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Three-dimensional (3D) organotypic models are increasingly used to study the aspects of epidermal
organisation and cutaneous wound-healing events. However, these are largely dependent on laborious
histological analysis and immunohistochemical approaches. Despite the large resource of transgenic and
knockout mice harboring mutations relevant to skin disorders, few organotypic mouse skin models are
available. We have developed a versatile in vitro 3D organotypic mouse skin equivalent that reflects epidermal
organisation in vivo. The system is optically transparent and ideally suited to real-time analysis using a variety of
integrated in situ imaging techniques. As a paradigm for coordination of cellular events, the epidermal gap
junction network was investigated and the model displayed predominant connexin 43 (Cx43) expression in
basal proliferating cells and Cx26 and Cx30 expression in differentiated keratinocytes. We show that attenuation
of Cx43-mediated communication by a Cx mimetic peptide enhanced wound closure rates in keratinocyte
monocultures and in the living skin equivalent system, emphasising the utility of the model to systematically
unravel the molecular mechanisms underlying epidermal morphogenesis, assess promising therapeutic
strategies, and reduce animal experimentation. Furthermore, we visualise epidermal regeneration following
injury in real time, thereby facilitating avenues to explore distinctive modes of wound re-epithelialisation in a
non-invasive manner.
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INTRODUCTION
Three-dimensional (3D) organotypic skin models, primarily
human based, provide insights into developmental skin
biology and epidermal differentiation events (Parenteau
et al., 1992; Arita et al., 2002; Harrison et al., 2006).
Complementary use of in vivo transgenic and knockout
mouse resources enable analysis of cellular events concern-
ing epidermal morphogenesis (Maestrini et al., 1999; Bakirtis
et al., 2003) and homeostasis; however, few in vitro murine
organotypic skin models exist. Those available often employ
fibroblast-incorporated collagen supports or a dead de-
epidermised dermis (Carroll and Moles, 2000; Ikuta et al.,
2006), which can impede the direct in situ visualisation of
morphological events and require arduous histological
processing.

To address this problem, we have developed a versatile
and robust Transwell murine skin model, incorporating
primary murine fibroblasts and keratinocytes, which once
raised to the air–liquid interface (ALI), stratifies and differ-
entiates to produce a 3D organotypic skin equivalent that
possesses morphological and differentiation characteristics
typical of those observed in vivo. The transparent nature of
the Transwell semipermeable membranes permits visualisa-
tion of these complex morphological events in real time via
an array of imaging techniques, negating the need for
standard histological techniques, as epidermal differentiation
events may be imaged in situ by whole-mount and 3D Z-
stack reconstruction following single or dual-label indirect
immunofluorescence. This versatile in vitro system provides
the opportunity to examine aspects of integrated cellular
behavior and enables one to functionally probe, image,
and analyze the coordination of epidermal homeostasis.
A paradigm for coordination of cellular activities is direct cell
to cell communication via an integrated network of gap
junctional intercellular communication channels.

With few exceptions, practically all animal cells in vivo
are linked via gap junctions, intercellular channels that
permit exchange of small molecules and ions below 1
kDa between neighboring cells. Connexins (Cxs), a family
of highly conserved transmembrane proteins, are the
constituent proteins of vertebrate gap junctions, and different
Cxs can form channels of varying permeabilities and
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functional properties that may reflect differing physiological
requirements of cells in tissues and organs (see reviews
by Evans and Martin, 2002; Laird, 2006). An elaborate
gap junction network exists within the skin, where
keratinocytes spatially express Cxs in specific and often
overlapping patterns within the differentiating layers of the
epidermis (Salomon et al., 1994; Wiszniewski et al., 2000; Di
et al., 2001a). The importance of Cxs in epidermal networks
is highlighted by the increasing number of Cx mutations
found to underlie genetically inherited skin disorders,
particularly Cx26 (Maestrini et al., 1999; Di et al., 2001b;
Richard et al., 2002), Cx30 (Common et al., 2002;
Essenfelder et al., 2004), Cx30.3 (Macari et al., 2000), Cx31
(Richard et al., 2000) and Cx43 (Kelly et al., 2006; Vreeburg
et al., 2007). Furthermore, changes in Cx expression profiles
are associated with wound healing events (Goliger and Paul,
1995; Mori et al., 2006) and a variety of skin disorders
including psoriasis (Labarthe et al., 1998; Lucke et al., 1999).
Although the exact role of specific Cxs has yet to be fully
determined, it is likely that gap junctions are required to
coordinate keratinocyte proliferation, migration, and differ-
entiation events during epidermal morphogenesis, and are
emerging as therapeutic targets to improve wound healing
(Qiu et al., 2003; Coutinho et al., 2005; Mori et al.,
2006). We present evidence that our model provides an
excellent system to dissect the role of specific proteins
in epidermal morphogenesis and wound healing events and,
in so doing, may dramatically reduce the need for live
animals in such research.

RESULTS
We have developed a Transwell organotypic skin model
incorporating primary mouse keratinocytes and dermal
fibroblasts, to probe the role of specific Cxs during epidermal
morphogenesis and wound-healing events. To induce strati-
fication and differentiation in the organotypic model, primary
mouse epidermal keratinocytes were grown to confluence on
Transwell polyester membranes, in the presence (Figure 1a)
or absence of dermal fibroblasts (Figure 1b). Once raised to
the ALI, small areas of stratification were observed through-
out the keratinocyte cultures by day 1 (ALI-1) that increased
in size over the following 7 days (ALI-7) to produce complex
multilayered regions as determined by large flattened
differentiating cells (Figure 1c). Cultures maintained in the
presence of dermal fibroblasts displayed increased cellularity
and the appearance of a cornified layer (Figure 1a, day 4), in
comparison with cultures grown in the absence of dermal
fibroblasts, where the cornified layer was less evident and
delayed until day 7 (Figure 1b, day 7), thereby confirming
reports by Rosdy and Clauss (1990) that keratinocytes
efficiently differentiate in the absence of a fibroblast layer.

To confirm these morphological observations, dual-label
immunofluorescence was performed for a number of
proliferation and differentiation markers. The proliferation
marker Ki67, identified by discrete nucleolar staining, was
only expressed by keratinocytes in the monolayer (Figure 2a)
or in the basal layer of organotypic cultures, in accordance
with that observed in vivo. Moreover, the differentiation
marker cytokeratin 10, typically expressed by suprabasal
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Figure 1. A complex 3D organotypic epidermis is formed when Transwell primary mouse keratinocyte monolayers are raised to the ALI in the presence

or absence of dermal fibroblasts. When raised to the ALI, in the presence of dermal fibroblasts (a, Kcþ fibro), primary mouse keratinocytes begin to stratify

and terminally differentiate over a period of seven days, showing evidence of a cornified layer (arrows). Similarly, when raised to the ALI in the absence of

dermal fibroblasts (b, Kc alone), primary mouse keratinocytes were induced to stratify and differentiate into a complex 3D tissue architecture with large

flattened cells in the upper layers (c). Morphological differences between the two types of organotypic cultures are evident by day 4-ALI, where cultures with

fibroblasts display evidence of a cornified layer, but in those without fibroblasts, a cornified layer is not evident until day 7-ALI. Bar¼ 100mm.
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keratinocytes, was located in the stratifying and differentia-
ting regions of the organotypic models (Figure 2b). Presence
of the granular layer was confirmed by staining for
filaggrin (Figure 2c) and finally, loricrin, a cornified
envelope protein, confirmed terminal differentiation of the
uppermost cells within the skin model even in the absence
of fibroblasts (Figure 2d). Thus, keratinocytes in our
organotypic skin model efficiently differentiate, in the
presence or absence of dermal fibroblasts, to form a ‘‘living
skin’’ equivalent that reflects the differentiation status
normally found in vivo within mouse epidermis (Butterweck
et al., 1994).

Cx26, Cx30, and Cx43 are differentially expressed in murine
organotypic epidermis, with a Cx profile typical of that
observed in vivo

Previous studies have shown that epidermal keratinocytes
express a number of Cxs including Cx26, Cx30.3, Cx31,
Cx31.1, Cx40, and Cx43 (Di et al., 2001a). Cx43, in
particular, is localised to the undifferentiated basal layer of
mouse epidermis in vivo, with Cx26 and Cx30 confined to
the upper, differentiated epidermal layers (Risek et al., 1992;
Kretz et al., 2003; Maher et al., 2005). Whole-mount dual
indirect immunofluorescence and 3D Z-Stack reconstruction
of organotypic epidermis were performed using Cx antibodies
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Figure 2. Transwell organotypic murine epidermis display a differentiation profile typical of that found in mouse epidermis in vivo. Immunofluorescence

results of day 7-ALI cultures revealed that Transwell organotypic epidermis expressed several differentiation markers typically found in vivo in mouse

epidermis. (a) Basal, undifferentiated keratinocytes expressed the proliferation marker, Ki67 (a, phase plus 4,6-diamidino-2-phenylindole (DAPI) staining

illustrating cell nuclei; in the immunofluorescence image Ki67 is green and in the merged image Ki67 staining is turquoise, counterstained with DAPI blue).

(b) In the upper, differentiating layers, cytokeratin 10 (green), a differentiation marker of suprabasal epidermal keratinocytes, was expressed, and (c) filaggrin

expression (red), a granular layer protein, was also evident in the upper terminally differentiating layers of organotypic cultures. (d) In the uppermost keratinocyte

layers, the cornified envelope protein, loricrin (red), was also expressed. (a and d) Bar¼ 10mm; (b and c) bar¼ 100mm.
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targeting Cx26, Cx30, and Cx43, to determine the Cx
distribution in the epidermal cultures. Extensive Cx43
expression was observed in the basal, undifferentiated keratino-
cytes, with limited expression in the upper, differentiating
layers (Figure 3a). By contrast, the distribution pattern of Cx26
expression was restricted to the uppermost keratinocyte
populations and was absent in the basal layer. Cx30 and
Cx26 gap junction plaques were only noted between the
flattened cells of the upper differentiated layers where they
often colocalised (Figures 3b and 1c), consistent with observa-
tions in normal mouse epidermis (Goliger and Paul, 1995;
Kretz et al., 2003). 3D Z-stack reconstruction also revealed the
differential localisation of Cx43 in the basal layer and presence
of cytokeratin 10 in the suprabasal layers (Figure 3c).

Following wounding, murine organotypic epidermis retains the
potential for re-epithelialisation

We aimed to exploit this model to investigate the role of
specific Cxs during wound-healing events. Wound healing is
a complex event, but, in the epidermis, essentially involves
the coordinated migration of keratinocytes from the intact
epidermis to form a monolayer over the wound bed, with
subsequent stratification and terminal differentiation events.
Organotypic epidermal cultures, raised to ALI-4 and showing
regions of stratification and differentiation, were wounded
and keratinocyte migration into the wound bed was recorded
on a daily basis. During the first 3–4 days following
wounding, keratinocytes migrated outward into the wound
bed to form an intact monolayer between the two wound
edges (Figure 4a). At this stage, following the formation of this
intact keratinocyte monolayer, two distinct modes of wound
closure were observed, which resulted in the regeneration of
an intact organotypic epidermis. The first method of wound

closure (Figure 4b) demonstrated gradual inward closure of
the wound, whereby the opposing wound margins were
pulled together to finally close the wound and form an intact
organotypic epidermis. The second mode (Figure 4c)
involved the stratification of distinct regions of cells within
the center of a keratinocyte monolayer. Over time, these
stratifying regions increased in size, spreading outward
toward each wound edge, terminally differentiating, and
eventually joining with the existing wounded epidermal
edges. The results reveal that our organotypic epidermal skin
model retains the ability to regenerate following wounding,
and permits detailed observation of the process of closure and
restratification.

Primary mouse keratinocytes demonstrate extensive gap
junction intercellular communication (GJIC) properties

The proliferative monolayer displayed numerous Cx43 gap
junction plaques between adjoining cells (Figure 5a);
however, Cx26 and Cx30 gap junction plaques were not
detected in these undifferentiated keratinocyte populations
(data not shown). In order to determine whether the Cx43
gap junction channels observed between keratinocytes were
functional, confluent monolayers were microinjected with a
variety of gap junction-permeable tracers including neuro-
biotin, AlexaFluor 488 (data not shown), and AlexaFluor 594
that are efficiently transferred by Cx43 channels, but have
limited permeation through Cx26 and presumably Cx30
channels (JA Easton and PE Martin, unpublished observations;
Nicholson et al., 2000). Following injection of all tracers, dye
spread to several adjacent keratinocytes was observed,
demonstrating functional gap junctional coupling (Figure
5b). Organotypic cultures were similarly able to form
functional gap junction channels (not shown).
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Figure 3. The Cx expression profile of murine organotypic cultures is comparable to that observed in mouse epidermis in vivo. (a) 3D Z-Stack

reconstruction following dual-label immunofluorescence targeting Cx26 and Cx43 expression in day 7-ALI cultures revealed Cx43 (red) and Cx26 (green)

to be differentially and spatially expressed within organotypic epidermis. Cx43 staining was displayed by basal and suprabasal keratinocytes, whereas

Cx26 expression was confined to the upper more differentiated keratinocytes, with little overlap of either distribution pattern (merge). (b) In the upper layers,

Cx30 (red, arrow) and Cx26 (green, arrow) expression was detected at intercellular junctions between differentiated keratinocytes often demonstrating

colocalisation (merge, arrow). (c) 3D Z-Stack reconstruction of Cx43 and cytokeratin 10 immunofluorescence in organotypic cultures demonstrated correct

spatial Cx43 (red) expression within the basal layer and cytokeratin 10 staining (green) of suprabasal keratinocytes. Dotted line indicates the edge of the

Transwell membrane. (a and c) Bar¼ 100mm; (b) bar¼ 20mm.
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Wound closure is accelerated in murine epidermal organotypic
cultures treated with the Cx mimetic peptide Gap27

Cx expression is known to be altered during wound healing,
in particular, Cx43 expression is reduced at the wound edge,
and there is evidence that specific knockdown of Cx43 can
enhance keratinocyte migration and wound-healing res-
ponses (Qiu et al., 2003; Mori et al., 2006). Cx mimetic
peptides acutely inhibit Cx-mediated communication by
inhibiting gap junction channel formation, rather than
knocking down Cx expression in cells (Evans and Boitano,
2001; Martin et al., 2005). Microinjection of keratinocytes
with AlexaFluor 594 showed that GJIC was significantly
reduced following treatment of the cells with Cx mimetic
peptides Gap27, (Po0.05) (Figure 5d) and Gap26M (not

shown). Immunolocalisation analysis illustrated that the
peptides did not alter Cx43 distribution in gap junction
plaques at points of cell-to-cell contact in the plasma
membrane (Figure 5c). Collectively, these results support
the concept that the Cx mimetic peptide, Gap27, acts by
inhibiting Cx43 channel functionality, rather than altering
Cx43 expression levels.

To determine whether Gap27 treatment had any effect
upon cell migration following wounding, a scratch wound
assay was performed in mature organotypic cultures. In
control samples (Figure 6a), keratinocytes at the wound
margin began to slowly migrate outwards after day 1 post-
wounding and final wound closure was observed four days
post-wounding. Accelerated keratinocyte migration was
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Figure 4. Wounding of raised cultures initiates mouse keratinocyte migration out of a stratified organotypic epidermis to form an intact monolayer that

covers the wound bed. (a) Using a simple scratch assay, organotypic epidermal cultures (ALI-4) were wounded by introducing a linear cut through the cells

using a sterile 10-ml pipette tip, and keratinocyte migration was monitored daily. Over the following 3 days post-wounding, keratinocyte migration was observed

from both wound margins toward the center of the wound, with an intact keratinocyte monolayer formed by day 4 post-wounding. Two modes of wound

closure and re-epithelialisation were observed in wounded organotypic cultures. (b) The first mode displayed gradual epidermal closure toward the center

of the wound over a period of 4 days. (c) The second mode of wound closure demonstrated increasing keratinocyte stratification within the center of the

wound bed, with terminal differentiation to form epidermal bridges between opposing wound margins, with complete wound closure observed over a

period of 4 days. Dotted lines indicate boundary areas of stratified and non-stratified areas. Bar¼ 50 mm.
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observed in mouse keratinocytes treated with Gap27 (Figure
6a), where wound closure was observed at day 2 post-
wounding (Figure 6a), when cells had migrated into the
wound space and completely filled the wound. The results
indicated that following Gap27 treatment, 50% wound
closure was achieved by 24 hours; by contrast, in untreated
cells 50% wound closure took up to 52 hours (Figure 6b).
Following wound closure both peptide-treated and control

cells took 7–8 days to form a stratified and differentiated
organotypic epidermis (Figure 6c). The Cx mimetic peptides
also enhanced the migration rates of human dermal
fibroblasts and keratinocytes into a ‘‘wound bed’’. By contrast
a scrambled peptide had no effect on cell migration rates
compared with control cells where no peptide was added,
thereby confirming the specificity of Gap27 in modifying
these events (CS Wright and PE Martin, unpublished
observations).

DISCUSSION
We report the development of a Transwell organotypic
murine skin model derived from primary mouse keratino-
cytes, which has enabled, in a complex 3D environment,
investigation into the important cellular events that occur
during epidermal morphogenesis and wound re-epithelialisa-
tion. This reconstructed organotypic system displays mor-
phological and differentiation characteristics typical of those
observed in vivo and possesses a number of practical
advantages over human-based and the even fewer murine
organotypic models that are currently available. The majority
of organotypic epidermal models are unable to provide the
vital in situ visualisation of cell–cell interactions and
organisation within a complex 3D setting as most are
dependent upon histological processing (Carroll and Moles,
2000; El-Ghalbzouri et al., 2002; Ikuta et al., 2006).
Employing semipermeable Transwell culture chambers that
are transparent under phase-contrast microscopy and exhibit
no autofluorescence our model has overcome this challenge.
The optical transparency provides a unique and non-invasive
in vitro system, ideally suited to real-time analysis and a
variety of integrated in situ imaging techniques, which
negates the need for arduous histological processing.
Additionally, the porous nature of the Transwell inserts
enables diffusion of soluble nutrients and factors from the
culture medium and may also enhance cell attachment rates
(McMillan et al., 2007).

The model was validated on the basis of tissue morpho-
logy and architecture, in conjunction with the expression of
keratinocyte differentiation markers and cornified envelope
proteins. The differentiation status of the organotypic cultures
was readily determined by exploiting the unique imaging
properties of the model and verified that by phase-contrast
microscopy and whole-mount immunofluorescence, the in
vitro system expressed the differentiation markers characteris-
tic of murine epidermis. The proliferation marker Ki67 was
expressed in the basal layer of organotypic epidermis,
whereas the upper suprabasal layers displayed cytokeratin
10 and filaggrin staining, with loricrin expression restricted to
the uppermost terminally differentiated cells of the cornified
layer. These results indicated a mature organotypic system,
with features comparable to those in vivo, which could
potentially provide the opportunity to examine important
aspects of integrated cellular behavior during wound healing
and epidermal re-epithelialisation.

To evaluate this possibility, a wound was introduced to
mature organotypic cultures with a complex 3D tissue
architecture. Primary mouse keratinocytes migrated out from
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Figure 5. Primary mouse keratinocytes are coupled predominantly by

Cx43-based gap junction channels and, following treatment with the Cx

mimetic peptide, Gap27, display reduced GJIC. Cx43 gap junction plaques

were detected by indirect immunofluorescence in untreated mouse

keratinocyte monocultures (a, red with DAPI nuclei counterstain, blue) that

demonstrated efficient transfer of the Cx43-permeable Alexa 594 dye (b). (c)

Treatment with the Cx mimetic peptide, Gap27 (100 mM), did not alter Cx43

distribution patterns in treated cells as Cx43 gap junction plaques were still

observed at the plasma membrane in comparable levels to untreated cells (a).

However, Gap27 treatment (100mM) significantly inhibited Alexa 594 dye

transfer in primary mouse keratinocytes (d) in comparison to untreated cells

(b). Gap27 dye transfer studies are summarised in (e) and demonstrate a

significant reduction in GJIC properties of Gap27-treated keratinocytes.

Microinjected cells are indicated with an asterisk; n¼ 3, with approximately

30 cells per experiment; Po0.05. Bar¼ 20mm. Arrows indicate GJ plaques.

1044 Journal of Investigative Dermatology (2008), Volume 128

EE Kandyba et al.
Connexins and a Versatile 3D Mouse Organotypic Model



a fully stratified organotypic epidermis to form an intact
monolayer covering the wound bed, with subsequent
stratification and differentiation of keratinocytes, to reform
intact epidermal layers. Significantly, this study is the first to
demonstrate real-time visualisation of cellular events occur-
ring during the regeneration of murine organotypic epider-
mis, and revealed two distinct methods of wound re-
epithelialisation within the 3D cultures.

The first observed mode of wound closure displayed
characteristic migration of basal keratinocytes out from the
wound margins to produce an intact monolayer of cells
covering the wound site. The organotypic epidermal margins
gradually moved inwards to close the wound and restore
epidermal integrity. Previous wounding studies acknowledge
a wound closure pattern that resembles this mode of wound
closure (Usui et al., 2005). The second observed mode of
wound closure, to our knowledge, has not been reported. In
this instance, following keratinocyte monolayer production,
keratinocyte stratification occurred in the center of the
wound bed and subsequent differentiation resulted in the
formation of epidermal ‘‘bridges’’ that linked the wound
margins. The epidermal ‘‘bridges’’ continued to develop and
grow in size to create a fully stratified and terminally
differentiated epidermis. This mode of wound closure has
similarities to the ‘‘purse and string’’ system reported during
embryonic wound-healing events (Martin and Lewis, 1992;
Brock et al., 1996).

The versatility of the model enabled us to functionally
probe, image, and analyze the coordination of cellular

activities via the integrated gap junction network that exists
within the skin. Keratinocytes spatially express Cxs in specific
and often overlapping patterns within the differentiating
layers of the epidermis (Salomon et al., 1994). Reverse
transcription-PCR analysis (data not shown) revealed that the
Cx expression profile of primary mouse keratinocytes
included all the epidermal Cxs reported from previous
literature (Cx26, Cx30, Cx31, Cx43) and also those not
(Cx37, Cx40, Cx45) previously reported (Kamibayashi et al.,
1993; Butterweck et al., 1994; Goliger and Paul, 1995;
Choudhry et al., 1997; Kretz et al., 2003). A major advantage
of our model is its ability to evaluate the tissue architecture
and spatial localisation of a varied spectrum of epidermal
proteins by whole-mount immunolocalisation. In this study
we used high-resolution laser scanning confocal microscopy
followed by 3D Z-Stack reconstruction to illustrate that the
model reflected the Cx expression profile of intact mouse
epidermis, with Cx26, Cx30, and Cx43 being differentially
expressed. In the organotypic model Cx43 was localised to
the basal and lower suprabasal layers, whereas Cx26 and
Cx30 were restricted to the upper differentiated layers of
organotypic epidermis, confirming the correct Cx expression
repertoire observed in murine epidermis in vivo (Kamibayashi
et al., 1993; Butterweck et al., 1994).

Remodelling of this versatile Cx network within the
epidermis is associated with a variety of pathophysiological
conditions including psoriasis and the ability of wounds to
heal (Goliger and Paul, 1995; Labarthe et al., 1998; Lucke
et al., 1999; Kretz et al., 2003). Mutations in Cxs are also
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Figure 6. Following treatment with the Cx mimetic peptide, Gap27, wound closure is enhanced in wounded organotypic epidermis. (a) Following a

simple wound assay, cells treated with Gap 27 migrated into and filled the ‘‘gap’’ within 2 days compared with control cells where closure took up to 4 days.

q(b) Quantification of wound healing rates shows that 50% wound closure was achieved by 24 hours in Gap27-treated cultures compared with control

cultures that took up to 52 hours. (c) Subsequent re-epithelialisation under both conditions took up to 8 days; n¼3.
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associated with a host of genetically inherited skin disorders
for which a variety of transgenic mice models are now
available (see reviews by White and Paul, 1999; Willecke
et al., 2002). The molecular mechanisms underlying these
events and the role of specific Cxs in cell migration and
proliferation responses remain unresolved. The organotypic
model system so developed permits us to begin to employ a
spectrum of Cx-specific knockdown technologies, including
the use of Cx-specific mimetic peptides and short interfering
RNA (siRNA) resources combined with Cx knockout and
transgenics in vivo models, to determine the mechanistics of
Cx-mediated communication within the skin during epider-
mal development and pathophysiological events. Specific
post-transcriptional gene silencing by siRNA has facilitated
the study of single gene knockdown in conventional cultures
of mammalian cells (Elbashir et al., 2001; Harborth et al.,
2001; Bantounas et al., 2004) and, more recently, in a
complex 3D in vitro system (Mildner et al., 2006). The latter
study demonstrated efficient gene silencing in an organotypic
skin model that examined targeted gene silencing in
epidermal development and differentiation. Potentially,
siRNA resources could provide an alternative approach to
gene deletion animal models, which can give rise to a lethal
phenotype and open up avenues for a reduction in animal
experimentation. The recent finding that siRNA was transfer-
able by mammalian cells expressing Cx43, but not Cx26 or
Cx30, channels (Valiunas et al., 2005) indicates that siRNA
technologies present an attractive strategy to enable targeted
gene deletion in a complex 3D setting that could probe the
roles of specific Cxs during epidermal events. Cx43 expres-
sion is greatly reduced following wounding, and in keratino-
cytes, migration across the wound bed, suggesting that
altered Cx43 expression may be an important feature
facilitating wound closure (Coutinho et al., 2003, 2005;
Qiu et al., 2003; Brandner et al., 2004). Indeed, topical
application of antisense Cx43 oligodeoxyribonucleotides
enhanced wound closure in a mouse wounding model (Qiu
et al., 2003), and rates of wound healing were modified in
Cx-deficient mice (Kretz et al., 2003), thus emphasising the
important role of Cxs in cell proliferation and migration
events. These approaches result in the knockdown of Cx
expression and function, and so the exact role of Cx-
mediated communication versus Cx expression is not fully
dissected, with controversy over the role of Cx ‘‘channel
activity’’ and non-channel active roles in the control of cell
growth responses (Kardami et al., 2007).

In this study we investigated the effect of acute inhibition
of GJIC with small Cx-specific mimetic peptides on cell
migratory responses following wounding in our 3D organo-
typic model system. These peptides are targeted to the
extracellular loops of Cxs and have been widely employed to
determine the role of specific Cxs in diverse tissue systems
including the vasculature (Isakson and Duling, 2005; Martin
et al., 2005) and immune system (see review by Evans and
Boitano, 2001). In our model system Cx mimetic peptides
significantly decreased levels of cell-to-cell communication
through Cx43 gap junction channels, but did not alter the
presence of gap junction plaques at the cell membrane,

thereby supporting previous findings in vascular cells (Martin
et al., 2005). In this study, wounded primary mouse
keratinocyte monolayers or 3D organotypic cultures treated
with the Cx mimetic peptide, Gap27, displayed enhanced
migration and wound closure rates twice those of untreated
cells, illustrating for the first time that acute inhibition of GJIC
by Cx mimetic peptides can modify cell growth responses.
These observations support data from in vivo wound healing
studies where antisense oligonucleotides targeted to Cx43
increased wound closure rates by enhancing keratinocyte
migration and fibroblast migration rates (Mori et al., 2006).
Thus, Cxs are emerging as attractive therapeutic targets,
particularly as it is now evident that chronic conditions such
as non-healing diabetic wounds have increased Cx expres-
sion associated with the wound edge and tools such as Cx
mimetic peptides permit probing of the down stream
consequences of acutely blocking Cx function without
altering the protein expression level. Such downstream events
may involve the ability of cells within a wound to coordinate
cellular activities associated with cell migratory and inflam-
matory responses (Mori et al., 2006; Neub et al., 2007).

In vivo wound healing studies are invasive by nature, with
varying degrees of severity that can cause considerable stress
and discomfort to the animals involved. Therefore, there is a
growing need for the development of a rapid and reliable 3D
organotypic skin model that can reproducibly exhibit in vivo-
like morphological and growth characteristics. Significantly,
the in vitro system detailed in this study opens up avenues for
the potential reduction of animal experimentation/manipula-
tion, as a single litter of perinatal mice can generate sufficient
material for extensive experiments. This model offers an
attractive and versatile imaging tool to evaluate the effect of
potential therapeutic targets on the rate of wound re-
epithelialisation in real time, and functionally probe the role
specific Cxs play during epidermal development and
organisation.

MATERIALS AND METHODS
Primary mouse keratinocyte isolation

Mice were maintained in accordance with local governmental

and institutional animal care regulations, and all procedures

had institutional approval. The skin was removed from sacrificed

perinatal pups less than 2 days old, and processed with minor

modifications as described by Mazzalupo et al. (2002). The resulting

epidermal cell suspension was pelleted and resuspended in

progenitor cell targeted epidermal keratinocyte medium (Chemicon,

Cambridge, UK) and calcium-free DMEM (Invitrogen, Paisley, UK)

containing 10% chelexed fetal bovine serum. Cells were seeded at a

density of 1� 106 cells/ml in appropriate culture vessels, and left to

adhere overnight in a humidified atmosphere at 371C with 5% CO2.

Dermal fibroblast explant culture

Following epidermal–dermal separation, the dermal tissue was

washed in fetal bovine serum for 5 minutes to inactivate trypsin

activity and, using a sterile scalpel blade, finely chopped and placed

in 1 ml DMEM (Invitrogen) containing 10% fetal bovine serum. This

suspension was placed in sterile culture flasks and left to adhere

overnight before adding fresh DMEM plus 10% fetal bovine serum.
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After approximately 4–5 days, confluent fibroblasts were passaged in

0.25% trypsin solution, seeded onto the underside of the Transwell

insert membranes, and left to adhere overnight; the following day,

fresh medium was added to the lower Transwell chamber.

Preparation and maintenance of organotypic cultures

In order to grow organotypic epidermis, a 1� 106-cells/ml suspen-

sion of freshly harvested keratinocytes was seeded directly onto

Transwell polyester culture inserts (12 or 24 mm; Sigma, Poole,

Dorset, UK), in the presence or absence of dermal fibroblasts on the

underside. Keratinocyte growth medium was placed in both the

upper and lower chambers and cells were left to adhere overnight in

a humidified atmosphere at 371C with 5% CO2. The cells were

washed daily in calcium-free phosphate-buffered saline (Cambrex,

Wokingham, UK) and keratinocyte growth medium was replaced

until a confluent monolayer of cells was obtained. At confluence, the

keratinocyte growth medium was removed from the upper chambers

to expose the cells to the ALI, and cells were cultured for up to 2

weeks with daily lower chamber medium changes.

Immunofluorescence

Dual and triple immunofluorescent labelling with Cx, proliferation,

and differentiation markers by standard and whole-mount laser

scanning confocal microscopy was used to characterise both the

monolayer and organotypic epidermal cultures. Briefly, monolayers

plated on glass chamber slides (1� 106 cells/ml) and organotypic

cultures were fixed in ice-cold methanol for 10 minutes and

processed as described by Martin et al. (2005). Cx expression was

analyzed using rabbit anti-Cx43 (1:1000; kindly gifted by Dr Edgar

Rivedal, Norway), mouse anti-Cx26 (1:200; 13-8100, Zymed

Laboratories Inc., San Francisco, CA), and rabbit anti-Cx30 (1:100;

71-6100, Zymed Laboratories Inc). A monoclonal antibody targeted

to b-tubulin was also used (1:100, T4026; Sigma). To assess the

degree of differentiation in the organotypic epidermis, mouse anti-

keratin 10 (1:50, ab9025; Abcam, Cambridge, UK), rabbit anti-

filaggrin (1:50; kindly gifted by Professor Irwin McClean), and rabbit

anti-loricrin (1:50, ab24722; Abcam) antibodies were used. In

addition, the proliferation status of cells was examined by employing

a goat anti-Ki67 antibody (1:50, sc-7846; Santa Cruz, CA, via

Autogen Bioclear, Calne, UK). Secondary anti-mouse, -rabbit,

and -goat antibodies conjugated to either AlexaFluor 488 or

AlexaFluor 594 (1:500; Molecular Probes, Eugene, OR, via Invitro-

gen) were used. Finally, cell nuclei were counterstained with DAPI

(10 ng/ml, w/v in phosphate-buffered saline). Immunolabelled

cultures were viewed under a � 40 oil-immersion lens mounted

on a Zeiss 200 Axioscope microscope linked up to a Zeiss LSM 510

META laser scanning system, using the following settings: Alexa 488

was excited using the Argon laser at 488 nm excitation and emission

at 500–550 nm. Alexa 594 was excited with a Helium Neon laser at

543 nm excitation and emission at 600–650 nm. Images were further

processed using Adobe Photoshop software.

Microinjection

To assess the gap junctional dye transfer properties of mouse

keratinocytes in monolayer in the presence or absence of the Cx

mimetic peptide, Gap27, cells were pressure-microinjected with

10 mM AlexaFluor594 (molecular weight 759 Da; Molecular Probes,

via Invitrogen) using an Eppendorf 5120 FemtoJet system linked up

to a Nikon 200 inverted microscope. Cells were fixed in 3.7%

formaldehyde for 5 minutes and dye spread to neighboring cells was

recorded for each microinjected cell. The effect of the Gap27 was

quantified by determining the percentage of cells showing dye

transfer comparable to untreated cells with 430 keratinocytes

assessed per experiment, and each experiment repeated in triplicate.

Images were recorded using a Zeiss LSM 510 Meta system and

analyzed with Adobe Photoshop software.

Effect of Gap27 mimetic peptide on wound closure

Gap27, a peptide with sequence homology to the ‘‘gap’’ sequence of

the second extracellular loop of Cx43 (43Gap27), ‘‘SRPTEKTIFFI’’

(Evans and Boitano, 2001; Martin et al., 2005), was used to assess

whether the rate of keratinocyte wound closure could be altered

following knockdown of Cx functionality. The peptide (w/v, 100mM in

serum-free keratinocyte growth medium) was applied daily to confluent

keratinocyte monolayers or wounded organotypic cultures.

Wound assay

To assess keratinocyte migration following wounding of organotypic

epidermis, in the presence or absence of Cx mimetic peptide, scratch

assays were performed. A sterile 10-ml pipette tip was used to create

a wound in either confluent keratinocyte monolayers or organotypic

cultures raised to ALI-4 with daily medium changes thereafter.

Using a Nikon Eclipse TS100 inverted microscope and CMEX-

1300 digital camera, organotypic wounds were observed and

recorded on a daily basis until re-epithelialisation was achieved.

Keratinocyte migration was measured using Euromex ImageFocus

analyzing software, and images were then processed with Adobe

Photoshop software. Briefly, 10 measurements were taken within

three separate fields of view of a single wounded culture. As far as

possible and using the same method, the same regions were then

measured and recorded on a daily basis. Experiments were repeated

in triplicate using different litters of mice and measurements were

reported as an average of percentage wound closure against the

initial wound distance taken immediately after insult. Fifty percent

wound closure rates were then determined following data analysis,

using Prism software.

Statistical analysis

Data were analyzed by Student’s t-test, with Po0.05 being

considered significant.
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