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ShortestPaths in Distance-regular Graphs

ENRIQUE BENDITO, ANGELES CARMONA AND ANDRES M. ENCINAS

We aim here to introduce a new point of view of the Laplacian of a graphith this purpose
in mind, we considel as a kernel on the finite spat&T"), in the context of the Potential Theory.
Then we prove thaf is a nice kernel, since it verifies some fundamental properties such as maximum
and energy principles and the equilibrium principle on any proper subsétlof. If I is a proper
set of a suitable host graph, then the equilibrium probleni*fean be solved and the number of the
different components of its equilibrium measure leads to a bound on the diamé&teingbarticular,
we obtain the structure of the shortest paths of a distance-regular graph. As a consequence, we find
the intersection array in terms of the equilibrium measure. Finally, we give a new characterization of
strongly regular graphs.

(© 2000 Academic Press

1. INTRODUCTION

The discrete Laplacian on a graph and the solution of some associated Dirichlet problems
have been widely considered for solving miscellaneous problems including conductance of an
electrical network and bounds on the diameter of a graph, among others [1, 4,5, 8,9, 11, 14,
15]. The discrete Laplacian on a graph is usually seen as the discrete version of the Laplace
operator orRiemannian manifolds and the spectral methods are the main tool.

On the other hand, the quadratic form associated with the Laplace operator, which is closely
related to the spectral theory via the Rayleigh quotient, has also been considered to analyse
some extremal problems in electrical networks [10, 16—18]. These results are obtained when
the quadratidorm is seen as a Dirichlet form on a Dirichlet space [3]. The elements of this
spaceare potentials with respect to the Green kernel of the Laplace operator. However, as
this kernel is formally expressed as a power series, it is difficult to derive properties of the
potentials from it, so most properties of the potentials are directly obtained from the Dirichlet
forms.

We aim here to introduce another aspect of the relation between Potential and Graph The-
ories. We consider the discrete Laplacian on a graph as a kernel instead of an operator and
we develop the associated Potential Theory. The Laplacian kernel verifies some fundamental
principles of the Potential Theory. These principles allow us to obtain information about the
connection between a subset of vertices and its complementary as well as about the distance
between vertices.

There is no question that the Laplacian of a graph contains information about the connection
between vertices. A positive measure on the vertices of a graph, determines a subset of points
(its support) as well as a positive weight for each of them. Therefore, if we choose a uniform
measure, for example, the characteristic of a subset of the graph, the potential in each vertex
of the subset coincides with its exterior degree. Among all the positive measures with support
in a subset of vertices that we can consider, the measure that gives equal potential in each
vertex of the subset must give the maximum information about the exterior connection of the
subset. The existence and uniqueness of such a measure, the so-called equilibrium measure
of the subset, will be proven in Sectid@ As we may expect, this equilibrium measure is
uniform if and only if the exterior degree of each vertex is constant.

In addition, the mass of the equilibrium measure, i.e., the Wiener capacity of the subset,
provides information not only about the inner connection of the subset, but also about the
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connection with its complementary. In particular, we prove that the capacity is additive with
respect tdhe connected components of the subgraph induced by a subset.

It is not possible to obtain an equilibrium measure for the whole vertex set of a graph.
Therefore, we cannot know connection properties of the whole graph by applying the above
mentioned tools directly. To do so, we embed it into a host graph by employing a commonly
used technique in the context of electrical networks (see][Blt6consists of adding a new
vertex joined to the graph through a new edge. Although this embedding partly modifies the
structure of the initial graph, its equilibrium measure can recognize some properties of the
connection between the vertices of the graph. For instance, when this technique is applied to a
distance-regular graph, the equilibrium measure recovers its intersection array. Furthermore,
in this case the equilibrium measure assigns a mass to each vertex which only depends on its
distance to the exterior. This allow us to build shortest paths between any pair of vertices. The
results related to distance-regular graphs are developed in Sdctidrich concludes with a
complete characterizatiaf strongly regular graphs.

To sum up, the results obtained here by considering the discrete Laplacian of a graph as
a kernel, mainly hinges on the knowledge of the equilibrium measures. Let us point out that
the effective computation of such measures can be accomplished using standard techniques of
Mathematical Programming (see [2]). Specifically, the computation can be performed in two
ways,either by solving a linear mathematical programming problem related to the potentials
of the measures or by solving a convex quadratic mathematical programming problem related
to the energy of the measures.

Throughout the papef; = (V, E) denotes a (simple and finite) connected graph, with
vertex setV, |V| = n, and edge seE. The distance fronx to y is denoted byd(x, y) and
d =d([T) = max{dx, y) : X,y € V(I')} stands for theliameterof I". Givenx € I', we write
asTj (x) the set of verticey such thad(x, y) = i. In particular,I'(x) = I'1(x) denotes the
set of vertices adjacent ta Its cardinal is thalegreeof x, §(x) = |T'(x)|. A graph is called
k-regular if each vertex has the same deglkeesiven F C V, (F) stands for the induced
subgraph. Moreover, we denote BY its complementary iV and we consider the subsets
0(F) = {x € F®: (x,y) € Eforsomey € F} and ExtF) = F®d(F). In addition, for
x € F, we call theexterior degree of x with respect tothe numbed~—(x) = |I"(x) N FC|.

The Laplacian matrixof T is the (n x n)-matrix £ = £(T") indexed by the vertices df,
whose entriegyy are given byLyy = —1if x is adjacent toy, (x ~ ), Lxx = §(x) and
Lxy = 0 otherwise. The matriX is symmetric and positive semidefinite.

2. SOME BAsiIC CONCEPTS OFPOTENTIAL THEORY

This section is devoted to introduce the main definitions and results of Potential Theory
that we will use later. We only expose those properties which will have repercussions on the
rest of the paper. For our purposes, it suffices to consider the potential and the energy of
mass distribution on a compact spaevith respect to a continuous and symmekérnel|
K : X x X — R. All results and their proofs can be found in Fugled2][

If uis apositive Radon measure, gapportand itsmasswill be denoted byS(w) and||u||,
respectively. For each c X we denote byM ™ (F) the set of positive Radon measures with
support inF and we consider the sattX(F) = {x € M (F) : ||u|| = 1}.

Givenu e M*(X), we call thepotential of . and energy ofw with respect tok, the
function and the value given, by

UM(X)=/XIC(><, y)du(y) and I(u)=/XUM(X)du(X),
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respectively. Also, we consider the functiddsW : M*(X) — R given by

U (u) = maxu, (x) and W(n) = max U, (X)
xeX XeS(u)

and for eacl c X, the values

I(F)= inf [I(w), UF)= inf U and W(F) = inf  W(u).
ueML(F) neML(F) neM(F)
WhenK satisfiesl (X) > 0, the value
1
Fy=— —
capF) P

is knowvn as théWiener capacityof F. Note that capf) is strictly positive for all non-empty
setsF C X, but it is not necessarily finite.
For each compact sé&t C X, the following extremal problems are posed:

find o, v, 2 € MYF)suchthat (c) =1 (F), U(v) =U(F)andW() = W(F).

It is well known thatW(F) = | (F) for every compact sef C X. Moreover, their associ-
ated extremal measures are equal and they will be cadlpdcitary measurefor F. A kernel
K is said to satisfy thenaximum principlef U (x) = W(u) for everyu € M*(X). Hence,
if IC verifies the maximum principle, then for every compactiset

I (F) =U(F) =W(F)

and they have the same extremal measures. In additibiis trictly convex onML(F) (i.e.,
KC verifies theenergy principleon F), there exists a unique capacity measure.

For each compact sé& c X, a measure. € ML(F) verifies thatl (1) = | (F) if and only
if its potential satisfies the following inequalities

U,(x) > I (F) in F,
Uu(x) = I (F) in - S(u). 1)

If K satisfies thenaximum principle, thet),,(x) < | (F) in X anda fortiori U, (x) = | (F)
inF.

Finally, suppose thak’ is a continuous symmetric kernel of satisfying the maximum
principle andl (X) > 0. If F is a non-empty compact subsetXfwith finite capacity andC
verifies the energy principle oR, then there exists a unique measure M*(F) solution
of the so-calleaquilibrium problem:

find u e M*(F)suchthat,(x) =1inF.
Clearly, if o satisfiesl (o) = 1 (F) = U(F) (i.e., o is the capacitary measure), then=

capF)o and itis called thequilibrium measuréor F.

3. THE LAPLACIAN KERNEL

The purpose of this section is to construct a Potential Theory in the context of Graph Theory
in such a way that we can apply the results of the previous section.

LetI' = (V, E) be a graph. We consider the vertex setlofs the underlying space,
i.e., X = V. SinceV is a finite set, kernels and positive measured/oare identified with
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symmetric matrices and vectors of the positive conR'bfrespectiely. So, ifu € M+ (V),
thenS(u) = {x € V : u(x) > O} and||ll = Yyey 1(X). ,
For eachF c V, letlg € M™(F) denote the measure given by (x) = [é :; i ; E

If F = V the subscript will be omitted. We say that a measure M™(F) is auniform
measureon F if u = alg for somea > 0.

If K is a kernel ang € M™(V), then the potential and the energy;otan be identified
with the vectorC. and the valuéCu, 1), respectively, wheré, -) denotes the standard inner
product inR". Therefore [ fulfills the energy principle orF c V if and only if K is strictly
positive definite offu € R" : u(x) =0if x ¢ Fand )", ., u(x) = 0}.

The extremal problems described in Sectirpnsist of findingr, n € M1(F) such that

(o) = min (Ku,u) and U = min maxku(X).
neML(F) neML(F) xeV

The energy extremal problem becomes a Quadratic Programming Problem\gii€e is
described by means of linear constraints. On the other hand, the potential extremal problem
can be re-written as
Um = min u. (2)
neML(F)
Kp=<ul
Therefore, it becomes a Linear Programming Problem.
In the sequel, we will consider the Laplacian Bf £, as a kernel oiv. Then, the potential
of u e M (V) is given by

L) =Y () — 1) = 800px) = Y pu(y),

y~X y~X

and the energy gfi € M™ (V) is the value

L) = Y (w0 — u(y)>2.

(x.y)eE

The following results establish thatis a kernel verifying the maximum and energy princi-
ples. This will enable us to tackle the equilibrium problem for all proper subisetsV.

PrRoOPOSITION3.1. The Laplacian kernel verifies the maximum principle.

PROOF Givenu € MY (F), thenLu(x) = 0if x € Ext(F) andLu(x) = — Yy pu(y) <
0 if x € 9(F). Therefore, it suffices to prove that there exists a verex F such that
Lu(x) = 0. If we choosex e F such thafu(x) = maxer un(y), thenlu(x) > 0. O

PROPOSITION3.2. For each FC V,the Laplacian kernel verifies the energy principle on
F. Moreover, if F is a proper subset(F) > 0.

PrRoOOFE Note that(Lu, u) > 0and(Lu, u) = 0 if and only if x = al, a € R. Therefore,
L is strictly positive definite o € R" : {u, 1) = 0}. On the other hand, iF is a proper
subset oV, for eachi € M1(F) there existx € F¢ such tha.(x) = 0, which implies that
I (u) > 0 and hencel (F) > 0. O

From the proof of the above proposition, we find th&/) = 0 and its unique capacity
measure is uniform, i.ec, = ﬁl'
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COROLLARY 3.3. For each proper subset E V thee exists a unique equilibrium mea-
surev, i.e.,
Lv(x) =1 Vx € F.

Moreover, $v) = F.

PrROOF The first part is a consequence of Propositi8risand3.2.
Assume thav(x) = 0 for somex € F. ThenLv(X) = — Zy~x v(y) < 0, which contra-
dicts thatv is the equilibrium measure. a

As pointed out in the continuous case, the equilibrium measusequal to cafF)o,
whereo is the capacitary measure fét. In this case, we have thét (F), o) is either the
solution of the Quadratic Programming Problem related to the energy or the solution of the
Linear Programming Problem (2).

Up to now we have shown the basic structure of the Potential Theory on a graph that arises
when the Laplacian kernel is considered. Our next goal is to derive properties of the equi-
librium measures as well as of the Wiener capacities of subsets. Firstly, we characterize the
conditions for an equilibrium measure to be uniform.

PROPOSITION3.4. Let F C V be a proper subset. Then, its equilibrium measure is uni-
formifand only ifo—(x) =9~ (y) forall x,y € F.

PROOF It suffices to observe thatlg (x) = a~(x) forall x € F. o

Thefollowing proposition will be useful for later results.

PROPOSITION3.5. Let F be a proper subset of V andts equilibriummeasure. Then,

IFl =07 (0vx).

xeF

PROOF Asv is the equilibrium measure, thetv(x) = 1, for allx € F and hence,

IFl=) Lo =YY ) —v(y)

xeF XeF y~X
=YD W= v+ D D w0 =Y 9T 0v(X). O
xeF y~X xeF Yy~X xeF
yeF y¢F
PrROPOSITION3.6. Let F ¢ V sud that F = Uiszl Fi,where ,i = 1,...,s are the

vertex sets of the connected component$of Then,

S
cap(F) = anp(Fi).
i—1

PrROOF. If F =V, thens = 1, becausé" is connected. Hence, the result holds.
Suppose thaF is a proper subset of . For eachi = 1,...,s, let u' be the capacitary
measure foF;. If 8 =7, cap(F;) and we consider € M*(F) defined by

1S ,
== capFiu',
Pz



158 E. Benditoetal.

1o - .
thenLu = E angFi)cu'. If x € F, there existk such thatx € Fx. Moreover,x €

i=1
Ext(F;), for all ] # k. Then,

i IRy if i =Kk,
E’“‘(X)_{o if i # k.
1 o 1
Hence,Lu(X) = E for all x € F, which implies thatl (F) = E and theresult follows. O
COROLLARY 3.7. Let F = {x1, ..., Xs} be a set of independent vertices. Then,
capF) o L
P Lo

ProOF If 4 = 1y, theDirac measure om;, thenLu(xi) = §(x). Therefore,l (xi) =
8(Xi). The result follows by applying the previous proposition. O

The result of PropositioB.6 states that the capacity is additive with respect to the connected
components o& induced subgraph. However, it is not true for an arbitrary union of subsets of
V as the following example shows.

LEMMA 3.8. Let F = {x, y} suth that(x, y) € E. Then
cap(F) > cap(x) + capy).

PrROOFE The capacitary measure fér, o, mustsatisfy§(xX)o (X) — o (y) = §(Y)o(y) —

_ -+l ==
o(x) ando (X) + o(y) = 1. Then,o(x) = 500 1 5(y) 1 2 ando (y) = 500 £ 80 12
Therefore,

B0 +oy)+2 1 1

> —— T ——.

5005 —1 300 3

The ab@e lemma says that the Wiener capacity for the Laplacian kernel, is not subadditive.

This is due to the fact that the Laplacian is not a positive matrix. However, this example
verifies the following equality:

1 1t
LEx, yh+1 10+1 Iy +1

caplF) = O

If F c V, thevalue(l (F)+ 1)1 can be seen as the Wiener capacityokith respect to the
positive kernelC + J, whereJ denotes the matrix whose entries are equal to one. In fact, the
Wiener capacity is subadditive for a positive kernel, (see [12, p. 157].) In particular, we have
the following result.

PROPOSITION3.9. LetF,...,Fs c Vand F=|J;_; F. Then,

S
IR+ <Y dFE)+D7

i=1

COROLLARY 3.10. Let F C V be a proper subset. Thetap F)cap F°¢) > 1.
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TABLE 1.
Some capacities and capacitary measures.
r F o (X) cap(F)
complete graphK ! s
piete graphiin s n-s
Pt+s1
bipartite complete IF 0 Vol =% P+ a1+ 259 Pso +ds1 + 25081
graph, Kp g IFAVy =5 q+s Pg — Sos1
PSH + s + 25081
3 2is—i(i — 1) 1
path, Py S(xs) =1 3s(s D@1 D) 6s(s +1D(2s+ 1)
path Pn is—i(—1 1
or §(x) =2 _ —s(s+1)(s+2)
oycle Cn ! s(s+1)(5+2) 12

Before ending this section let us determine the Wiener capacities and the capacitary mea-
sures foproper subsets of some nice graphs which help us to study the sharpness of the lower
bound in the above corollary. Tableshows such capacities and measures for connected sub-
setsF = {xu, ..., Xs} of cardinals < n.

Note that the product cap(jcapF°) can be much larger that one. For instance in a cy-
cle cagF)cap(F® > %. However, in a complete graph this product is equal to one.
The differences in the behaviour of the capacity products are due to the different degrees of
connection between the vertices®fand FC. In particular, the following result characterizes
when equality holds in Corollarg.10.

PrROPOSITION3.11. Let F C V be a proper subset. Then,
capF)capF® = 1 <= max{dx,y): xe F, ye F¢} = 1.

Moreover, the capacitary measures for F and &e the uniform measures on F and,F
respectively.

ProoOFR Note that max{dx,y) : x € F, y € F¢} = 1if and only if 3= (x) = |F°®| for

allx € Fandd~(y) = |F|forally € F®. In agdition, the uniform measures éhand F¢,
u1 = ‘—éllp andus = ﬁlFC, satisfyLu1 = % onF andLu, = ||F_F°|| on F¢, respectiely.
Therefore, they are the capacitary measure$fandF¢ and capF)cap F¢) = 1.

Conversely, ifi = £ + J and we considet = 1 + 1fc, then
n? = (K1,1) = (K1f, 1F) + (K1, 1pe) + 2(K1E, 1fc)
> (1AR) + IF1P) + (1 Age) + [FS%) = |FI2( (F) + 1) + [FS2( (FO) + 1)
(FI+Fp% n?
- 1 1 o 1 1 ’
+ +
I(FH)+1 I1(F9)+1 I(F)+1 I(F9)+1
where thelast inequality has been obtained by applying the Cauchy—Schwarz inequality in
2 2
the form:(a + b)2 < (c + d)((%) + <L> )

NG|
On theother hand, capt)cap(F®) = 1 if and only if o5 + e = L Therefore,
by using the above inequalities, we conclude that

capF)capF®) = 1 = (K1F, 1fc) = 0.
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Finally, it is enough to observe that

max{d(x,y) : x € F,y € F¢} = 1lifand only if ({C1¢, 1gc) = 0,
since

IFIIFS = Y 07 (y) = (K1, 1re) = (K1pe, 1f) = [FIFS = Y 97 (0. O
yeF¢ xeF

Up to now, we have analysed the equilibrium problem and some of its properties for any
proper subset of the vertex set of a graph. Clearly, the equilibrium problem for the vertex set of
a graph, with respect to the Laplacian kernel, could not be solved unless we embed it in a host
graph. Although there exist miscellaneous ways of doing this, we will proceed in such a way
that the influence of the joined elements to the initial graph is minimum and the information
about the inner connection df is retained as much as possible. For instance, if we consider
a unique new vertex joined with each of the vertices of the graph through a new edge, by
Proposition3.4 we conclude that the equilibrium measure is the uniform measuké and
the capacityf V is % Thereforethis embedding does not give us more information about the
inner connection o¥ . For our purposes, it will be better to add to the graph a unique vertex
and a unique edge.

Specifically, letl’ = (V, E) be a graph and consider a new vertex 1, which will be
joined through an edge to a fixed vertex V. LetI'* = (VX, EX), whereV* = V U {Xp+1}
andE* = E U (X, Xn+1). We will call this graphthe extended graph af with respect to x
Let £* be the Laplacian of *. In this case, the submatriiﬂxF coincides withZ except in its
diagonal element£*)xx which is equal t& (x) + 1.

Let us consider now the equilibrium problem fdras a proper set of *. Then, using the
previous results, there exists a unique equilibrium meastirdéor V. Therefore, the potential
of v* satisfies

L9y =1 ifyeVv
LVy) = =" ) if y = Xnta. ®3)

In the sequel, we call thequilibrium array for V. c V* to q(X) = {qo(X), q1(X), ...,
gt (X)}, the set of different components of, where it is assumed thgg(x) < qi1(X) < --- <
gt (X). Note that thdengthof the equilibrium arrayt + 1, is larger than one, unless= 1,
because* cannot be uniform. On the other hamg(x) only depends on the order bf since
go(x) = n by Propositior3.5. Also, we will consider the positive integerg(x) = |{y € V :
vi(y) =g (¥}, i =0,...,t,i.e., the multiplicity of each element of the equilibrium array.

The equilibrium measure enables us to obtain an upper bound on the distance between
vertices.

PrROPOSITION3.12. Let V C VX, v* be theequilibrium measure and(g) the equilibrium
array for V. Then,
Vi (y) = Gi(x) = d(y, x) <.

In particular, mp(x) = 1.

PrROOFE We prove the result by mathematical induction.

If vX(y) = qo(x), theny = x, otherwiseI'(y) C V andv*(y) < v*(2) for all z €
L(y). Therefore,LV*(y) = 3" cp(y,, (W(Y) = V(@) = X ,ep(y) (@Go(X) —v*(2)) < 0, a
contradiction since is the equilibrium measure. This reasoning also provestgéat) = 1.



Kernels, graphs and shortest paths 161

Suppose that*(y) = gj(x) = d(y,x) < j,forall j =0,...,i, and lety € V such
that v*(y) = qir1(x). Assume that for each € T'(y) there existsj > i + 1 such that
v*X(2) = gj(x). Then

L(y) =Y 0X(y) = v (@) < D (@i+1(¥) — Gi+1(X)) =0,

-y vy

a contradiction again. Therefore, there must exist a vertex'(y) such that*(z) = qj(x),
for somej < i. Then, by using the hypothesis of inductiah(z, x) < i, which implies
d(y,x) <i+1. O

For each vertex € V we can consider the equilibrium problem férc V*. Then applying
the above proposition, we obtain an upper bound of the distance between any pair of vertices.
In particular, the maximum length of all equilibrium arrays minus one is an upper bound of
the diameter of the graph.

4., DISTANCE-REGULAR GRAPHS

In this section, we study the case of distance-regular graphs. It seems natural to ask our-
selves whether the result of Propositidri2 can be improved with additional information
about thestructure of the considered graphs. In particular, this is the case when the graph is
a distance-regular graph. Thus, in this section, we elaborate upon the previous work to derive
some new results for such a case. Specifically, we use the equilibrium theory to determine the
distance between any pair of vertices as well as the shortest path between them.

A connected graph is calleddistance-regulaif there are integers;, ¢;,i =0, ...,d such
that for any two verticeg, y € I" at a distancé = d(x, y), there are exactlg, neighbours of
y in Tj_1(x) andb; neighbours ofy in [ +1(x). In particular," is regular of degrek = by.

The sequence

t(y) ={bo, b1, ..., bg_1;C1, ..., Cq}

is called thentersection arrayof I'. In addition,a; = k — ¢; — b is the number of neighbours
of yin I (x), for d(x,y) = i. Clearly,by = cg = 0, c; = 1 and the diameter df is d.
Moreover, 1< c; < --- < Cqg.

For any vertexx € T" the number of vertices at a distanic&om it, i.e., |Tj (X)|, will be
denoted byk;. This number does not depend on the vertexand the following equalities
hold:

ko=1, ki=k  k1Gi1=kbi, i=2..d—1 (4)

For basic concepts and properties on distance-regular graphs, we refer to the reader to
Brouwer,Cohen and Neumaier [7].

As usualwe consider thelistribution diagramassociated with the intersection array of the
graph. Then, the Laplacian matrix can be represented by the following tridiagbral ) x
(d + 1) matrix:

k —bo 0 0 0
—C1 k — ar —b]_ s 0 0
0 —C k—ay --- 0 0
Lp= = :
0 0 0 k—adg—1 —bg_1
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Most of the results about distance-regular graphs are obtained by using the sitihis
will also happen in our development. For our purposes we have to considise extended
graph with respect t&, and the matrix_, which is equal taCp except for the first diagonal
entry (L5)11 = k+ 1. We will prove that the systeriy2 = 1 has the equilibrium array of
the eqU|I|br|um problem fol with respect to the kernelx as the unique solution.
Now, we tackle the existence of a solution of the syst&. = 1, i.e., the system:
K+Dr—krp=1
{—Ci)»i—l"i‘(bi‘i‘ci))»i—bi)»i+l=1, i=1,...,d-1 (5)
—CdAd—1 + (bg + Cg)Ag = 1.
In what follows lety; = Aj+1—Ai,i =0,...,d—21andy_1 = Ag. Theni = (rg, ..., Ag)

is a solution of system (5) if and only §f = (y_1, ..., yq—1) is a solution of the system:
y-1—kpw=1 _
Gri-1—biy =1, i=1..d-1 (6)
Cdyd-1=1.

PrRoOPOSITION4.1. LetI" = (V, E) be adistance-regular graph. Then system (6) has a
unique solutiorgiven by:

y-1=0n, N =
! C|+lk|+l

( ij) i=0,...d-1

In addition,y; > Oforalli =0,...,d — 1.

PROOF The proof is by mathematical induction on=d — 1,...,0. Fori = d — 1 the
result follows immediately from the last equation of the system. Suppose now that it is verified

fori, then
AT UV B G o) B (30

Finally, y_1 = n. In addition,y; > Oforalli =0,...,d — 1, sincen = Z?zo Kj. O

COROLLARY 4.2. The systen£ A = 1 has aunique solution such that
N=A0 <A1 <- -+ <A(d.
PrROPOSITION4.3. LetI" = (V, E) be adistance-regular graphj, the solution ofL{ 1 =
1 and g(x) the equilibrium array for Vc V*. Thenx = q(x).
PrROOF. Letv* such that*(y) = 4 if d(x,y) = j. Then
LX%(y) = Kij —cCjrj_1—ajrj —bjrj = (E)l(jk)j =1

Thereforev* is the equilibrium measure. Furthermore, the equilibrium array of the equilib-
rium measure is the solution of the syste&ij2 = 1, because the equilibrium measure is
unique. O

COROLLARY 4.4. LetI" = (V, E) be adistance-regular graph. Then the equilibrium mea-
sure,vX, for V c V* verifies

V¥ (Y) = g (X) &= d(x, y) =i.
Moreover, (X) is independent of x.
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Based on the above corollary we call equilibrium arrayWoto g = q(x) for ary x € V.
Note that the equilibrium measure does depena,drecause its mass gne V depends on
the distance betweenandy.

A straightforward consequence of the above corollary is that the diameter of a distance-
regular graph is equal to the length of its equilibrium array minus one. Furthermore, we can
obtain the shortest path between any pair of vertices.

Namely, giverx, y € V we solve the Linear Programming Proble®) {ith respect to the
extended Laplacian kernef*, to obtain the equilibrium measur€. Then we findi such
thatv*(y) = qi. The next step consists of applying the Shortest Path Algorithm described in
Figurelto find the pathug = X, w1, - - -, wi—_1, wi =Y.

We have shown the equivalence between the solution of the sy3tem= 1 and the solu-
tion of the equilibrium problem fow¥ c V. This has enabled us to determine the equilibrium
measure from the intersection array. The following result shows that the equilibrium measure
also determines the intersection array of a distance-regular graph.

PROPOSITION4.5. LetI" be a distance-regular graph and q its equilibrium array. Then
dT) =dand

d
1
kk=mj, b=——— mj, GCGy1=———— m;,
I I ' mu(q|+1 ]IZ+l ) * mi+1(Qi+1—Qi)j§rl )
i=0,...,d-1.

PROOF. The proof is straightforward using thatis theunique solution ofZ A = 1 and
applying Propositior.1. |

An application of the equilibrium problem refers to the estimation of the effective resistance
of a resistive electrical network. If the underlying graph is a distance-regular grapi iand
its equilibrium array, the effective resistance between two verticgse V at a distance
is given byrj = ryy = %(qi — Qo). Thisis because the equilibrium array is the solution of
system (5), which is equivalent to the system solved by Biggs [4, Theorem C] to determine
the efective resistance.

We finish this paper showing that the equilibrium measur&sx € V, characterize the
strongly regular graphsi.e., distance-regular graphs with diameter equal to twa: i§ a
strongly regular graph of order and degred, any pair of adjacent vertices haag com-
mon neighbours and any two distinct non-adjacent vertices agemmon neighbours. It
is known that a regular graph is strongly regular if and only if it has exactly three differ-
ent eigenvalues (see [1B. 179]). We obtain an analogous result based on the length of the
equilibrium arraydor V.

THEOREM4.6. Let" = (V, E) be ak-regular graph. Thenl" is strongly regular if and
only if for each xe V, q(x) has length equal to three.

ProOOF If T is strongly regular, for eack € V, q(x) is independent ok and has length
equal to three, becauseis distance-regular ardT") = 2.

Conversely, lek € V andq(x) = {qo(X), g1(X), g2(X)} be the equilibrium array fov c
VX, with multiplicities 1= mg(x), my(X), ma(X).

The first step of the proof consists of showing that

VX(Y) =gi(X) <= d(x,y) =i, i=12.
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v(Zj)=0i-1

yes

no

yes
end

FIGURE 1. Shortest path algorithm



Kernels, graphs and shortest paths 165

From Propositior8.12we know that ifu*(y) = gi1(x), theny ~ x. Suppose that there exists
a vertexy ~ x such that*(y) = qgo(x) and take a vertex ~ x such that*(z) = gi(x).
Then the potential af is

LX*(y) = kp(X) — a2(X) — Ba1(X) — go(X) = 1,

wherex and g are the number of neighbours gfwhich have measure®(x) andqi(x),
respectively.
Analogously,

L% (2) = kop(x) — 'ga(x) — B'g1(X) — go(X) = 1,

wherea’ and g’ are defined in a similar way. Subtracting the two last equations and keeping
inmindthatk =a + 8+ 1=a + B + 1, we have + o' + 1)(02(X) — q1(X)) = 0 which
is a contradiction, sincg > 0,a’ > 0 andqgy(X) < g2(X).

As a result of the case = 1, we also obtain that*(y) = g(X) < d(x,y) = 2.
Therefored(I') = 2, m1(X) = kandmy(X) = n—k — 1.

Now, takey € I'(x), & (x) = |T'(y) N T'(x)| andb}(x) = |T(y) N T'2(x)|. We show that
these numbers are independenyokety, z € I'(x) and consider the potential at them.

L (y) = kae(x) — & (X)q(x) — bf (X)ga(x) — vo = 1
L% (2) = kau(x) — aZ(x)qa(X) — bE(X)0a(X) — vo = 1.

Subtracting these two equations we find t@t(x) — bf(x))(ql(x) —g2(x)) = 0. Therefore,
bY(x) = bf(x), sincequ(x) < g2(x). Keeping in mind thagy (x) + by (x) + 1 = k for all
y ~ x, we find thata} (x) = af(x).

Analogously, lety € I'2(x), ay(x) = [['(y) N T2(x)| andcy(x) = |T(y) N T1(x)|. We
conclude that these numbers are independentgfconsidering the potential §t z € I'2(X)
and reasoning as above.

Therefore, for eaclk € V we have the arrayai(x), ax(x), b1(x), c2(x)}. We finish the
proof by showing that these numbers do not depend,are., ((I') = {k, by; 1, cp} is the
intersection array df . It suffices to prove that one of the elements of this array is independent
of x, becaus@ (X) = k — b1(X) — 1, kb1 (X) = (n — k — 1)c(x) andaz(X) = k — ¢ca(X).

Letx,y € V be. Ifd(x, y) = 1, thenai(x) = |I'(x) N T'(y)| = a1(y). On the other hand,
if d(x, y) = 2 andzis an adjacent vertex toandy, thenai;(x) = [T'(2 NT(X)| = a1(2) =
T NT(y)| = ay(y). O
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