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8 1. SUMMARY 
We shall derive a formula. for the expected value r(n) of the node-independence 

number of a, random tree with n l&belled nodes and we shall determine the asymp- 
totic behaviour of a(n) aa n tends to infinity. 

3 2. INTRODUCTION 

A subset S of nodes of a graph G is independent if no two nodes of S 
are joined by an edge in G. The node-independence number of G is the 
number N(G) of nodes in any largest independent subset of nodes of G. 
There are nn-2 trees T with n labelled nodes; let p(n) denote the expected 
value of N(T) over the set of such trees. (For definitions not given here 
see [l] or [2].) 0 ur main object is to show that 

for n=l, 2, . . . . and that 

as n+ 00, where ~=.5671 . . . is the unique solution of the equation 
xes= 1. We also give an estimate for the variance of N(T) which is used 
to show that 

as n + 00 for any fixed positive E. 

$ 3. SOME LEMMAS 

Let T denote a tree that is rooted at some node r. If every set of N(T) 
independent nodes of T contains r we say T is a type I tree; if at least 
one set of N(T) independent nodes of T does not contain r we say T 
is a type II tree. If we remove the root r of T we obtain a (possibly empty) 
collection of rooted trees Ui, . . ., U, whose roots were originally joined 
to r. The proof of the following lemma is a straightforward exercise. 
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LEMMA 1. If each of the rooted trees Ui, . . . . U,r is a type II tree, 
then T is .a type I tree and 

(1) N(T)=l+ i N(&); 
i-1 

if at least one of the rooted trees Ui, . . . . VI is a type I tree, then T is a 
type II tree and 

N(T) = i N( Ur). 
i-l 

Let y&n denote the number of rooted trees T with n labelled nodes 
such that N(T)=k; let gk, m and f&n denote the number of these trees 
that are of types I and II, respectively. Consider the generating functions 

and 

F=F(z, x)= 2 5 f nsl (k-1 -zk) $0 

f&Ice gk,nf fk,n= yk,n and zkyk,n=n n-1, the number of rooted trees with 
n labelled nodes, it follows that these series converge for 121~ 1 and 1x1~ e-1 
and that 

(3) Y=G+F. 

LEMMA 2. The functions G, F and Y satisfy the relations 

(4) G = zxeF, 

(5) 

and 

(6) 

F=x(eG - I)eF, 

Y=xeY+(x-l)xeF. 

PROOF. Suppose the rooted tree T is a type I tree ; then each of the 
rooted trees Vi, . . . . Ug obtained by removing the root of T is a type II 
tree by Lemma 1. The generating function for families of j rooted type II 
trees is FI/j! for j= 0, 1, . . . . It follows, therefore, that 

G=zx{l+F+F2/2!+...}=zxeF; 

the factor x is present to account for the root of T and the factor x is 
present because of equation (1). 
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If T is a type II tree then at least one of the rooted trees Ui, . .., UJ 
must be a type I tree ; the generating function for non-empty families 
of type I trees is 

G+G2/2!+...=eo-1. 

There may or there may not be some type II trees among the trees 

Ul, **., CT, this time; the generating function for (possibly empty) families 
of type II trees is eF, as before. These observations imply that 

F=x(eG-1)eF; 

the factor x is again present to account for the root of T, but because 
of equation (2) the factor x is not included here. Since Y = G + F it now 
follows from equations (4) and (5) that 

as required. 

Y =x~~eF+xeG+~ -xeF =xeY+ (z - l)xeF, 

If we set y=y(x)= Y(l, x), g=g(z)=G(l, x) and f=f(x)=F(l, x), then 

(7) Y=Z ;; mm-1 - 
n=1 

and 

(8) y = xey, 

appealing to the definition of Y and relation (6). (Relation (8) is well 
known; see [2; p. 261.) If follows from (4) that 

(9) g=xef 

and since y = f + g, by (3), it follows from (8) and (9) that 

(10) y = xef+S = g@. 

Relations (7)-(10) are valid for 1x1 <e-l. 

LEMMA 3. Let 

M(x)= 5 p(n)nn-l 
n=1 

then 

M(x)= go 
l-Y(X) 

for 1x1 <e-i. 

29 
-; n! 

PROOF. Since r(n) =ni-n L;, kyk, 12 it follows that M(x)=(bY/bz),=,. 
If we differentiate both sides of equation (6) with respect to x, set x= 1, 
and appeal to equations (8) and (9), we obtain the required result. 
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$ 4. A FORMULA FOR ,u(n) 

THEOREM 1. Let n=l, 2, . . . . then 

PROOF. Since y=g@ for Ix/ <e--i and y = O(x) as x + 0, the first form 
of Lagrange’s inversion formula (see [3 ; p. 125, exercise 2061) implies that 

g= 2 (-k)k-1$ 
k-l 

for sufficiently small values of x. Furthermore, since y=xev for 1x1 G e-i 
the second form of Lagrange’s formula (see [3; p. 125, exercise 2071) 
implies that 

(11) Yk -- = 
l- xeg 

for k=O, 1, . . . and sufficiently small values of x. Hence, 

M(x)=L=-= 9 
1-Y l-xeg 

This suffices to complete the proof of the theorem. 

5 5. THE ASYMPTOTIC BEHAVIOUR OF ,u(n) 

THEOREM 2. Let Q denote the unique solution of the equation xex = 1 
so that g=.5671 . . . . then 

as n-too. 

p(n) = en+ O(n1/2), 

PROOF. Let a, denote the fraction of rooted trees with n labelled 
nodes that are type I trees so that 

g(x)= 2 
Xn 

a, W-l - ; 
n=1 n! 

clearly, 0 Q a, Q 1. It follows from (7) that y(e-1) is finite and from the 
relation y=xeu that y(e-1) = 1; furthermore, since y=geg it follows that 
g(e-1) = g. Thus if we set ol,, = aRnn-i/n !, then 

(12) 
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and there is an absolute constant cl such that 

(13) 
for n=l, 2, . . . . 

If we set k= 0 in equation (11) we find that 

where we adopt the convention that OO= 1. (This expansion also follows 
from the fact that (1 -y)-1 = 1 + xy’ which may be established by differ- 
entiating the relation y =xeY.) If we substitute these expansions for g(z) 
and (1 -y(z))-1 in the formula for M(x) given in Lemma 3 and then equate 
coefficients of xn, we find that 

(14) k4n) n -= 
n 2 ake-kpk,n 

k-l 
where 

n ! (n - kp-k 
@k+=z (n-jq! ek. 

(Notice that ,8k,n> 1 when 1 <kgn so 

An) n n > 2 &ke-k 
k=l 

for all n.) 
It follows from Stirling’s formula that there exist absolute constants 

cz and c3 such that 

(15) Bk,7a<c2n1/2(n --k+ 1)-W 

when l<E<n, and 

(16) 118k,n-11<C3kn-1 

when 1 Q lc< in. Hence, 

by (16), (12) and (13); furthermore, 

(18) ak eek ,8k, m = O(n-‘) z (n----k + 1)-l/2 = O(n-1’2) 
tn<k<a tn<k<n 

by (13) and (15). It now follows from (14), (17) and (18) that 

as required. 

p(n)/n = Q + O(n-1/2) 
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The entries in the following table were obtained using Theorem 1 and 
were verified by eTamining the diagrams of the trees with up to ten nodes 
given in [l; pp. 233-2341. 

TABLE: Values of p(n)/n 

n 12 3 4 5 6 7 8 9 10 

p(n)/n 1 .5 .6667 .5625 .6080 .5748 .5894 .5770 .5818 .5766 

3 6. THE VARIANCE OF N(T) 

Let n(n) denote the second factorial moment of N(T) over the set of 
the nn-2 trees T with n labelled nodes and let S(n) denote the variance 
of N(T) over the same set. If we differentiate both sides of equation (6) 
with respect to x twice, set z= 1, and appeal to the relations that have 
been established for Y, G and P, we find after some calculations that 

nzl fl(n)nP-l 5 = (g) 
z=1 

2Y# =- 
(lZ)Z + Cl+ t-7) (1-YJ2 

= (x2 y" + xy') 92 + &) (XY’Y. 

Using this identity, equation (12), and Stirling’s formula, we can show 
by an elementary but tedious argument that 

(19) A(n) = e2n2 + O(n3i2) 

as n -+ oo ; we omit the details of his argument. Relation (19) and Theorem 
2 imply that 

(20) S(n) =A(n) +p(n) -@(n) = O(nY2). 

The following result now follows immediately from Theorem 2, equation 
(20), and Chebyshev’s inequality. 

THEOREM 3. If N(T) d enotes the node-independence number of a tree 
T chosen at random from the set of the nn-2 trees with n labelled nodes, 
then 

as n + 00 for any fixed position E. 

Q 7. INDEPENDENT ~cDc+~s IN A RANDOM TREE 

A subset of edges of a graph G is independent if no two of the edges 
have a node in common. The edge-independence number of G is the number 
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E(G) of edges in any largest independent subset of edges of G. If T is 
any tree with n nodes, then theorems of Gallai and KGnig (see [l; 
pp. 95-961) imply that 

N(T)+E(T)=n. 

The following result now follows from Theorems 1 and 2. 

THEOREM 4. If y(n) denotes the expected value of E(T) over the set 
of the e-2 trees T with ?a labelled nodes, then 

for n=2, 3, ,.., and 
v(n)/n + 1 -e = .4329 . . . 

as n+m. 
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