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Abstract

We consider the swap distance and the element duplication distance. We show that the swap centre permutation problem is
NP-complete. We show that the element duplication centre problem is NP-complete.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The study of genome rearrangements has drawn a lot of attention in recent years. Large amounts of genomic data on
various organisms may be obtained via experiments, including sequence homology between genes, restriction maps,
and other hybridization techniques (see [1] for details).

In the 1980’s, Palmer and colleagues [2–6] gave evidence that many different species have essentially the same set
of genes, but their order may differ between species. This suggests that global rearrangement events (such as reversals
and transpositions of genome segments) can be used to trace the evolutionary path between genomes. Since such
events are far more rare then point mutations, one can track the genome rearrangements through the evolutionary
history of the species much further back then regular mutations allow. This is done by comparing gene orders in
the studied species and reconstructing the sequences of genome rearrangements that have transformed the ancestral
genome species into the contemporary species. When studying more than two species the key problem arising is to
reconstruct the phylogenetic tree achieving minimal distance, given only permutations at the leaves (contemporary
species). The problem can be studied when the topology of the tree is known, or is not known. When the topology of
the tree is restricted to a star, this problem is known as the median problem. Also we can consider the centre problem.

The use of gene order data for finding globally optimal phylogenetic trees is inherently difficult. Not only are
some measures of genomic distance computationally complex [7,12], but more important, the extension of any of
them, even the reversals-distance for signed genomes [8], or the breakpoint distance [9], to three or more genomes
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– multiple genome rearrangement – is NP-hard [10,11]. In [13,14] proved that in general case (strings over finite
alphabets) determining reversal, transposition or signed reversal distance between two species is NP-hard. So, it
is interesting to consider some bounded distances. Investigating bounded problems is useful as it gives us a more
complete understanding of the computational complexity of these problems in general. Since evolutionary events are
far more rare than point mutations, there is a very small chance of reverse mutations that will affect the exact same
location on the genome. Furthermore, it is natural to suppose that there are no overlap mutations. In this particular
case we can hope to reduce evolutionary events (such as duplications and transpositions) to more simple operations.
For example, we can consider

ABC D, A = 8 9 10, B = 6 7, C = 3 4 5, D = 1 2,

instead

8 9 10 6 7 3 4 5 1 2,

or

ABC B D, A = 1, B = 2 3 4, C = 5, D = 6,

instead

1 2 3 4 5 2 3 4 6.

In first case we can consider transposition of letters B and C instead transposition of words 6 7 and 3 4 5. In last
case we can consider duplication of letter B instead duplication of word 2 3 4. So, we can use letters instead words.

In this paper, we consider the swap distance and the element duplication distance.

2. Preliminaries

Given the set Tn = {1, 2, . . . , n}, a permutation π of Tn is bijective function π : Tn → Tn . The symmetric group Sn
is the set of all the permutations of Tn . We can view a permutation π ∈ Sn as an ordered arrangement of the elements
in Tn where π [i] is the element in position i . In this view, the integers 1, 2, . . . , n are used to indicate both positions
and elements. We also can view a permutation π ∈ Sn as(

1 2 . . . n
π [1] π [2] . . . π [n]

)
.

A swap operation exchanges two elements of a permutation. The swap S〈i, j〉, where

1 ≤ i < j ≤ n,

is the permutation(
1 2 . . . i − 1 i i + 1 . . . j − 1 j j + 1 . . . n
1 2 . . . i − 1 j i + 1 . . . j − 1 i j + 1 . . . n

)
.

The minimum number of swaps needed to transform a permutation π1 into a permutation π2 (or viceversa) is called
the swap distance between π1 and π2, here denoted by ds(π1, π2). Note that a chain of swaps needed to transform a
permutation π1 into a permutation π2 always exists (see [15], section 5.4.).

Given two permutations, the problem of sorting by swaps calls for finding the swap distance between the two
permutations and an associated shortest series of swaps. Sorting by swaps is solvable in polynomial time [16]. For all
X ⊆ Sn , we denote:

Cs(X) 
 min
τ∈Sn

(max
π∈X

ds(τ, π)),

Ms(X) 
 min
τ∈Sn

(∑
π∈X

ds(τ, π)

)
.
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A swap centre of X is a permutation τ ∈ Sn such that

max
π∈X

ds(τ, π) = Cs(X).

A swap median of X is a permutation τ ∈ Sn such that∑
π∈X

ds(τ, π) = Ms(X).

The swap centre permutation problem is the decision problem: given a nonempty X ⊆ Sn and r ∈ N, is Cs(X) ≤ r .
The swap median permutation problem is the decision problem: given a non empty X ⊆ Sn and r ∈ N, is Ms(X) ≤ r .

An element duplication operation copies an element to a new location. Denote by Σ a fixed alphabet
{a1, a2, . . . , ap}. The element duplication D〈i, j〉, where 1 ≤ i ≤ n, 1 ≤ j ≤ n, is the operation

D〈i, j〉(ak1ak2 . . . akn ) = ak1ak2 . . . ak j aki ak j+1ak j+2 . . . akn .

If j = 0, then the element duplication D〈i, j〉 is the operation

D〈i, 0〉(ak1ak2 . . . akn ) = aki ak1ak2 . . . akn .

The minimum number of element duplications needed to transform a string w2 into a string w1 is called the element
duplication distance between w1 and w2, here denoted by dd(w1, w2). Note that a chain of element duplications
needed to transform a string w2 into a string w1 not always exists. In this case dd(w1, w2) = +∞.

For all finite X ⊆ Σ+, we denote:

Cd(X) 
 min
u∈Σ+

(max
v∈X

dd(u, v)),

Md(X) 
 min
u∈Σ+

(∑
v∈X

dd(u, v)

)
.

Let occ(y, v) denote the number of occurrences of the letter y in the word v. Denote by c(v) a set {y | y ∈

Σ , occ(y, v) ≥ 1}. If there exist words w1, w2 ∈ X such that c(w1) 6= c(w2), then dd(w1, w2) = Cd(X) = Md(X) =

+∞.
An element duplication centre of X is a string u ∈ Σ+ such that

max
v∈X

dd(u, v) = Cd(X).

An element duplication median of X is a string u ∈ Σ+ such that∑
v∈X

dd(u, v) = Md(X).

The element duplication centre problem is the decision problem: given a nonempty X ⊂ Σ+ and r ∈ N, is
Cd(X) ≤ r . The element duplication median problem is the decision problem: given a nonempty X ⊂ Σ+ and r ∈ N,
is Md(X) ≤ r .

Similarly, we can consider

min
u∈Σ+

(max
v∈X

dd(v, u)),

min
u∈Σ+

(∑
v∈X

dd(v, u)

)
,

but in this case we obtane well-studied (see [17–21]) longest common subsequence problem.

3. NP-completeness

3.1. The swap centre permutation problem

Theorem 1. The swap centre permutation problem is NP-complete.
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Proof. Since sorting by swaps is solvable, it is easy to see that the swap centre permutation problem is in NP.
Let us consider the following problem:
CLOSEST STRING PROBLEM:
INSTANCE: A non-negative integer t , positive integers k and L ,

{s1, s2, . . . , sk} ⊆ Σ L .

QUESTION: Is there a string s of length L such that, for all i = 1, 2, . . . , k, dH (s, si ) ≤ t? (Here dH (s, si ) denotes
the Hamming distance between s and si .)

The closest string problem is NP-complete even for the restriction to a binary alphabet [22,23]. We will assume
that Σ = {0, 1}. Now we transform an instance of the closest string problem into an instance of the swap centre
permutation problem as follows:

• n = 2L .
• πi = (2 − si [1], 1 + si [1], . . . , 2 j − si [ j], 2 j + si [ j] − 1, . . . , 2L − si [L], 2L + si [L] − 1) where si =

si [1]si [2] . . . si [L].
• X = {πi | 1 ≤ i ≤ k}.
• r = t .

It is easy to see that this transformation can be done in polynomial time and logarithmic space.
Let us show that if there is a string s such that max1≤i≤k dH (s, si ) ≤ t , then Cs(X) ≤ r . Suppose that

max1≤i≤k dH (s, si ) ≤ t , s = s[1]s[2] . . . s[L], and τ = (2 − s[1], 1 + s[1], . . . , 2 j − s[ j], 2 j + s[ j] − 1, . . . , 2L −

s[L], 2L + s[L] − 1). By definition

πi [2 j − 1] 6= τ [2 j − 1] ⇔ πi [2 j] 6= τ [2 j],

πi [2 j − 1] 6= τ [2 j − 1] ⇔ (πi [2 j], πi [2 j − 1]) = (τ [2 j − 1], τ [2 j]),

πi [2 j − 1] 6= τ [2 j − 1] ⇔ s[ j] 6= si [ j],

1 ≤ i ≤ k,

1 ≤ j ≤ L .

Therefore, for all i = 1, 2, . . . , k,

ds(τ, πi ) ≤ dH (s, si ).

Since max1≤i≤k dH (s, si ) ≤ t , maxπi ∈X ds(τ, πi ) ≤ t = r . Therefore,

Cs(X) ≤ r.

Now suppose that Cs(X) ≤ r . Since Cs(X) ≤ r , there exists a permutation γ such that maxπi ∈X ds(γ, πi ) ≤ r . Let

N (π) = {l | π [2l − 1] /∈ {2l − 1, 2l}, 1 ≤ l ≤ L} ∪

{l | π [2l] /∈ {2l − 1, 2l}, 1 ≤ l ≤ L}.

Let us prove, by induction on the number |N (γ )|, that there exists a permutation τ such that

max
πi ∈X

ds(τ, πi ) ≤ max
πi ∈X

ds(γ, πi )

and

τ [2 j − 1], τ [2 j] ∈ {2 j − 1, 2 j}, 1 ≤ j ≤ L .

Let |N (γ )| = 0. Then τ = γ . This verifies the base of our induction.
Assume that the assertion holds for some p. Let us show that it holds for p + 1. Assume that |N (γ )| = p + 1.

Suppose that there exists a positive integer l such that γ [2l − 1] /∈ {2l − 1, 2l} or γ [2l] /∈ {2l − 1, 2l}. Fourteen cases
are possible:

γ [2l − 1], γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, γ [l2] = 2l, l1 < l2 < 2l − 1;

γ [2l − 1], γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, γ [l2] = 2l, l2 < l1 < 2l − 1;
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γ [2l − 1], γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, γ [l2] = 2l, 2l < l1 < l2;

γ [2l − 1], γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, γ [l2] = 2l, 2l < l2 < l1;

γ [2l − 1], γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, γ [l2] = 2l, l1 < 2l − 1, 2l < l2;

γ [2l − 1], γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, γ [l2] = 2l, l2 < 2l − 1, 2l < l1;

γ [2l − 1] /∈ {2l − 1, 2l}, γ [2l] ∈ {2l − 1, 2l}, γ [l1] = 2l − 1, 2l < l1;

γ [2l − 1] /∈ {2l − 1, 2l}, γ [2l] ∈ {2l − 1, 2l}, γ [l1] = 2l − 1, l1 < 2l − 1;

γ [2l − 1] /∈ {2l − 1, 2l}, γ [2l] ∈ {2l − 1, 2l}, γ [l1] = 2l, 2l < l1;

γ [2l − 1] /∈ {2l − 1, 2l}, γ [2l] ∈ {2l − 1, 2l}, γ [l1] = 2l, l1 < 2l − 1;

γ [2l − 1] ∈ {2l − 1, 2l}, γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, 2l < l1;

γ [2l − 1] ∈ {2l − 1, 2l}, γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l − 1, l1 < 2l − 1;

γ [2l − 1] ∈ {2l − 1, 2l}, γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l, 2l < l1;

γ [2l − 1] ∈ {2l − 1, 2l}, γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l, l1 < 2l − 1.

We consider only the case

γ [2l − 1] ∈ {2l − 1, 2l}, γ [2l] /∈ {2l − 1, 2l}, γ [l1] = 2l, l1 < 2l − 1

because the other thirteen cases can be treated similarly.
Since γ [l1] = 2l and γ [2l] /∈ {2l − 1, 2l}, γ [2l − 1] = 2l − 1. Since l1 < 2l − 1, for all i = 1, 2, . . . , k,

πi [l1] 6= γ [l1]. By definition, for all i = 1, 2, . . . , k, πi [2l] 6= γ [2l]. Suppose that, for all i = 1, 2, . . . , k,
ds(γ, πi ) = pi and

Si 〈mi,1,1, mi,1,2〉, Si 〈mi,2,1, mi,2,2〉, . . . , Si 〈mi,pi ,1, mi,pi ,2〉

is an associated shortest series of swaps. Since πi [l1] 6= γ [l1], there exists Si 〈mi,a,1, mi,a,2〉 such that mi,a,1 = l1 or
mi,a,2 = l1,

Si 〈mi,a,1, mi,a,2〉(πi )[l1] = γ [l1].

Since πi [2l] 6= γ [2l], there exists Si 〈mi,b,1, mi,b,2〉 such that mi,b,1 = 2l or mi,b,2 = 2l,

Si 〈mi,b,1, mi,b,2〉(πi )[2l] = γ [2l].

Therefore, if δ = S〈l1, 2l〉(γ ), then ds(δ, πi ) ≤ ds(γ, πi ). It is easy to see that N (δ) < N (γ ). Since, for all
i = 1, 2, . . . , k, ds(δ, πi ) ≤ ds(γ, πi ), then

max
πi ∈X

ds(δ, πi ) ≤ max
πi ∈X

ds(γ, πi ).

Since N (δ) < N (γ ), by the induction assumption there exists a permutation τ such that

max
πi ∈X

ds(τ, πi ) ≤ max
πi ∈X

ds(δ, πi )

and N (τ ) = 0. Therefore, there exists a permutation τ such that

max
πi ∈X

ds(τ, πi ) ≤ max
πi ∈X

ds(γ, πi )

and N (τ ) = 0.
Consider a permutation τ such that

max
πi ∈X

ds(τ, πi ) ≤ max
πi ∈X

ds(γ, πi )

and N (τ ) = 0. Suppose that, for all i = 1, 2, . . . , k, ds(τ, πi ) = pi and

Si 〈mi,1,1, mi,1,2〉, Si 〈mi,2,1, mi,2,2〉, . . . , Si 〈mi,pi ,1, mi,pi ,2〉



120 V.Yu. Popov / Theoretical Computer Science 385 (2007) 115–126

is an associated shortest series of swaps. It is clear that either, for all j = 1, 2, . . . , pi ,

Si 〈mi, j,1, mi, j,2〉 ∈ {S〈2l − 1, 2l〉 | 1 ≤ l ≤ L}

or there exists a permutation β such that

max
πi ∈X

ds(β, πi ) < max
πi ∈X

ds(τ, πi )

and N (β) = 0. Therefore, if

s = s[1]s[2] . . . s[L]

where

s[l] = 1 ⇔ τ [2l − 1] < τ [2l],

then max1≤i≤k dH (s, si ) ≤ t . Hence we have proved that the swap centre permutation problem is NP-complete. �

The minimum number of adjacent element swaps needed to transform a permutation π1 into a permutation π2
(or viceversa) is called the adjacent element swap distance between π1 and π2, here denoted by das(π1, π2). Given
two permutations, the problem of sorting by adjacent element swaps calls for finding the adjacent element swap
distance between the two permutations and an associated shortest series of swaps. Sorting by adjacent element swaps
is solvable in polynomial time [16,24]. For all X ⊆ Sn , we denote:

Cas(X) 
 min
τ∈Sn

(max
π∈X

das(τ, π)).

A adjacent element swap centre of X is a permutation τ such that

max
π∈X

das(τ, π) = Cas(X).

The adjacent element swap centre permutation problem is the decision problem: given a nonempty X ⊆ Sn and r ∈ N,
is Cas(X) ≤ r .

Corollary 1. The adjacent element swap centre permutation problem is NP-complete.

It is clear that the swap centre permutation problem and the adjacent element swap centre permutation problem are
NP-complete for circular permutations.

3.2. The element duplication centre problem

We need the following problem.
THE SHORTEST COMMON SUPERSEQUENCE PROBLEM (SCS=)
INSTANCE: Γ = {1, 2, 3}, a finite set S = {s1, s2, . . . , sn} of strings S ⊂ Γ+ such that |s1| = |s2| = · · · = |sn|,

and a positive integer m.
QUESTION: Is there a string w ∈ Γ+ such that |w| ≤ m and w is a supersequence of each string si ∈ S?
The following theorem is necessary:

Theorem 2. SCS= is NP-complete.

Proof. It is easy to see that the SCS= problem is in NP.
Let us consider the following problem:
THE SHORTEST COMMON SUPERSEQUENCE PROBLEM (SCS)
INSTANCE: Γ = {1, 2}, a finite set T of strings T ⊆ Γ+, and a positive integer k.
QUESTION: Is there a string u ∈ Γ+ such that |u| ≤ k and u is a supersequence of each string ti ∈ S?
The SCS problem is known to be NP-complete [25]. We will assume that there are n strings t1, t2, . . . , tn in T .
Let

r = max{|t1|, |t2|, . . . , |tn|} + 1, ri = r − |ti |, l = max{|r1|, |r2|, . . . , |rn|}.

Now we transform an instance of the SCS problem to an instance of the SCS= problem as follows:
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• si = 3ti 3ri .
• m = k + l + 1.

It is easy to check that |3t13r1 | = |3t23r2 | = · · · = |3tn3rn |.
First, suppose that there exists a string u ∈ {1, 2}

∗ such that |u| ≤ k and u is a supersequence of each string ti ∈ T .
Let w = 3u3l . Since |u| ≤ k, |3u3l

| ≤ k + l + 1 = m. It is easy to see that if v1 is a supersequence of each string
ai , 1 ≤ i ≤ n, and v2 is a supersequence of each string bi , 1 ≤ i ≤ n, v3 is a supersequence of each string ci ,
1 ≤ i ≤ n, then v1v2v3 is a supersequence of each string ai bi ci , 1 ≤ i ≤ n. Since l = max{|r1|, |r2|, . . . , |rn|}, 3l is a
supersequence of each string 3ri , 1 ≤ i ≤ n. Therefore, 3u3l is a supersequence of each string 3ti 3ri , 1 ≤ i ≤ n.

Now suppose that there exists a string w ∈ {1, 2, 3}
∗ such that |w| ≤ m and w is a supersequence of each string

si ∈ S. Since w is a supersequence of each string si ∈ S, and si = 3ti 3ri , it is easy to see that occ(3, w) ≥ l + 1.
Let w = w13w23 . . . wp3wp+1 where w j ∈ {1, 2}

∗, 1 ≤ j ≤ p + 1. Let w′
= 3w1w2 . . . wpwp+13p−1. Since

occ(3, w) ≥ l + 1, ti ∈ {1, 2}
∗, and w is a supersequence of each string si ∈ S, it is easy to see that w′ is

a supersequence of each string si ∈ S. Since w′ is a supersequence of each string si ∈ S, and w j ∈ {1, 2}
∗,

1 ≤ j ≤ p + 1, it is easy to see that w1w2 . . . wpwp+1 is a supersequence of each string ti ∈ T . In view of
p ≥ l + 1, m = k + l + 1, and |w| ≤ m, it is easy to check that |w1w2 . . . wpwp+1| ≤ k. �

Let Γ = {1, 2, 3}, S = {s1, s2, . . . , sn}, where S ⊂ Γ+,

|s1| = |s2| = · · · = |sn| = t.

We can assume that occ(i, s j ) 6= 0, for all i ∈ {1, 2, 3}, j ∈ {1, 2, . . . , n}. Let |w| = m. If w is a supersequence of
each string si ∈ S, then it is easy to see that

max
si ∈S

dd(w, si ) = m − t,∑
si ∈S

dd(w, si ) = n(m − t).

If Cd(S) = r and

max
si ∈S

dd(w, si ) = Cd(S),

then |w| = r + t and w is a supersequence of each string si ∈ S. Therefore, the element duplication centre problem
is a restricted version of the SCS= problem in which occ(a, si ) = 0 if and only if occ(a, s j ) = 0, for all a and
i, j ∈ {1, 2, . . . , n}.

Corollary 2. The element duplication centre problem is NP-hard.

If Md(S) = r and∑
si ∈S

dd(w, si ) = Md(S),

then |w| =
r
n + t and w is a supersequence of each string si ∈ S. So the element duplication median problem

is a restricted version of the SCS problem in which occ(a, si ) = 0 if and only if occ(a, s j ) = 0, for all a and
i, j ∈ {1, 2, . . . , n}.

Corollary 3. The element duplication median problem is NP-hard.

3.3. Models for tandem arrays

Regularities in a biological sequence can be used to identify the sequence among other sequences, or to infer
information about the evolution of the sequence. The genomes of eukaryotes, i.e. higher order organisms such humans,
contain many regularities. Tandem repeats, or tandem arrays, which are consecutive occurrences of the same string,
are the most frequent.
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Traditionally the alignment notation has been used to illustrate a comparison between two or more sequences.
Given a set of strings

X = {x1, x2, . . . , xk}

on an alphabet Σ , a multiple alignment of X is a set of strings

A = {A1, A2, . . . , Ak},

|A1| = |A2| = · · · |Ak | = n, on augmented alphabet Γ = Σ ∪ {∆} such that each string Ai is a copy of xi into which
n − |xi | copies of special symbol ∆ have been inserted. Symbol ∆ is called an indel and represents the insertion or
deletion of a particular symbol in one string relative to another.

A conventional way to measure the approximate similarity between two sequences a1 . . . am and b1 . . . bn is to
calculate local transformations or costs of local transformations. Usually the considered local transformations are the
following:

• substitution: ai → b j ;
• insertion: ∆ → b j ;
• deletion: ai → ∆.

To define a distance between sequences, one should first fix the set of local transformations and nonnegative valued
cost function δ that gives for each transformation a → b a cost δ(a, b). A penalty matrix specifies the substitution
cost for each pair of characters and the insertion/deletion cost for each character. The differences appearing in the
considered two sequences can be viewed differently, e.g. one substitution can be viewed as one insertion and one
deletion. Therefore, it is natural to observe the minimum number of such differences. The weighted edit distance
between x and y is the minimum cost to convert x to y using a penalty matrix.

Tandem arrays are a sequence of repeats that appear adjacent in a string. As concerns biology, such tandemly
repeated units are divided into three categories depending on the length of repeated element, the span of the repeated
region and its location within the chromosome [26]. Repeats occurring in or near the centromeres and telomeres are
called simply satellites. Their span is large, up to a million bases, and the length of the repeated element varies greatly,
anywhere from 5 to few hundreds of base pairs.

There are two satellite models (see [27]). One called prefix model and the other consensus model.
A prefix model of a satellite is a string w ∈ Σ ∗ that approximately matches a train of wagons. A wagon of w is

a substring u in string x such that δ(w, u) ≤ e. A train of a satellite model w is collection of wagons u1, u2, . . . , u p
ordered by their starting positions in x and satisfying the following properties.

1. p ≥ min repeat, where min repeat is a fixed parameter that indicates the minimum number of elements a
repeating region must contain.

2. leftui+1
− leftui

∈ JUMP, where leftu is the position of the left-end of wagon u in x and

JUMP = {y | y ∈ ∪x∈[1,max jump]x × [min range, max range]},

with the three parameters min range, max range and max jump fixed.
A prefix model w is said to be valid if there is at least one train of w in the string x . Similarly, a train, when viewed

simply as a sequence of substrings of x , is valid if it is the train for some model w.
Consensus model is a prefix model which further satisfies the following property.
3. leftui+1

− rightui
∈ GAP, where rightu is the position of the right-end of wagon u, and

GAP = {y | y ∈ ∪x∈[0,max jump−1]x × [min range, max range]}.

The distance function in the consensus model is the consensus function, which finds a consensus string of wagons,
i.e. string w such that the distance between the string w and each string in {u1, u2, . . . , u p} is at most e. Another
way to define a consensus string is to use the consensus error. The consensus error of a string w with respect to a
given set {u1, u2, . . . , u p} is the sum of the distances between w and all the strings in {u1, u2, . . . , u p}. Parameter
max jump allows us to deal with very badly conserved elements inside a satellite (by actually not counting them).
Consensus error allows us to deal with relatively badly conserved wagons inside a satellite (and counting them) while
we require that the satellite be relatively well conserved globally. This may be useful for compression algorithms for
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DNA sequences. It is known that DNA sequences have two characteristic structures. One is reverse complements,
and the other is approximate repeats. Compression algorithms for DNA sequences use the structures, and we need to
detect as much of this structures as possible.

Let a consensus error model is a string w ∈ Σ ∗ that approximately matches with consensus error a train of wagons,
i.e.

∑p
i=1 δ(w, ui ) ≤ e.

Let us consider the following problem:
THE SATELLITE PROBLEM FOR CONSENSUS ERROR (SPCE):
INSTANCE: Parameters min repeat, min range, max range, max jump, and e, a distance function δ, a string x .
QUESTION: Is there a consensus error model w that is valid for x?

Theorem 3. SPCE is NP-complete.

Proof. It is easy to see that SPCE is in NP. Now we transform an instance of the SCS= problem to an instance of
SPCE as follows:

• Note that we can assume that |si | ≥ 3. Let si = si,1si,2si,3 where si,1, si,3 ∈ {1, 2, 3}. Note that we can assume that
si,1 = si,3. Let

x = s1,1s1,2s1,3s2,2s2,3 . . . sn,2sn,3.

• min repeat = n
• min range = max range = |s1| − 1
• max jump = 1
• Let L = {∆ → 1,∆ → 2,∆ → 3} be a set of local transformations, and δ(∆, 1) = 1, δ(∆, 2) = 1, δ(∆, 3) = 1.

For convenience, if α → β /∈ L , then δ(α, β) = ∞.
• e = (m − |s1|)n

First suppose that there exists a string w ∈ {1, 2, 3}
∗ such that |w| ≤ m and w is a supersequence of each string

si ∈ S. Clearly, δ(w, si ) = m − |s1|, 1 ≤ i ≤ n. Therefore,
∑n

i=1 δ(w, si ) = (m − |s1|)n = e, and w is a consensus
error model that is valid for x .

Now suppose that there exists a consensus error model w that is valid for x . In view of min repeat = n,
min range = max range = |s1| − 1, max jump = 1, it is not hard to check that

∑n
i=1 δ(w, si ) ≤ e. Consider

the alignment of {s1, s2, . . . , sn} induced by w: P1, P2, . . . , Pn . Let

Pi = pi,1 . . . pi,k, 1 ≤ i ≤ n,

w = w1 . . . wk,

where

pi,1, . . . , pi,k, w1, . . . , wk ∈ {1, 2, 3,∆}.

By definition of δ, if pi, j 6= w j , 1 ≤ i ≤ n, 1 ≤ j ≤ k, then either pi, j = ∆ and w j ∈ {1, 2, 3} or δ(w, si ) > e.
Therefore, δ(w, si ) = occ(∆, Pi ) = k − |si |, and w is a supersequence of each string si ∈ S. Since

e = (m − |s1|)n,

n∑
i=1

δ(w, si ) ≤ e,
n∑

i=1

δ(w, si ) = (k − |si |)n, |w| = k,

it is easy to see that |w| ≤ m. �

4. Parameterizations

4.1. The swap centre permutation problem

We consider the following parameterizations of the swap centre permutation problem.
THE SWAP CENTRE PERMUTATION PROBLEM:
INSTANCE: a finite set X = {π1, π2, . . . , πp} of permutations X ⊆ Sn and a positive integer r .
PARAMETERS: p, r .
QUESTION: Is there a permutation τ such that maxπ∈X ds(τ, π) ≤ r?
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Theorem 4. The swap centre permutation problem can be solved in time O(pn+g(p, r)) where g is a function which
depends only from p and r.

Proof. Let

X = {π1, π2, . . . , πp | πi ∈ Sn, i ∈ {1, 2, . . . , p}}.

Suppose that τ ∈ Sn such that

max
πi ∈X

ds(τ, πi ) = Cs(X).

Denote by Y the set of all swaps. Let

αβ = (α[β[1]], α[β[2]], . . . , α[β[n]])

where α, β ∈ Sn . Suppose that

πiγi,1γi,2 . . . γi,ds (τ,πi ) = τ

where

γi,1, γi,2, . . . , γi,ds (τ,πi ) ∈ Y.

For all δ ∈ Sn , denote by γ δ
i, j the permutation S〈u, v〉 such that

δ[u], δ[v] ∈ {s, t},

γi, j = S〈s, t〉.

It is easy to check that

πiγi,1γi,2 . . . γi,ds (τ,πi ) = τ

if and only if

πiδγ
δ
i,1γ

δ
i,2 . . . γ δ

i,ds (τ,πi )
= τδ.

Since, for all 1 ≤ i < j ≤ n, S〈i, j〉 = (S〈i, j〉)−1, it is clear that if

max
πi ∈X

ds(τ, πi ) = Cs(X),

then

max
πi ∈X

ds(τδ, πiδ) = Cs({πiδ | πi ∈ X}).

Let

δ = (l1l2 . . . lmlm+1lm+2 . . . ln),

where

{l1, l2, . . . , ln} = {1, 2, . . . , n},

N = {l | l ∈ {1, 2, . . . , n}, πi [l] = π j [l], i, j ∈ {1, 2, . . . , p}},

{lm+1, lm+2, . . . , ln} = N .

Let f |δ(π) be a bijective function

f |δ : {i | i ∈ {1, 2, . . . , n}\NX } → {1, 2, . . . , m},

where

NX = {π1[i] | i ∈ N }.
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If πi [l] = π j [l], for some l ∈ {1, 2, . . . , n} and for all i, j ∈ {1, 2, . . . , p}, then it is easy to see that in this case
τ [l] = π1[l]. Therefore,

max
πi ∈X

ds(τ, πi ) = Cs(X)

if and only if

max
π ′

i ∈X ′

ds(τ
′, π ′

i ) = Cs(X),

where

{π ′

1, π
′

2, . . . , π
′
p} = X ′,

π ′

1, π
′

2, . . . , π
′
p, τ

′
∈ Sm,

{l1, l2, . . . , lm} = {1, 2, . . . , n}\N ,

l1 < l2 < · · · < lm,

π ′
[s] = f |δ(π [ls]),

τ ′
[s] = f |δ(τ [ls]).

So we can suppose that n ≤ m. It is easy to see that m ≤ 2r p. Clearly, we can obtain N in time O(pn). Therefore,
the swap centre permutation problem can be solved in time O(pn + g(p, r)). �

4.2. The element duplication centre problem

We consider the following parameterizations of the element duplication centre problem.
THE ELEMENT DUPLICATION CENTRE PROBLEM:
INSTANCE: Σ = {a1, a2, . . . , ap}, a finite set S = {s1, s2, . . . , sn} of strings S ⊂ Σ+, and a positive integer r .
PARAMETER: r . (VERSION I)
PARAMETER: n. (VERSION II)
PARAMETER: L = maxsi ∈S |si |. (VERSION III)
QUESTION: Is there a string w such that maxsi ∈S dd(w, si ) ≤ r?
Similarly, we can define the parameterized version of the element duplication median problem.
Since the element duplication centre problem and the element duplication median problem are restrictions of the

SCS problem [28], the element duplication centre problem I and the element duplication median problem I are fixed
parameter tractable.

Note that we can use the reduction in the proof of Theorem 2 for unbounded Γ . Since the SCS problem with
fixed |T | is W[t]-hard for all t [28], it is easy to see that the element duplication centre problem II and the element
duplication median problem II are W[t]-hard for all t .

Let SCS(L) denote the restricted version of SCS in which each input sequence is of length L . It is known that
SCS(L) is NP-hard for all L ≥ 2 [29]. In contrast, the element duplication centre problem III can be solved in time
O(1). It is interesting from the point of view of DNA sequencing.

Theorem 5. The element duplication centre problem III can be solved in time O(1) where O(1) is a function which
depends only from L.

Proof. If maxsi ∈S dd(w, si ) ≤ r , then w is a supersequence of each string si ∈ S. Therefore,

occ(ai , s j ) = 0 ⇔ occ(ai , w) = 0,

for all i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , n}. So we can assume that p ≤ L . Since maxsi ∈S |si | = L , for all
j ∈ {1, 2, . . . , n}, s j ∈ Σ L . It is clear that |Σ L

| ≤ LpL . Since p ≤ L , it is easy to see that |Σ L
| ≤ L L L . Therefore,

we can suppose that n ≤ L L L . Since p ≤ L and n ≤ L L L , the element duplication centre problem III can be solved
in time O(1). �

Similarly, we can prove that the element duplication median problem III can be solved in time O(1).
Note that if we suppose that S is a multiset, then the element duplication centre problem III can be solved in linear

time.
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