MATHEMATICS

THE EXPECTED NODE-INDEPENDENCE NUMBER OF RANDOM TREES

BY

A. MEIR and J. W. MOON

(Communicated by Prof. N. G. de Bruidn at the meeting of February 24, 1973)

§ 1. Summary

We shall derive a formula for the expected value $\mu(n)$ of the node-independence number of a random tree with n labelled nodes and we shall determine the asymptotic behaviour of $\mu(n)$ as n tends to infinity.

§ 2. Introduction

A subset S of nodes of a graph G is independent if no two nodes of S are joined by an edge in G. The node-independence number of G is the number $N(G)$ of nodes in any largest independent subset of nodes of G. There are n^{n-2} trees T with n labelled nodes; let $\mu(n)$ denote the expected value of $N(T)$ over the set of such trees. (For definitions not given here see [1] or [2].) Our main object is to show that

$$
\mu(n)=\sum_{k=1}^{n}\binom{n}{k}\left(\frac{-k}{n}\right)^{k-1}
$$

for $n=1,2, \ldots$, and that

$$
\mu(n) / n \rightarrow \varrho,
$$

as $n \rightarrow \infty$, where $\varrho=.5671 \ldots$ is the unique solution of the equation $x e^{x}=1$. We also give an estimate for the variance of $N(T)$ which is used to show that

$$
\operatorname{Pr}\left\{\left|\frac{N(T)}{n}-\varrho\right|<\varepsilon\right\} \rightarrow 1
$$

as $n \rightarrow \infty$ for any fixed positive ε.

§ 3. Some lemmas

Let T denote a tree that is rooted at some node r. If every set of $N(T)$ independent nodes of T contains r we say T is a type I tree; if at least one set of $N(T)$ independent nodes of T does not contain r we say T is a type II tree. If we remove the root r of T we obtain a (possibly empty) collection of rooted trees U_{1}, \ldots, U_{j} whose roots were originally joined to r. The proof of the following lemma is a straightforward exercise.

Lemma 1. If each of the rooted trees U_{1}, \ldots, U_{j} is a type II tree, then T is a type I tree and

$$
\begin{equation*}
N(T)=1+\sum_{i=1}^{j} N\left(U_{i}\right) \tag{1}
\end{equation*}
$$

if at least one of the rooted trees U_{1}, \ldots, U_{j} is a type I tree, then T is a type II tree and

$$
\begin{equation*}
N(T)=\sum_{i=1}^{j} N\left(U_{i}\right) \tag{2}
\end{equation*}
$$

Let $y_{k, n}$ denote the number of rooted trees T with n labelled nodes such that $N(T)=k$; let $g_{k, n}$ and $f_{k, n}$ denote the number of these trees that are of types I and II, respectively. Consider the generating functions

$$
\begin{aligned}
& Y=Y(z, x)=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} y_{k, n} z^{k}\right) \frac{x^{n}}{n!}, \\
& G=G(z, x)=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} g_{k, n} z^{k}\right) \frac{x^{n}}{n!},
\end{aligned}
$$

and

$$
F=F(z, x)=\sum_{n=1}^{\infty}\left(\sum_{k=1}^{n} f_{k, n} z^{k}\right) \frac{x^{n}}{n!} .
$$

Since $g_{k, n}+f_{k, n}=y_{k, n}$ and $\sum_{k} y_{k, n}=n^{n-1}$, the number of rooted trees with n labelled nodes, it follows that these series converge for $|z| \leqslant 1$ and $|x| \leqslant e^{-1}$ and that

$$
\begin{equation*}
Y=G+F \tag{3}
\end{equation*}
$$

Lemma 2. The functions G, F and Y satisfy the relations

$$
\begin{equation*}
G=z x e^{F} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
F=x\left(e^{G}-1\right) e^{F}, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
Y=x e^{Y}+(z-1) x e^{F} \tag{6}
\end{equation*}
$$

Proof. Suppose the rooted tree T is a type I tree; then each of the rooted trees U_{1}, \ldots, U_{j} obtained by removing the root of T is a type II tree by Lemma 1. The generating function for families of j rooted type II trees is F^{\prime} / j ! for $j=0,1, \ldots$. It follows, therefore, that

$$
G=z x\left\{1+F+F^{2} / 2!+\ldots\right\}=z x e^{F} ;
$$

the factor x is present to account for the root of T and the factor z is present because of equation (1).

If T is a type II tree then at least one of the rooted trees U_{1}, \ldots, U_{j} must be a type I tree; the generating function for non-empty families of type I trees is

$$
G+G^{2} / 2!+\ldots=e^{G}-1
$$

There may or there may not be some type II trees among the trees U_{1}, \ldots, U_{j} this time; the gencrating function for (possibly empty) familics of type II trees is e^{F}, as before. These observations imply that

$$
F=x\left(e^{G}-1\right) e^{F} ;
$$

the factor x is again present to account for the root of T, but because of equation (2) the factor z is not included here. Since $Y=G+F$ it now follows from equations (4) and (5) that

$$
Y=x z e^{F}+x e^{G+F}-x e^{F}=x e^{Y}+(z-1) x e^{F},
$$

as required.
If we set $y=y(x)=Y(1, x), g=g(x)=G(1, x)$ and $f=f(x)=F(1, x)$, then

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} n^{n-1} \frac{x^{n}}{n!} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
y=x e^{y} \tag{8}
\end{equation*}
$$

appealing to the definition of Y and relation (6). (Relation (8) is well known; see [2; p. 26].) If follows from (4) that

$$
\begin{equation*}
g=x e^{f} \tag{9}
\end{equation*}
$$

and since $y=f+g$, by (3), it follows from (8) and (9) that

$$
\begin{equation*}
y=x e^{f+g}=g e^{g} \tag{10}
\end{equation*}
$$

Relations (7)-(10) are valid for $|x| \leqslant e^{-1}$.
Lemma 3. Let

$$
M(x)=\sum_{n=1}^{\infty} \mu(n) n^{n-1} \frac{x^{n}}{n!}
$$

then

$$
M(x)=\frac{g(x)}{1-y(x)}
$$

for $|x|<e^{-1}$.
Proof. Since $\mu(n)=n^{1-n} \sum_{k} k y_{k, n}$ it follows that $M(x)=(\partial Y / \partial z)_{z=1}$. If we differentiate both sides of equation (6) with respect to z, set $z=1$, and appeal to equations (8) and (9), we obtain the required result.
§ 4. A formula for $\mu(n)$
Theorem 1. Let $n=1,2, \ldots$; then

$$
\mu(n)=\sum_{k=1}^{n}\binom{n}{k}\left(\frac{-k}{n}\right)^{k-1}
$$

Proof. Since $y=g e^{g}$ for $|x| \leqslant e^{-1}$ and $y=0(x)$ as $x \rightarrow 0$, the first form of Lagrange's inversion formula (see [3; p. 125, exercise 206]) implies that

$$
g=\sum_{k=1}^{\infty}(-k)^{k-1} \frac{y^{k}}{k!}
$$

for sufficiently small values of x. Furthermore, since $y=x e^{y}$ for $|x| \leqslant e^{-1}$ the second form of Lagrange's formula (see [3; p. 125, exercise 207]) implies that

$$
\begin{equation*}
\frac{y^{k}}{1-x e^{y}}=\sum_{n=k}^{\infty} n^{n-k} \frac{x^{n}}{(n-k)!} \tag{11}
\end{equation*}
$$

for $k=0,1, \ldots$ and sufficiently small values of x. Hence,

$$
\begin{aligned}
M(x)=\frac{g}{1-y} & =\frac{g}{1-x e^{y}}=\sum_{k=1}^{\infty} \frac{(-k)^{k-1}}{k!} \sum_{n=k}^{\infty} n^{n k} \frac{x^{n}}{(n-k)!} \\
& =\sum_{n=1}^{\infty} n^{n-1} \frac{x^{n}}{n!} \sum_{k=1}^{n}\binom{n}{k}\left(\frac{-k}{n}\right)^{k-1} .
\end{aligned}
$$

This suffices to complete the proof of the theorem.
§ 5. The asymptotic behaviour of $\mu(n)$
Theorem 2. Let ϱ denote the unique solution of the equation $x e^{x}=1$ so that $\varrho=.5671 \ldots$; then

$$
\mu(n)=\varrho n+0\left(n^{1 / 2}\right),
$$

as $n \rightarrow \infty$.
Proof. Let a_{n} denote the fraction of rooted trees with n labelled nodes that are type I trees so that

$$
g(x)=\sum_{n=1}^{\infty} a_{n} n^{n-1} \frac{x^{n}}{n!}
$$

clearly, $0 \leqslant a_{n} \leqslant l$. It follows from (7) that $y\left(e^{-1}\right)$ is finite and from the relation $y=x e^{y}$ that $y\left(e^{-1}\right)=1$; furthermore, since $y=g e^{0}$ it follows that $g\left(e^{-1}\right)=\varrho$. Thus if we set $\alpha_{n}=a_{n} n^{n-1} / n!$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \alpha_{n} e^{-n}=\varrho \tag{12}
\end{equation*}
$$

and there is an absolute constant c_{1} such that

$$
\begin{equation*}
\alpha_{n} e^{-n}<c_{1} n^{-3 / 2} \tag{13}
\end{equation*}
$$

for $n=1,2, \ldots$.
If we set $k=0$ in equation (11) we find that

$$
(1-y(x))^{-1}=\sum_{n=0}^{\infty} n^{n} \frac{x^{n}}{n!}
$$

where we adopt the convention that $0^{0}=1$. (This expansion also follows from the fact that $(1-y)^{-1}=1+x y^{\prime}$ which may be established by differentiating the relation $y=x e^{y}$.) If we substitute these expansions for $g(x)$ and $(1-y(x))^{-1}$ in the formula for $M(x)$ given in Lemma 3 and then equate coefficients of x^{n}, we find that

$$
\begin{equation*}
\frac{\mu(n)}{n}=\sum_{k=1}^{n} \alpha_{k} e^{-k} \beta_{k, n} \tag{14}
\end{equation*}
$$

where

$$
\beta_{k, n}=\frac{n!}{n^{n}} \frac{(n-k)^{n-k}}{(n-k)!} e^{k} .
$$

(Notice that $\beta_{k, n}>1$ when $1 \leqslant k \leqslant n$ so

$$
\frac{\mu(n)}{n}>\sum_{k=1}^{n} \alpha_{k} e^{-k}
$$

for all n.)
It follows from Stirling's formula that there exist absolute constants c_{2} and c_{3} such that

$$
\begin{equation*}
\beta_{k, n}<c_{2} n^{1 / 2}(n-k+1)^{-1 / 2} \tag{15}
\end{equation*}
$$

when $1 \leqslant k \leqslant n$, and

$$
\begin{equation*}
\left|\beta_{k, n}-1\right|<c_{3} k n^{-1} \tag{16}
\end{equation*}
$$

when $1 \leqslant k \leqslant \frac{1}{2} n$. Hence,

$$
\begin{equation*}
\sum_{k \leqslant+n} \alpha_{k} e^{-k} \beta_{k, n}=\sum_{k \leqslant \sharp n} \alpha_{k} e^{-k}+0\left(n^{-1}\right) \sum_{k \leqslant \exists n} k^{-1 / 2}=\varrho+0\left(n^{-1 / 2}\right) \tag{17}
\end{equation*}
$$

by (16), (12) and (13); furthermore,

$$
\begin{equation*}
\sum_{i n<k \leqslant n} \alpha_{k} e^{-k} \beta_{k, n}=0\left(n^{-1}\right) \sum_{\dot{t}<k \leqslant n}(n-k+1)^{-1 / 2}=0\left(n^{-1 / 2}\right) \tag{18}
\end{equation*}
$$

by (13) and (15). It now follows from (14), (17) and (18) that

$$
\mu(n) / n=\varrho+0\left(n^{-1 / 2}\right)
$$

as required.

The entries in the following table were obtained using Theorem 1 and were verified by examining the diagrams of the trees with up to ten nodes given in [1; pp. 233-234].

Table: Values of $\mu(n) / n$

n	1	2	3	4	5	6	7	8	9	10
$\mu(n) / n$	1	.5	.6667	.5625	.6080	.5748	.5894	.5770	.5818	.5766

\S 6. The variance of $N(T)$

Let $\lambda(n)$ denote the second factorial moment of $N(T)$ over the set of the n^{n-2} trees T with n labelled nodes and let $\sigma^{2}(n)$ denote the variance of $N(T)$ over the same set. If we differentiate both sides of equation (6) with respect to z twice, set $z=1$, and appeal to the relations that have been established for Y, G and F, we find after some calculations that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda(n) n^{n-1} \frac{x^{n}}{n!}=\left(\frac{\partial^{2} Y}{\partial z^{2}}\right)_{z=1} \\
& =\frac{y g^{2}}{(1-y)^{3}}+\frac{2 y g^{2}}{(1+g)(1-y)^{2}} \\
& =\left(x^{2} y^{\prime \prime}+x y^{\prime}\right) g^{2}+\frac{2 g^{2}}{y(1+g)}\left(x y^{\prime}\right)^{2}
\end{aligned}
$$

Using this identity, equation (12), and Stirling's formula, we can show by an elementary but tedious argument that

$$
\begin{equation*}
\lambda(n)=\varrho^{2} n^{2}+0\left(n^{3 / 2}\right) \tag{19}
\end{equation*}
$$

as $n \rightarrow \infty$; we omit the details of his argument. Relation (19) and Theorem 2 imply that

$$
\begin{equation*}
\sigma^{2}(n)=\lambda(n)+\mu(n)-\mu^{2}(n)=0\left(n^{3 / 2}\right) \tag{20}
\end{equation*}
$$

The following result now follows immediately from Theorem 2, equation (20), and Chebyshev's inequality.

Theorem 3. If $N(T)$ denotes the node-independence number of a tree T chosen at random from the set of the n^{n-2} trees with n labelled nodes, then

$$
\operatorname{Pr}\left\{\left|\frac{N(T)}{n}-\varrho\right|<\varepsilon\right\} \rightarrow 1
$$

as $n \rightarrow \infty$ for any fixed position ε.

§ 7. Independent edges in a random tree

A subset of edges of a graph G is independent if no two of the edges have a node in common. The edge-independence number of G is the number
$E(G)$ of edges in any largest independent subset of edges of G. If T is any tree with n nodes, then theorems of Gallai and König (see [1; pp. 95-96]) imply that

$$
N(T)+E(T)=n .
$$

The following result now follows from Theorems 1 and 2 .
Theorem 4. If $v(n)$ denotes the expected value of $E(T)$ over the set of the n^{n-2} trees T with n labelled nodes, then

$$
v(n)=-\sum_{k=2}^{n}\binom{n}{k}\left(\frac{-k}{n}\right)^{k-1}
$$

for $n=2,3, \ldots$, and

$$
\nu(n) / n \rightarrow 1-\varrho=.4329 \ldots
$$

as $n \rightarrow \infty$.

§ 8. Acknowledgements

The authors are indebted to Professor N. G. de Bruijn for suggestions that led to shorter proofs of Theorems 1 and 2 than the ones they originally gave; in particular, the idea of expressing the node-independence number of T in terms of the node-independence numbers of the subtrees attached to the root of T and the results in $\S 3$ are due to him.

The preparation of this paper was assisted by grants from the National Research Council of Canada.

University of Alberta

REFERENCES

1. Harary, F., Graph Theory, Addison-Wesley, Reading, 1969.
2. Moon, J. W., Counting Labelled Trees, Canadian Mathematical Congress, Montreal, 1970.
3. Pólya, G. and G. Szeqö, Aufgaben und Lehrsätze aus der Analysis, I, Springer, Berlin, 1964.
