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Abstract 

This paper presents a convergent scheme for Hamilton-Jacobi (HJ) equations posed on a junction. The general aim of the 
approach is to develop a framework using similar tools to the variational principle in traffic theory to model intersections 
taking in account many incoming and outgoing roads. Then a time-explicit numerical scheme is proposed. It is based on the 
very classical Godunov scheme. The proposed model could be characterized as a pointwise model of intersection without any 
internal state. Moreover, our model respects the invariance principle. This scheme is applied to the cases of diverge junctions. 
The goal is to know how to manage the fluxes in order to maximize the flow through the junction. 
 
© 2012 The Authors. Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Organizing 
Committee. 
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1. Introduction 

This paper focus on a convergent scheme for Hamilton-Jacobi (HJ for short in the remainder) equations posed 
on a junction. The motivation comes from traffic modeling and more precisely from modeling of network 
intersections. The distinction is made between the words junction and intersection. A junction classically defines 
either merge or diverge while intersection is a more general configuration with many incoming and outgoing 
roads. As illustrated below, diverge models deal with a branch separating between at least two others branches. 
Merge could be seen as the inverse that is at least two roads converging to another road. The general goal of the 
approach is to develop a general framework to model complex intersections. 

 

* Corresponding author. Tel.: +3-316-415-3517; fax: +3-316-415-3586. 
E-mail address: guillaume.costeseque@cermics.enpc.fr. 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Program Committee Open access under 
CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82824991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


737 G. Costeseque and J.P. Lebacque  /  Procedia - Social and Behavioral Sciences   54  ( 2012 )  736 – 748 

 
 
 
 
 

  

a. Diverge junction b. Merge junction c. “Complex” intersection 
Figure 1. Illustrations of junctions and intersection  

 
The aim of the paper is to study how incoming fluxes behave on the network at the junction point in order to 
maximize the flow through the junction. In most of cases the particles flow at such singular points stay uneasy to 
understand. Any type of vehicles is considered and it is just assumed that vehicles are almost homogeneous. To 
manage the problem, we carry out a macroscopic point of view i.e. particles density on the branches allowing to 
do not care of the microscopic one i.e. the individual dynamics. 

 
The paper first deals with a quick overview of the classical formulation of traffic models. Then the variational 

formulation in traffic theory is presented. Indeed traffic behavior is now well-known on highways i.e. on long 
edges without spatial discontinuities. The classical way to deal with traffic patterns at junctions is based on a 
hyperbolic approach of conservation laws [GP06]. Here a new point of view using a Hamilton-Jacobi approach is 
proposed. The HJ equation could be seen as an integrated equation from the hyperbolic system. The purpose is to 
show that Hamilton-Jacobi equations provide a great frame to get rigorous results in the case of road junctions.  
 

Then, the numerical scheme adapted to junction problems is fully described and the results of convergence are 
recalled. We propose a time-explicit numerical scheme which is based on the very classical Godunov scheme 
[GO59]. In the remainder, the model could be characterized as a pointwise model of intersection without any 
internal state. Our model respects the invariance principle [LK05]. As it seems natural to impose different 
dynamics on each branch of the junction, the resulting Hamiltonian is by nature discontinuous at the junction 
point. The representation of the discontinuous Hamiltonians deals with the notion of local traffic demand and 
supply functions [LE93], [LE96]. Our main variable could be assimilated to the index of vehicles which cross the 
junction. The main results we already have in [CML12] are first space and time gradients estimates and then the 
convergence of the numerical scheme to the continue solution of the HJ equation (see equation (11)). Note that 
existence and uniqueness results for HJ equations at a junction point have been already proved in such a case by 
applying control framework [IMZ11]. It is pointed out that the numerical scheme is adapted to solve such a 
problem. Finally, it is applied to a diverge junction.  

2. Background 

The purpose in this paper is to present a numerical scheme which goal is to model the behavior of road traffic 
flow at a junction point. The approach is based on the resolution of Hamilton-Jacobi (HJ) equation while in 
traffic theory it is more current to deal with hyperbolic conservation laws. Indeed historically one of the most 
important traffic flow model was proposed by Lighthill and Whitham [LW55] and independently by Richards 
[RI56]. This model so-called LWR model was built on the analogy between road traffic flow and hydrodynamics. 

2.1. Classical hydrodynamic formulation 

Based on B. Greenshields works [GR35] introducing a phenomenological law describing the relation between 
the density denoted by  and the flow  for road traffic, Lighthill, Whitham [LW55] and 
independently Richards [RI56] proposed a hyperbolic system of conservation law in the middle of 1950’s. This 
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model became the seminal model for traffic flow theory. The model is given by the following system: 

  (1)  

 
The first equation traduces the conservation of vehicles for a given section. This equation is valid for 

continuum description of any conserved quantity. The second one gives the definition of the flux speed . The 
last relationship i.e.  is now classically called the Fundamental Diagram (FD for short) and it states 
that the traffic is always on an equilibrium situation. This assumption could be dropped out, giving birth to higher 
order models that all could be represented by the Generic Second Order Models [LMH07]. However the paper 
only focuses on first order models. 

 
The velocity function assumes some reasonable properties: first when the density is small enough the velocity 

is maximal and when the density increases up to some maximum capacity  the velocity decreases. The flow 
function is thus concave with a unique maximum and . Associated to the 
equilibrium flow-density relationship, there are two more equilibrium relationships i.e. the local equilibrium 
supply and demand functions (resp.  and ) which were described by [DA95], [LE93] and [LE96]. 
Both functions are defined above: 

  (2)  

 
And 

  (3)  

 
These functions express the greatest possible inflow and outflow at any point , and result from the 

fundamental diagram as illustrated on figure 2. At any point, the flow is equal to the minimum between upstream 
demand and downstream supply: 

  (4)  

 

 
Figure 2. Illustration of the supply and demand functions 
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2.2. Hamilton-Jacobi formulation 

The concept of vehicle number function  standing for the cumulative number of vehicles or cumulated 
vehicles curves (CVC) passing at a given position after a given time on a one-dimensional road was originally 
proposed by K. Moskowitz, an engineer who first used this concept to investigate properties of traffic. This 
function was introduced to kinematic wave theory in the early nineties by G. Newell’s trilogy [NE93]. The main 
proofs for selecting the unique and correct value at every point in space-time were proposed later by Daganzo 
([DA05a], [DA05b] , [DM05] and [DA06]). These papers have shown that the function  is solution of the 
following Hamilton–Jacobi equation: 

  
(5)  

 
This HJ equation comes from a variational formulation of kinematic waves used in the classical resolution of 

the LWR model. It is commonly known that dealing with the CVC are more interesting in the traffic engineering 
framework than dealing with the common-used density and flow notions. Indeed Moskowitz function is most 
easily described in terms of integer labels that are carried by vehicles. Each vehicle carries a unique label for all 
time and that the labels have been numbered consecutively at their enter time in the section. Thus, the number on 
each label indicates at all times the position of its current vehicle in the traffic stream. If traffic flows in the 
direction of increasing  axis assumed in this paper, then the Moskowitz function describes a geometric surface 
in  space. 

 
The intersection of this surface and the plane for a given -coordinate gives a  curve. A collection of -

curves at different abscissas along a one-dimensional road is useful for traffic engineering because the horizontal 
separation between two -curves for a given ordinate  represents the trip time of the -th labeled vehicle. In the 
same way, the vertical separation between both -curves for a given abscissa  represents the vehicles 
accumulation at time . The study of the evolution of the surface of Moskowitz can be based on travel in each of 
planes  or . The variational principle allows developing simple solution techniques based on finding 
shortest paths in both planes. It states that the traffic function is the value function of an optimal control problem. 
For example, the variation of  from the point  to the point  is given by the following equation: 

  (6)  

 
In the equation (6) the quantity  represents the slope of the line between both points in the  plane. 

According to Daganzo works, it has been shown that the position of the surface can be calculated at any point in 
space from a simple translation of the boundary conditions. The actual surface is then the lower envelope of these 
translations, given by the set of Fundamental Diagram. 

Notice that some articles like [DA06] and [LLC07] have deeply investigated the links between variational 
theory and Lagrangian coordinates. It is another way of expressing the LWR model. However in the remainder 
the variables stay expressed from an Eulerian point of view. 

2.3. Overview of junctions modeling 

So far, traffic on networks has mostly been modeled with conservation laws. Flow propagation on links has 
been extensively studied and various adequate link models exist. For example the modeling of traffic flow by 
conservation laws was studied by the LWR model described previously in subsection 2.1. Intersection models for 
macroscopic simulation have attracted relatively little attention in traffic theory literature. Many macroscopic 
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intersection models are generalizations of simple merge and diverge models. These intersection models are 
typically pointwise i.e. the intersection is reduced to a point without any physical dimensions. However notice 
that even if for pointwise model a complex intersection model could not be a simple superposition of merge and 
diverge models because of the management of conflicts at the node. 

 
It is also classical to distinguish first order link models which consider only one independent variable (often 

the flow) and higher models which transfer not only flow but also speeds or momentum. First order models may 
not allow relevantly representing traffic flow phenomena like instabilities, capacity drop or stop-and-go waves. In 
first order macroscopic models, the link model provides the demand of incoming links and the supply of outgoing 
links as constraints to the intersection model. While it is possible to quote the intersection models of Haut, Bastin 
[HB07] or Herty and Klar [HK03] which are based on second order models, the remainder just focuses on first 
order models. The following overview is straightforward adapted from Tampère et al. [TCCI11]. 

 
Merge models have been described by e.g. Daganzo [DA95], Lebacque [LE96] and Jin and Zhang [JZ03]. It is 

also possible to quote the merge distribution schemes of Ni and Leonard [NL05]. Daganzo proposed to maximize 
the total flow i.e.  for incoming branches . Analogously than in (2)-(3), let us define demand 
constraints  formally as the maximum flow that incoming link  could possibly send if the node and outgoing 
link would impose no constraints on the outflow of link . Respectively the supply constraint constraints  is 
the maximum inflow that outgoing link  could receive. While Daganzo introduced fixed distribution fractions 

 to reflect priorities, Jin and Zhang considered a demand proportional distribution incorporated  
and Ni and Leonard proposed a capacity proportional distribution  for the incoming links. 

 
For diverge models, it is classically assumed that the total flow  is maximized. This total flux through the 

junction point corresponds to the outflow of the incoming link which divides over the outgoing links according to 
some turning fractions which could be fixed or variable. The traffic flow is classically assumed to be FIFO (First-
In-First-Out) i.e. the vehicles keep ordered and exit the junction point in a FIFO sequence. Notice that the FIFO 
assumption neglects the separation of traffic in different turning lanes. Congestion on one lane will immediately 
affects all the lane of the road. 

 
Some models propose an overview of macroscopic intersection models. For models like presented in [HR95] 

or [CGP05], one needs to introduce partial demands i.e. proportion derived from the total demand of an incoming 
link  whishing to outflow on the outgoing link . 

 
According to [TCCI11], a macroscopic intersection model should achieve general consistency with the 

fundamental modeling principles of first order traffic flow theory if it complies what follows:  
 General applicability of the model to any number of incoming links and outgoing links; 
 Non-negativity of flows; 
 Conservation of vehicles;  
 Compliance with demand and supply constraints;  
 Flow maximization from the users’ perspective. Indeed notice that global flow maximization would imply a 

behaviorally unrealistic cooperation of drivers; 
 Conservation of turning fractions coming from the FIFO rule at the intersection level;  
 Compliance with the invariance principle of Lebacque and Khoshyaran [LK05]. The invariance principle 

sets that the intersection model should be invariant by replacing  by the capacity of link   if  is 
supply constrained i.e.  or analogously invariant to an increase of  up to  if . 

 
The intersection model proposed in the next section should satisfy each condition of this list. 
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3. Intersection model 

3.1. Getting of the equations 

Before all, let us recall that the presented model is pointwise, without internal dynamics. The axis are 
considerate for positive abscissas i.e. that there is no specific consideration for incoming or outgoing roads. For 
analogy, it is just like if the space has been divided into two half-planes and the negative one has been cut and 
returned on the positive side. Each branch  is denoted by branch . Notice that  stands for the half-line minus 
the point of abscissa . It is illustrated on the figure 3 below. 

 
 

 
 
 
 
 

Figure 3. Illustration of the intersection model 
 
It is classical to consider that the well-known LWR equation is satisfied on each branch  of the model i.e. 

that the densities are conserved on each branch  according to the following equation: 

  (7)  

 
Let us consider the new variable denoted by  where  describes the mix 

fraction on each incoming road or the turning fraction on each outgoing road of the total flow through the 
junction. These coefficients are such that: 

    and    (8)  

 
For each branch, the function  represents the vehicle index at the junction point and the 

function is taken such that . Thus the variable  which is very similar to the 
cumulated number of vehicles on the branch  verifies the following Hamilton-Jacobi equation: 

  (9)  

 
For taking in account the assumption on positively oriented axis it is necessary to little modify the variable 

such that: 

  (10)  

 
The reader can notice that the vehicles are numbered from a mathematical point of view and not from a traffic 

eye. Indeed while in traffic engineering it is more accurate to index the vehicles according to their passage time at 
a given position, in mathematics it is simpler to consider vehicles positively numbered according to the positive 
direction of the spatial axis. In practice, both indexes just differ from a negative sign. 

The variable  which is now available for incoming and outgoing roads satisfies the following HJ equation: 

  (11)  
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Submitted to the initial condition 

  (12)  

 
The convex Hamiltonians  are defined more or less as the opposite of the Fundamental Diagram i.e. they 

are given by what follows for all : 

  (13)  

 
In the previous HJ equation (11) the function  represents the non-increasing part of the Hamiltonian. The 

non-decreasing part is respectively denoted by . In this way it is possible to identify the function  (resp. 
) to the opposite of the Demand function  (resp. the Supply function ) modulo a coefficient equal 

to the inverse of the turning fraction . This is not trivial because the construction of the numerical scheme 
on the Supply and Demand functions allows satisfying the invariance principle of [LK05]. 

3.2. Presentation of the scheme 

Let us consider a discretization of the time and space axis and let us set  and  the space and time steps 
with . In the remainder let us consider  the discrete value of the function  at the grid point 

 and  (with ) on the considered branch , such that: 

  (14)  

 
We now recall the HJ equation verified by our variable  which was given previously by (11) with the 

initial condition (12). Let us defined the discrete gradient forward (respectively backward) as follows: 

  
(15)  

  (16)  

 
We also defined the discrete time derivative such that: 

  
(17)  

 
Then the numerical scheme is given by the following equation: 

  (18)  

 
With the initial condition 

  (19)  
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Our numerical scheme is adapted for HJ equations posed on junction. This scheme is equivalent to the very 

classical Godunov scheme which is already used in the framework of traffic schemes (see e.g. the Daganzo cell 
transmission model [DA95a], [DA95b] or Lebacque models [LE96]). Our model takes a general point of view 
assuming that the drivers try to maximize the flow locally at each intersection. 

4. Simulations for a divergent 

4.1. Settings 

The modeling of road diverge junction has no longer interested the traffic scientific community. The main 
publications available on junction modeling are mainly oriented for merge models. Indeed the main process at the 
junction point is more complex for a merge model for which the flows from each incoming road have to mix to 
go through the node. There is no such a complex behavioral law for diverge since the flow which can pass 
through the junction may divide into each outgoing road without generating any conflict between each other.  

 
In traffic theory the simplest case of a diverge junction corresponds to the case when a road splits into two. 

The cars move on the single road in the direction of the junction at which they can either go left or right. In their 
recent work [IMZ11], Imbert, Monneau and Zidani have shown that for convex Hamiltonians, among the 
admissible solutions (i.e. which are compatible with the conservation of cars) there is a unique optimal solution 
which allows the maximum flow of cars at the junction. Indeed this solution is the value function of an optimal 
control problem associated to Lagrangians which are discontinuous at the junction point. The junction condition 
is similar to the Lebacque condition of Demand and Supply usually used in traffic. This condition is also similar 
to the one used for the Riemann solver at the junction in [CGP05] and has deep relations with the Bardos-Le 
Roux-Nédélec boundary condition for conservation laws [BLN79]. 

 
In the following numerical experiments, the boundary conditions have to be properly defined. On the upstream 

boundary of the link, the flow entering the section  is taken as the minimum between the supply of the first 
cell  and the demand upstream  which is defined equal to the initial chosen flow on the branch. On 
downstream boundaries of the links, the exiting flow  is equal to the minimum between the demand of the 
last cell  and the downstream supply  which is defined equal to the supply of the last cell. The supply 
outside could be supposed to be infinite but in this case the demand is always satisfied and a fictitious kinematic 
wave could be generated. 

 

 
Figure 4. Illustration of the boundary conditions 

 

  (20)  
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4.2. Riemann problems 

In traffic modeling generalized Riemann problems are often considered because they reproduce the main cases 
occurring on real situations. A generalized Riemann problem is problem for which we have to find the solution 

, for all  of the LWR system (1) with the following initial conditions: 

  (21)  

 
And  given by 

  (22)  

 
Let us set for sake of clarity what follows 

  (23)  

 
Let us deal with inhomogeneous Riemann problems. Here the flow functions up and downstream are not 

equal. The discontinuities of the flow function depending on the spatial variable may represent physically 
meaningful cases such as: 
 A change of maximal speed on a road by example passing from an urban road to a ring road. Let us also 

assume that one driver is on an inside lane of a roundabout and that he has the option to either exit at the next 
road on the right or to continue to turn by taking the left lane to exit later. It is assumed that the features on 
the roundabout inside lane are such that the speed is fairly low (less than or equal to 50 km/h) while on the 
outgoing branch, the speed limit may be higher.  

 A change of the number of lanes on a road with equal upstream and downstream speed properties. There are 
two possible illustrations with either a decrease occurred because of a fixed or mobile bottleneck or a 
capacity increase e.g. by passing from two to three lanes; 

 Both changes (maximal speed and number of lanes). Let us consider the exit road of a highway. While the 
main section can have a fairly large number of lanes (e.g. higher than two lanes) and high speed (90, 110 or 
130 km/h) the exit road has a single lane and a lower maximal speed (typically 50, 70 or 90 km/h). 

 
In these simulation experiments, a wide range of situation for which the speed and / or capacity can vary was 

considered including the most interesting cases like (i) junction, (ii) sections with a different number of lanes, 
(iii) the presence of an incident resulting in a restriction of local and temporary capacity or speed. According to 
[LE96] the values of the flow at the singularity point that result for the solution of the generalized Riemann 
problem are given in the following tables: 

 
 

  
  

   
   

Table 1. Flow resulting for the generalized Riemann problem with  
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Table 2. Flow resulting for the generalized Riemann problem with  
 
Let us then focus on the so-called homogeneous Riemann problem: in this case the fundamental diagram on 

upstream links is identical to the one on downstream so the maximum speed, the critical concentration and the 
maximum concentration are the same upstream and downstream. Hence we consider in this particular case that 
the flow function is the same on incoming roads and outgoing roads. It is the simplest case because there is no 
diffraction-like phenomenon at the junction point. This also implies that the number of lanes per incoming roads 
is equal to the number of lanes per outgoing ones. One may wonder if it is really appropriate to consider such a 
homogeneous Riemann problem in traffic case. At our own knowledge it could be mainly found for urban 
intersections with the example of a fork. According to Lebacque [LE96] seven cases could be distinguished for 
homogeneous Riemann problems: 
 Cases of  and  under-critical: first subcase with ; second subcase with ; 
 Cases of   and  overcritical: first subcase with ; second subcase ; 
 Case of   overcritical and  under-critical; 
 Case of   undercritical and  overcritical: first subcase ; second subcase . 

 
In all of these cases and whatever the initial conditions and the turning coefficients, the numerical scheme 

allows to reproduce queues and kinematic waves through the junction point. For each case, the scheme fits with 
the analytical solution to the Riemann problem. In main cases, there is apparition of a kinematic wave which 
speed is given by the classical Rankine-Hugoniot jump condition i.e. 

  (24)  

 
According to the sign of the wave celerity , either there is a shock wave which travels through the junction 

point and which affect the flow upstream leading to the apparition of a queue or there is apparition of a kinematic 
wave (which could be a rarefaction fan in certain cases) which travels from the junction point on the downstream 
branches. 

 
The numerical scheme seems to be able to reproduce the features of the analytical solutions for the Riemann 

problems. However no estimation error between numerical and analytical solutions has been obtained until now. 
 
One of the main shortcomings of the model seems to be the non-specialization of lanes. Indeed there is no 

particular consideration of a multi-lanes branch. In practice if an outgoing road is congested and if the proportion 
of entering vehicles occupy a single lane on the incoming branch, the model would consider that any incoming 
branch is congested and that the flow through the junction is null. Nevertheless it is possible to consider that the 
junction actually starts at the real flow separation point which may be upstream of the physical node. 

5. Conclusion 

To gather microscopic and macroscopic patterns for intersection modeling, a numerical scheme built on 
Hamilton-Jacobi traffic equation is proposed. This numerical scheme was shown to be able to reproduce delays 
and queue for a diverge model. The procedure is straightforward to implement and has a low computational cost. 
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However some simplifying assumptions were made for e.g. not considering the separation of turning movements 
into lanes on the upstream branches. 

 
The main wished improvements are (i) to extend the results of [IMZ11] to more general and realistic junction 

conditions including suboptimal traffic flows like for instance signalized intersections or queues of cars (ii) to 
explore the link with conservation laws by showing that the derivative of the HJ solution on a network is a 
solution of the conservation law with a scheme for which the convergence of the numerical solution is well-
known and (iii) to stress on a micro-macro approach for the divergent junction modeling by recovering that the 
natural junction condition could be obtained by considering the macroscopic limit of the discrete dynamics model 
of individual cars. Then convergent junctions could be considered as well as priority laws for recovering a 
reasonable junction condition and uniqueness of the corresponding solution for Hamilton-Jacobi equation. 

 
Further research should be conducted in order to extend the model to merges. In the particular case of merge 

model, a phenomenological priority law should be introduced to determine how the fluxes behave to mix them at 
the junction point. This law may come from a passage from the microscopic scale to the macroscopic one. Indeed 
it seems interesting to define a macroscopic behavior law from the way that vehicles interact at the microscopic 
level. 
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Appendix A. Simulations for a diverge junction 

Let us consider a divergent for which we have one single incoming road and two outgoing roads. This case 
should represent an exciting road on a beltway. The incoming road (number 1) and one of the outgoing (number 
2) have a maximal speed supposed to be taken at . However road 1 has 3 lanes and road 2 has 2 
lanes. The second outgoing road (number 3) has a single lane and its maximal speed is selected at 

. Let us consider the following initial conditions: 

The turning fraction coefficients are defined such that . Moreover let us suppose that the 
flow relationship is piecewise parabolic. 



748   G. Costeseque and J.P. Lebacque  /  Procedia - Social and Behavioral Sciences   54  ( 2012 )  736 – 748 

  
(a) Initial conditions (b) Densities at time  s 

  

  
(c) Densities at time  s (d) Densities at time  s 

  

 
(e) Fundamental Diagram 

 


