On odd covering systems with distinct moduli

Song Guo, Zhi-Wei Sun ${ }^{* 1}$
Department of Mathematics, Nanjing University, Nanjing 210093, PR China
Received 10 December 2004; accepted 22 January 2005
Available online 13 May 2005

Abstract

A famous unsolved conjecture of P. Erdős and J.L. Selfridge states that there does not exist a covering system $\left\{a_{s}\left(\bmod n_{s}\right)\right\}_{s=1}^{k}$ with the moduli n_{1}, \ldots, n_{k} odd, distinct and greater than one. In this paper we show that if such a covering system $\left\{a_{s}\left(\bmod n_{s}\right)\right\}_{s=1}^{k}$ exists with n_{1}, \ldots, n_{k} all square-free, then the least common multiple of n_{1}, \ldots, n_{k} has at least 22 prime divisors. © 2005 Elsevier Inc. All rights reserved.

1. Introduction

For $a \in \mathbb{Z}$ and $n \in\{1,2,3, \ldots\}$, we simply let $a(n)$ denote the residue class

$$
a(\bmod n)=\{a+n x: x \in \mathbb{Z}\} .
$$

In the early 1930s P. Erdős called a finite system

$$
\begin{equation*}
A=\left\{a_{s}\left(n_{s}\right)\right\}_{s=1}^{k} \tag{*}
\end{equation*}
$$

[^0]0196-8858/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.aam.2005.01.004
of residue classes a covering system if $\bigcup_{s=1}^{k} a_{S}\left(n_{s}\right)=\mathbb{Z}$. Clearly ($*$) is a covering system if and only if it covers $0,1, \ldots, N_{A}-1$ where $N_{A}=\left[n_{1}, \ldots, n_{k}\right]$ is the least common multiple of the moduli n_{1}, \ldots, n_{k}.

Here are two covering systems with distinct moduli constructed by Erdős:

$$
\begin{gathered}
\{0(2), 0(3), 1(4), 5(6), 7(12)\} \\
\{0(2), 0(3), 0(5), 1(6), 0(7), 1(10), 1(14), 2(15), 2(21), 23(30), 4(35), \\
5(42), 59(70), 104(105)\} .
\end{gathered}
$$

Covering systems have been investigated by various number theorists and combinatorists, and many surprising applications have been found. (See [3,4,7].)

A covering system with odd moduli is said to be an odd covering system. Here is a well-known open problem in the field (cf. [3]).

Erdős-Selfridge Conjecture. There does not exist an odd covering system with the moduli distinct and greater than one.

In 1986-1987, by a lattice-geometric method, M.A. Berger, A. Felzenbaum and A.S. Fraenkel [1,2] obtained some necessary conditions for system ($*$) to be an odd covering system with $1<n_{1}<\cdots<n_{k}$, one of which is the inequality

$$
\prod_{t=1}^{r} \frac{p_{t}-1}{p_{t}-2}-\sum_{t=1}^{r} \frac{1}{p_{t}-2}>2
$$

where p_{1}, \ldots, p_{r} are the distinct prime divisors of N_{A}. They also showed that if $(*)$ is an odd covering system with n_{1}, \ldots, n_{k} square-free, distinct and greater than one, then the above inequality can be improved as follows:

$$
\prod_{t=1}^{r} \frac{p_{t}}{p_{t}-1}-\sum_{t=1}^{r} \frac{1}{p_{t}-1} \geqslant 2
$$

and consequently $r \geqslant 11$. This was also deduced by the second author [6] in a simple way.
In 1991, by a complicated sieve method, R.J. Simpson and D. Zeilberger [5] proved that if $(*)$ is an odd covering system with n_{1}, \ldots, n_{k} square-free, distinct and greater than one, then N_{A} has at least 18 prime divisors.

In this paper we obtain further improvement in this direction by a direct argument.
Theorem 1. Suppose that $(*)$ is an odd covering system with $1<n_{1}<\cdots<n_{k}$. If $N_{A}=$ $\left[n_{1}, \ldots, n_{k}\right]$ is square-free, then it has at least 22 prime divisors.

In contrast with the Erdős-Selfridge conjecture, recently the second author [8] showed that if $(*)$ is a covering system with $1<n_{1}<\cdots<n_{k}$ then it cannot cover every integer an odd number of times.

2. Proof of Theorem 1

For convenience, in this section we let $[a, b]=\{x \in \mathbb{Z}: a \leqslant x \leqslant b\}$ for any $a, b \in \mathbb{Z}$.
Assume that $N=N_{A}=p_{1} \cdots p_{r}$ where $p_{1}<\cdots<p_{r}$ are distinct odd primes. For each $t \in[1, r]$, we set

$$
d_{t}=\left\lfloor\frac{3}{5}(t-1)\right\rfloor
$$

(where $\lfloor\cdot\rfloor$ is the greatest integer function), and define

$$
M_{t}= \begin{cases}\left\{p_{i} p_{t}: 1 \leqslant i \leqslant d_{t}\right\} & \text { if } t \leqslant 8 \\ \left\{p_{i} p_{t}: 1 \leqslant i \leqslant d_{t}\right\} \cup\left\{p_{1} p_{2} p_{t}, p_{1} p_{3} p_{t}\right\} & \text { if } t \geqslant 9 .\end{cases}
$$

Note that $d_{1}=d_{2}=0$ and hence $M_{1}=M_{2}=\emptyset$.
For $s \in[1, k]$ let

$$
n_{s}^{\prime}= \begin{cases}p_{t} & \text { if } n_{s} \in M_{t} \text { for some } t \\ n_{s} & \text { otherwise }\end{cases}
$$

Since $n_{s}^{\prime} \mid n_{s}$, we have $a_{s}\left(n_{s}\right) \subseteq a_{s}\left(n_{s}^{\prime}\right)$. Thus $A^{\prime}=\left\{a_{s}\left(n_{s}^{\prime}\right)\right\}_{s=1}^{k}$ is also an odd covering system. Let

$$
\bar{I}=[1, k] \backslash \bigcup_{t=1}^{r} I_{t} \quad \text { where } I_{t}=\left\{1 \leqslant s \leqslant k: n_{s}^{\prime}=p_{t}\right\}
$$

Then

$$
\bigcup_{s \in \bar{I}} a_{s}\left(n_{s}^{\prime}\right) \supseteq[0, N-1] \backslash \bigcup_{t=1}^{r} \bigcup_{s \in I_{t}} a_{s}\left(n_{s}^{\prime}\right)=\bigcap_{t=1}^{r}\left([0, N-1] \backslash \bigcup_{s \in I_{t}} a_{s}\left(n_{s}^{\prime}\right)\right) .
$$

For each $t \in[1, r]$, clearly $\left|I_{t}\right| \leqslant d_{t}+1<p_{t}$ if $t \leqslant 8$, and $\left|I_{t}\right| \leqslant d_{t}+3$ otherwise. Observe that $d_{t} \leqslant 3\left(p_{t}-1\right) / 5<p_{t}-3$ if $t \geqslant 9$. So there is a subset R_{t} of $\left[0, p_{t}-1\right]$ satisfying the following conditions:
(a) $\left|R_{t}\right|=p_{t}-1-d_{t}$ if $t \leqslant 8$, and $\left|R_{t}\right|=p_{t}-3-d_{t}$ if $t \geqslant 9$;
(b) $x \not \equiv a_{s}\left(\bmod p_{t}\right)$ for any $x \in R_{t}$ and $s \in I_{t}$.

Define

$$
X=\left\{x \in[0, N-1]: \text { the remainder of } x \bmod p_{t} \text { lies in } R_{t} \text { for each } t \in[1, r]\right\} .
$$

Then $|X|=\prod_{t=1}^{r}\left|R_{t}\right|$ by the Chinese Remainder Theorem, also

$$
X \subseteq \bigcap_{t=1}^{r}\left([0, N-1] \backslash \bigcup_{s \in I_{t}} a_{s}\left(n_{s}^{\prime}\right)\right) \subseteq \bigcup_{s \in \bar{I}} a_{s}\left(n_{s}^{\prime}\right)=\bigcup_{s \in \bar{I}} a_{s}\left(n_{s}\right)
$$

and hence $X=\bigcup_{s \in J} X_{S}$, where

$$
X_{s}=X \cap a_{s}\left(n_{s}\right) \quad \text { and } \quad J=\left\{s \in \bar{I}: X_{s} \neq \emptyset\right\} .
$$

For each $s \in J$, the set X_{s} consists of those $x \in[0, N-1]$ for which $x \equiv a_{s}\left(\bmod p_{t}\right)$ if $p_{t} \mid n_{s}$, and $x \equiv r_{t}\left(\bmod p_{t}\right)$ for some $r_{t} \in R_{t}$ if $p_{t} \nmid n_{s}$. Thus, by the Chinese Remainder Theorem,

$$
\left|X_{s}\right|=\prod_{\substack{1 \leqslant t \leqslant r \\ p_{t} \nmid n_{s}}}\left|R_{t}\right|=|X| \prod_{\substack{1 \leqslant t \leqslant r \\ p_{t} \mid n_{s}}}\left|R_{t}\right|^{-1} \quad \text { for all } s \in J
$$

Let $a_{0} \in X, n_{0}=p_{1} p_{2}$ and $X_{0}=X \cap a_{0}\left(n_{0}\right)$. Again by the Chinese Remainder Theorem,

$$
\left|X_{0}\right|=\prod_{2<t \leqslant r}\left|R_{t}\right|=|X| \prod_{\substack{1 \leqslant t \leqslant r \\ p_{t} \mid n_{0}}}\left|R_{t}\right|^{-1}
$$

Let $j=0$ if $n_{0} \notin\left\{n_{s}: s \in J\right\}$, and let j be the unique element of J with $n_{j}=n_{0}$ if $n_{0} \in$ $\left\{n_{s}: s \in J\right\}$. Set $J_{0}=\left\{s \in J:\left(n_{s}, n_{0}\right)=1\right\}$. Then

$$
\begin{aligned}
|X| & =\left|\bigcup_{s \in J \cup\{j\}} X_{s}\right| \leqslant \sum_{s \in J \backslash\left(J_{0} \cup\{j\}\right)}\left|X_{s}\right|+\left|X_{j} \cup \bigcup_{s \in J_{0}} X_{s}\right| \\
& \leqslant \sum_{s \in J \backslash\left(J_{0} \cup\{j\}\right)}\left|X_{s}\right|+\left|X_{j}\right|+\sum_{s \in J_{0}}\left|X_{s} \backslash X_{j}\right| \\
& =\sum_{s \in J \backslash\left(J_{0} \cup\{j\}\right)}\left|X_{s}\right|+\left|X_{j}\right|+\sum_{s \in J_{0}}\left(\left|X_{s}\right|-\left|X_{s} \cap X_{j}\right|\right)
\end{aligned}
$$

and so

$$
|X| \leqslant \sum_{s \in J \cup\{j\}}\left|X_{s}\right|-\sum_{s \in J_{0}}\left|X_{s} \cap X_{j}\right| .
$$

If $s \in J_{0}$, then $X_{s} \cap X_{j}$ consists of those $x \in[0, N-1]$ for which $x \equiv a_{j}\left(\bmod n_{j}\right), x \equiv$ $a_{s}\left(\bmod n_{s}\right)$, and $x \equiv r_{t}\left(\bmod p_{t}\right)$ for some $r_{t} \in R_{t}$ if $p_{t} \nmid n_{j} n_{s}$, therefore

$$
\left|X_{s} \cap X_{j}\right|=\prod_{\substack{1 \leqslant t \leqslant r \\ p_{t} \nmid n_{j} n_{s}}}\left|R_{t}\right|=|X| \prod_{\substack{1 \leqslant t \leqslant r \\ p_{t} \mid n_{0} n_{s}}}\left|R_{t}\right|^{-1}
$$

Set

$$
D_{1}=\{d>1: d \mid N\} \backslash\left(\left\{p_{1}, \ldots, p_{r}\right\} \cup \bigcup_{t=1}^{r} M_{t}\right)
$$

and

$$
D_{2}=\left\{n_{s}: s \in J \cup\{j\}\right\} \quad \text { and } \quad D_{3}=\left\{d \in D_{1}:\left(d, n_{0}\right)=1\right\} .
$$

If $s \in J$, then $n_{s}^{\prime} \neq p_{t}$ for any $t \in[1, r]$, and thus $n_{s}=n_{s}^{\prime} \in D_{1}$. Since $d_{2}=0$, we also have $n_{j}=p_{1} p_{2} \in D_{1}$. Therefore $D_{2} \subseteq D_{1}$, and so $D_{2} \cap D_{3}$ coincides with $D_{4}=\left\{n_{s}: s \in J_{0}\right\}$.

Let

$$
\begin{gathered}
x_{t}=\left|R_{t}\right|^{-1} \leqslant 1 \quad \text { for } t=1, \ldots, r \\
I(d)=\left\{1 \leqslant t \leqslant r: p_{t} \mid d\right\} \quad \text { for any positive divisor } d \text { of } N .
\end{gathered}
$$

Observe that

$$
\begin{aligned}
& \sum_{d \in D_{1} \backslash D_{2}} \prod_{t \in I(d)} x_{t}-x_{1} x_{2} \sum_{d \in D_{3} \backslash D_{4}} \prod_{t \in I(d)} x_{t} \\
& \quad=\sum_{d \in D_{1} \backslash\left(D_{2} \cup D_{3}\right)} \prod_{t \in I(d)} x_{t}+\left(1-x_{1} x_{2}\right) \sum_{d \in D_{3} \backslash D_{4}} \prod_{t \in I(d)} x_{t} \geqslant 0 .
\end{aligned}
$$

Thus

$$
\begin{aligned}
|X| & \leqslant \sum_{s \in J \cup\{j\}}\left|X_{s}\right|-\sum_{s \in J_{0}}\left|X_{s} \cap X_{j}\right| \\
& =\sum_{d \in D_{2}}|X| \prod_{t \in I(d)} x_{t}-\sum_{d \in D_{4}}|X| x_{1} x_{2} \prod_{t \in I(d)} x_{t} \\
& \leqslant|X|\left(\sum_{d \in D_{1}} \prod_{t \in I(d)} x_{t}-x_{1} x_{2} \sum_{d \in D_{3}} \prod_{t \in I(d)} x_{t}\right) .
\end{aligned}
$$

Since $d_{1}=d_{2}=0$ and $d_{t}<3$ for $t<6$, by the above we have

$$
\begin{aligned}
1 \leqslant & \sum_{\substack{I \subseteq[1, r] \\
|\overline{\mid}|>1}} \prod_{t \in I} x_{t}-\sum_{t=1}^{r} \sum_{1 \leqslant i \leqslant d_{t}} x_{i} x_{t}-\sum_{9 \leqslant t \leqslant r}\left(x_{1} x_{2} x_{t}+x_{1} x_{3} x_{t}\right) \\
& -x_{1} x_{2}\left(\sum_{\substack{I \subseteq[3, r] \\
|\overline{\mid}|>1}} \prod_{t \in I} x_{t}-\sum_{3 \leqslant t \leqslant r} \sum_{3 \leqslant i \leqslant d_{t}} x_{i} x_{t}\right) \\
= & \prod_{t=1}^{r}\left(1+x_{t}\right)-1-\sum_{t=1}^{r} x_{t}-\sum_{t=3}^{r} \sum_{i=1}^{d_{t}} x_{i} x_{t}-\sum_{9 \leqslant t \leqslant r}\left(x_{1} x_{2} x_{t}+x_{1} x_{3} x_{t}\right) \\
& -x_{1} x_{2}\left(\prod_{t=3}^{r}\left(1+x_{t}\right)-1-\sum_{t=3}^{r} x_{t}-\sum_{t=6}^{r} \sum_{i=3}^{d_{t}} x_{i} x_{t}\right) .
\end{aligned}
$$

It follows that $f\left(x_{1}, \ldots, x_{r}\right) \geqslant 2$, where

$$
\begin{aligned}
f\left(x_{1}, \ldots, x_{r}\right)= & \left(1+x_{1}+x_{2}\right) \prod_{t=3}^{r}\left(1+x_{t}\right)-\sum_{t=1}^{r} x_{t}+x_{1} x_{2}-\sum_{t=3}^{r} \sum_{i=1}^{d_{t}} x_{i} x_{t} \\
& +x_{1} x_{2} \sum_{t=3}^{8} x_{t}-x_{1} x_{3} \sum_{9 \leqslant t \leqslant r} x_{t}+x_{1} x_{2} \sum_{t=6}^{r} \sum_{i=3}^{d_{t}} x_{i} x_{t}
\end{aligned}
$$

can be written in the form $\sum_{i_{1}, \ldots, i_{r}} c_{i_{1}, \ldots, i_{r}} x_{1}^{i_{1}} \cdots x_{r}^{i_{r}}$ with $c_{i_{1}, \ldots, i_{r}} \geqslant 0$.
Let $q_{1}=3<\cdots<q_{r}$ be the first r odd primes. For each $t \in[1, r]$, as $p_{t} \geqslant q_{t}$ we have $x_{t} \leqslant x_{t}^{\prime}$, where

$$
x_{t}^{\prime}= \begin{cases}\left(q_{t}-d_{t}-1\right)^{-1} & \text { if } 1 \leqslant t \leqslant 8, \\ \left(q_{t}-d_{t}-3\right)^{-1} & \text { if } 9 \leqslant t \leqslant r .\end{cases}
$$

Thus

$$
f\left(x_{1}^{\prime}, \ldots, x_{r}^{\prime}\right) \geqslant f\left(x_{1}, \ldots, x_{r}\right) \geqslant 2 .
$$

By computation through computer we find that

$$
f\left(x_{1}^{\prime}, \ldots, x_{21}^{\prime}\right)=1.995 \ldots<2
$$

therefore $r \neq 21$. (This is why we define d_{t} and M_{t} in a somewhat curious way.)
In the case $r<21$, we let $p_{r+1}<\cdots<p_{21}$ be distinct primes greater than p_{r}, and then

$$
\mathcal{A}=\left\{a_{1}\left(n_{1}\right), \ldots, a_{k}\left(n_{k}\right), 0\left(p_{r+1}\right), \ldots, 0\left(p_{21}\right)\right\}
$$

forms an odd covering system with $N_{\mathcal{A}}$ square-free and having exactly 21 distinct prime divisors. This is impossible by the above.

Now we can conclude that $r \geqslant 22$ and this completes the proof.

References

[1] M.A. Berger, A. Felzenbaum, A.S. Fraenkel, Necessary condition for the existence of an incongruent covering system with odd moduli, Acta Arith. 45 (1986) 375-379.
[2] M.A. Berger, A. Felzenbaum, A.S. Fraenkel, Necessary condition for the existence of an incongruent covering system with odd moduli II, Acta Arith. 48 (1987) 73-79.
[3] R.K. Guy, Unsolved Problems in Number Theory, third ed., Springer, New York, 2004 (Sections F13 and F14).
[4] Š. Porubský, J. Schönheim, Covering systems of Paul Erdős: Post, present and future, in: G. Halász, L. Lovász, M. Simonvits, V.T. Sós (Eds.), Paul Erdős and His Mathematics, I, Bolyai Soc. Math. Stud., vol. 11, 2002, pp. 581-627.
[5] R.J. Simpson, D. Zeilberger, Necessary conditions for distinct covering systems with square-free moduli, Acta Arith. 59 (1991) 59-70.
[6] Z.W. Sun, On covering systems with distinct moduli, J. Yangzhou Teachers College Nat. Sci. Ed. 11 (3) (1991) 21-27.
[7] Z.W. Sun, On integers not of the form $\pm p^{a} \pm q^{b}$, Proc. Amer. Math. Soc. 128 (2000) 997-1002.
[8] Z.W. Sun, On the range of a covering function, J. Number Theory 111 (2005) 190-196.

[^0]: * Corresponding author.

 E-mail addresses: guosong77@sohu.com (S. Guo), zwsun@nju.edu.cn (Z.-W. Sun).
 ${ }^{1}$ Supported by the National Science Fund for Distinguished Young Scholars (No. 10425103) and the Key Program of NSF (No. 10331020) in China.

