
√

c

)2
+

(
b
√

d

)2
)
.

On theother hand, cap(F)cap(Fc) = 1 if and only if 1
(I (F)+1) +

1
(I (Fc)+1) = 1. Therefore,

by using the above inequalities, we conclude that

cap(F)cap(Fc) = 1H⇒ 〈K1F , 1Fc〉 = 0.
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Finally, it is enough to observe that

max{d(x, y) : x ∈ F, y ∈ Fc
} = 1 if and only if 〈K1F ,1Fc〉 = 0,

since

|F ||Fc
| −

∑
y∈Fc

∂−(y) = 〈K1F ,1Fc〉 = 〈K1Fc, 1F 〉 = |F ||F
c
| −

∑
x∈F

∂−(x). 2

Up to now, we have analysed the equilibrium problem and some of its properties for any
proper subset of the vertex set of a graph. Clearly, the equilibrium problem for the vertex set of
a graph, with respect to the Laplacian kernel, could not be solved unless we embed it in a host
graph. Although there exist miscellaneous ways of doing this, we will proceed in such a way
that the influence of the joined elements to the initial graph is minimum and the information
about the inner connection ofV is retained as much as possible. For instance, if we consider
a unique new vertex joined with each of the vertices of the graph through a new edge, by
Proposition3.4 we conclude that the equilibrium measure is the uniform measure onV and
the capacityof V is 1

n . Therefore,this embedding does not give us more information about the
inner connection ofV . For our purposes, it will be better to add to the graph a unique vertex
and a unique edge.

Specifically, let0 = (V, E) be a graph and consider a new vertexxn+1, which will be
joined through an edge to a fixed vertexx ∈ V . Let0x

= (V x, Ex), whereV x
= V ∪ {xn+1}

andEx
= E ∪ (x, xn+1). We will call this graphthe extended graph of0 with respect to x.

Let Lx be the Laplacian of0x. In this case, the submatrixLx
|0

coincides withL except in its
diagonal element(Lx)xx which is equal toδ(x)+ 1.

Let us consider now the equilibrium problem forV as a proper set ofV x. Then, using the
previous results, there exists a unique equilibrium measure,νx, for V . Therefore, the potential
of νx satisfies

Lxνx(y) = 1 if y ∈ V

Lxνx(y) = −νx(x) if y = xn+1. (3)

In the sequel, we call theequilibrium array for V ⊂ V x to q(x) = {q0(x),q1(x), . . . ,
qt (x)}, the set of different components ofνx, where it is assumed thatq0(x) < q1(x) < · · · <
qt (x). Note that thelengthof the equilibrium array,t + 1, is larger than one, unlessn = 1,
becauseνx cannot be uniform. On the other hand,q0(x) only depends on the order of0, since
q0(x) = n by Proposition3.5. Also, we will consider the positive integersmi (x) = |{y ∈ V :
νx(y) = qi (x)}|, i = 0, . . . , t , i.e., the multiplicity of each element of the equilibrium array.

The equilibrium measure enables us to obtain an upper bound on the distance between
vertices.

PROPOSITION3.12. Let V ⊂ V x, νx be theequilibrium measure and q(x) the equilibrium
array for V . Then,

νx(y) = qi (x) H⇒ d(y, x) ≤ i .

In particular, m0(x) = 1.

PROOF. We prove the result by mathematical induction.
If νx(y) = q0(x), then y = x, otherwise0(y) ⊂ V and νx(y) ≤ νx(z) for all z ∈

0(y). Therefore,Lxνx(y) =
∑

z∈0(y)(ν
x(y) − νx(z)) =

∑
z∈0(y)(q0(x) − νx(z)) ≤ 0, a

contradiction sinceν is the equilibrium measure. This reasoning also proves thatm0(x) = 1.
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Suppose thatνx(y) = q j (x) H⇒ d(y, x) ≤ j , for all j = 0, . . . , i , and lety ∈ V such
that νx(y) = qi+1(x). Assume that for eachz ∈ 0(y) there existsj ≥ i + 1 such that
νx(z) = q j (x). Then

Lxνx(y) =
∑
z∼y

(νx(y)− νx(z)) ≤
∑
z∼y

(qi+1(x)− qi+1(x)) = 0,

a contradiction again. Therefore, there must exist a vertexz ∈ 0(y) such thatνx(z) = q j (x),
for some j ≤ i . Then, by using the hypothesis of induction,d(z, x) ≤ i , which implies
d(y, x) ≤ i + 1. 2

For each vertexx ∈ V we can consider the equilibrium problem forV ⊂ V x. Then applying
the above proposition, we obtain an upper bound of the distance between any pair of vertices.
In particular, the maximum length of all equilibrium arrays minus one is an upper bound of
the diameter of the graph.

4. DISTANCE-REGULAR GRAPHS

In this section, we study the case of distance-regular graphs. It seems natural to ask our-
selves whether the result of Proposition3.12 can be improved with additional information
about thestructure of the considered graphs. In particular, this is the case when the graph is
a distance-regular graph. Thus, in this section, we elaborate upon the previous work to derive
some new results for such a case. Specifically, we use the equilibrium theory to determine the
distance between any pair of vertices as well as the shortest path between them.

A connected graph0 is calleddistance-regularif there are integersbi , ci , i = 0, . . . ,d such
that for any two verticesx, y ∈ 0 at a distancei = d(x, y), there are exactlyci neighbours of
y in 0i−1(x) andbi neighbours ofy in 0i+1(x). In particular,0 is regular of degreek = b0.

The sequence
ι(γ ) = {b0, b1, . . . , bd−1; c1, . . . , cd}

is called theintersection arrayof 0. In addition,ai = k− ci −bi is the number of neighbours
of y in 0i (x), for d(x, y) = i . Clearly,bd = c0 = 0, c1 = 1 and the diameter of0 is d.
Moreover, 1≤ c2 ≤ · · · ≤ cd.

For any vertexx ∈ 0 the number of vertices at a distancei from it, i.e., |0i (x)|, will be
denoted byki . This number does not depend on the vertex,x, and the following equalities
hold:

k0 = 1, k1 = k, ki+1ci+1 = ki bi , i = 2, . . . ,d − 1. (4)

For basic concepts and properties on distance-regular graphs, we refer to the reader to
Brouwer,Cohen and Neumaier [7].

As usual,we consider thedistribution diagramassociated with the intersection array of the
graph. Then, the Laplacian matrix can be represented by the following tridiagonal(d + 1)×
(d + 1)matrix:

LD =



k −b0 0 · · · 0 0
−c1 k− a1 −b1 · · · 0 0

0 −c2 k− a2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · k− ad−1 −bd−1
0 0 0 · · · −cd k− ad

 .
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Most of the results about distance-regular graphs are obtained by using the matrixLD. This
will also happen in our development. For our purposes we have to consider0x, the extended
graph with respect tox, and the matrixLx

D which is equal toLD except for the first diagonal
entry (Lx

D)11 = k + 1. We will prove that the systemLx
Dλ = 1 has the equilibrium array of

the equilibrium problem forV with respect to the kernelLx as the unique solution.
Now, we tackle the existence of a solution of the systemLx

Dλ = 1, i.e., the system:{
(k+ 1)λ0− kλ1 = 1
−ci λi−1+ (bi + ci )λi − bi λi+1 = 1, i = 1, . . . ,d − 1
−cdλd−1+ (bd + cd)λd = 1.

(5)

In what follows letγi = λi+1−λi , i = 0, . . . , d−1 andγ−1 = λ0. Thenλ = (λ0, . . . , λd)

is a solution of system (5) if and only ifγ = (γ−1, . . . , γd−1) is a solution of the system:{
γ−1− kγ0 = 1
ci γi−1− bi γi = 1, i = 1, . . . ,d − 1
cdγd−1 = 1.

(6)

PROPOSITION4.1. Let 0 = (V, E) be adistance-regular graph. Then system (6) has a
unique solutiongiven by:

γ−1 = n, γi =
1

ci+1ki+1

(
n−

i∑
j=0

k j

)
, i = 0, . . . , d − 1.

In addition,γi > 0 for all i = 0, . . . ,d − 1.

PROOF. The proof is by mathematical induction oni = d − 1, . . . , 0. For i = d − 1 the
result follows immediately from the last equation of the system. Suppose now that it is verified
for i , then

ci γi−1 = 1+bi γi = 1+
bi

ki+1ci+1

(
n−

i∑
j=0

k j

)
=

1

ki

(
ki +n−

i∑
j=0

k j

)
=

1

ki

(
n−

i−1∑
j=0

k j

)
.

Finally, γ−1 = n. In addition,γi > 0 for all i = 0, . . . ,d − 1, sincen =
∑d

j=0 k j . 2

COROLLARY 4.2. The systemLx
Dλ = 1 has aunique solution such that

n = λ0 < λ1 < · · · < λd.

PROPOSITION4.3. Let0 = (V, E) be adistance-regular graph,λ the solution ofLx
Dλ =

1 and q(x) the equilibrium array for V⊂ V x. Thenλ = q(x).

PROOF. Let νx such thatνx(y) = λ j if d(x, y) = j . Then

Lxνx(y) = kλ j − c j λ j−1− a j λ j − b j λ j+1 = (Lx
Dλ) j = 1.

Therefore,νx is the equilibrium measure. Furthermore, the equilibrium array of the equilib-
rium measure is the solution of the systemLx

Dλ = 1, because the equilibrium measure is
unique. 2

COROLLARY 4.4. Let0 = (V, E) be adistance-regular graph. Then the equilibrium mea-
sure,νx, for V ⊂ V x verifies

νx(y) = qi (x)⇐⇒ d(x, y) = i .

Moreover, q(x) is independent of x.



Kernels, graphs and shortest paths 163

Based on the above corollary we call equilibrium array forV to q = q(x) for any x ∈ V .
Note that the equilibrium measure does depend onx, because its mass ony ∈ V depends on
the distance betweenx andy.

A straightforward consequence of the above corollary is that the diameter of a distance-
regular graph is equal to the length of its equilibrium array minus one. Furthermore, we can
obtain the shortest path between any pair of vertices.

Namely, givenx, y ∈ V we solve the Linear Programming Problem (2) with respect to the
extended Laplacian kernel,Lx, to obtain the equilibrium measureνx. Then we findi such
thatνx(y) = qi . The next step consists of applying the Shortest Path Algorithm described in
Figure1 to find the pathw0 = x, w1, · · · , wi−1, wi = y.

We have shown the equivalence between the solution of the systemLx
Dλ = 1 and the solu-

tion of the equilibrium problem forV ⊂ V x. This has enabled us to determine the equilibrium
measure from the intersection array. The following result shows that the equilibrium measure
also determines the intersection array of a distance-regular graph.

PROPOSITION4.5. Let 0 be a distance-regular graph and q its equilibrium array. Then
d(0) = d and

ki = mi , bi =
1

mi (qi+1− qi )

d∑
j=i+1

m j , ci+1 =
1

mi+1(qi+1− qi )

d∑
j=i+1

m j ,

i = 0, . . . , d − 1.

PROOF. The proof is straightforward using thatq is theunique solution ofLx
Dλ = 1 and

applying Proposition4.1. 2

An application of the equilibrium problem refers to the estimation of the effective resistance
of a resistive electrical network. If the underlying graph is a distance-regular graph andq is
its equilibrium array, the effective resistance between two verticesx, y ∈ V at a distancei
is given byr i = rxy =

2
n(qi − q0). This is because the equilibrium array is the solution of

system (5), which is equivalent to the system solved by Biggs [4, Theorem C] to determine
the effective resistance.

We finish this paper showing that the equilibrium measures,νx, x ∈ V , characterize the
strongly regular graphs, i.e., distance-regular graphs with diameter equal to two. If0 is a
strongly regular graph of ordern and degreek, any pair of adjacent vertices havea1 com-
mon neighbours and any two distinct non-adjacent vertices havec2 common neighbours. It
is known that a regular graph0 is strongly regular if and only if it has exactly three differ-
ent eigenvalues (see [13, p. 179]). We obtain an analogous result based on the length of the
equilibrium arraysfor V .

THEOREM 4.6. Let 0 = (V, E) be ak-regular graph. Then,0 is strongly regular if and
only if for each x∈ V , q(x) has length equal to three.

PROOF. If 0 is strongly regular, for eachx ∈ V , q(x) is independent ofx and has length
equal to three, because0 is distance-regular andd(0) = 2.

Conversely, letx ∈ V andq(x) = {q0(x),q1(x),q2(x)} be the equilibrium array forV ⊂
V x, with multiplicities 1= m0(x),m1(x),m2(x).

The first step of the proof consists of showing that

νx(y) = qi (x)⇐⇒ d(x, y) = i, i = 1,2.
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FIGURE 1. Shortest path algorithm.



Kernels, graphs and shortest paths 165

From Proposition3.12we know that ifνx(y) = q1(x), theny ∼ x. Suppose that there exists
a vertexy ∼ x such thatνx(y) = q2(x) and take a vertexz ∼ x such thatνx(z) = q1(x).
Then the potential aty is

Lxνx(y) = kq2(x)− αq2(x)− βq1(x)− q0(x) = 1,

whereα andβ are the number of neighbours ofy which have measuresq2(x) andq1(x),
respectively.

Analogously,

Lxνx(z) = kq1(x)− α
′q2(x)− β

′q1(x)− q0(x) = 1,

whereα′ andβ ′ are defined in a similar way. Subtracting the two last equations and keeping
in mind thatk = α + β + 1= α′ + β ′ + 1, we have(β + α′ + 1)(q2(x)− q1(x)) = 0 which
is a contradiction, sinceβ ≥ 0,α′ ≥ 0 andq1(x) < q2(x).

As a result of the casei = 1, we also obtain thatνx(y) = q2(x) ⇐⇒ d(x, y) = 2.
Therefore,d(0) = 2, m1(x) = k andm2(x) = n− k− 1.

Now, takey ∈ 0(x), ay
1(x) = |0(y) ∩ 0(x)| andby

1(x) = |0(y) ∩ 02(x)|. We show that
these numbers are independent ofy. Let y, z ∈ 0(x) and consider the potential at them.

Lxνx(y) = kq1(x)− ay
1(x)q1(x)− by

1(x)q2(x)− ν0 = 1

Lxνx(z) = kq1(x)− az
1(x)q1(x)− bz

1(x)q2(x)− ν0 = 1.

Subtracting these two equations we find that(by
1(x)− bz

1(x))(q1(x)− q2(x)) = 0. Therefore,
by

1(x) = bz
1(x), sinceq1(x) < q2(x). Keeping in mind thatay

1(x) + by
1(x) + 1 = k for all

y ∼ x, we find thatay
1(x) = az

1(x).
Analogously, lety ∈ 02(x), ay

2(x) = |0(y) ∩ 02(x)| andcy
2(x) = |0(y) ∩ 01(x)|. We

conclude that these numbers are independent ofy by considering the potential aty, z ∈ 02(x)
and reasoning as above.

Therefore, for eachx ∈ V we have the array{a1(x),a2(x), b1(x), c2(x)}. We finish the
proof by showing that these numbers do not depend onx, i.e., ι(0) = {k, b1; 1,c2} is the
intersection array of0. It suffices to prove that one of the elements of this array is independent
of x, becausea1(x) = k− b1(x)− 1, kb1(x) = (n− k− 1)c2(x) anda2(x) = k− c2(x).

Let x, y ∈ V be. If d(x, y) = 1, thena1(x) = |0(x) ∩ 0(y)| = a1(y). On the other hand,
if d(x, y) = 2 andz is an adjacent vertex tox andy, thena1(x) = |0(z) ∩ 0(x)| = a1(z) =
|0(z) ∩ 0(y)| = a1(y). 2
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