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Abstract

The genome of the Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a group II NPV which infects the cabbage looper (7. ni), has
been completely sequenced and analyzed. The TnSNPV DNA genome consists of 134,394 bp and has an overall G + C content of 39%. Gene
analysis predicted 144 open reading frames (ORFs) of 150 nucleotides or greater that showed minimal overlap. Comparisons with previously
sequenced baculoviruses indicate that 119 TnSNPV ORFs were homologues of previously reported viral gene sequences. Ninety-four
TnSNPV ORFs returned an Autographa californica multiple NPV (AcMNPV) homologue while 25 ORFs returned poor or no sequence
matches with the current databases. A putative photolyase gene was also identified that had highest amino acid identity to the photolyase
genes of Chrysodeixis chalcites NPV (ChchNPV) (47%) and Danio rerio (zebrafish) (40%). In addition unlike all other baculoviruses no
obvious homologous repeat (4r) sequences were identified. Comparison of the TnSNPV and AcMNPV genomes provides a unique
opportunity to examine two baculoviruses that are highly virulent for a common insect host (7 ni) yet belong to diverse baculovirus
taxonomic groups and possess distinct biological features. In vitro fusion assays demonstrated that the TnSNPV F protein induces membrane
fusion and syncytia formation and were compared to syncytia formed by AcMNPV GP64.

Crown Copyright © 2005 Published by Elsevier Inc. All rights reserved.

Keywords: Trichoplusia ni nucleopolyhedrovirus genome; TnSNPV; Baculovirus; Photolyase

Introduction limited trial basis for the control of 7. ni (Jaques, 1974)

and is a potential alternative to B. thuringiensis.

The cabbage looper (Trichoplusia ni) (Lepidoptera:
Noctuidae) is becoming a serious pest of the greenhouse
industry in the Fraser Valley of British Columbia,
Canada, due to resistance to Bacillus thuringiensis-based
bioinsecticides (Janmaat and Myers, 2003). 7. ni single
nucleopolyhedrovirus (TnSNPV) has been used on a

* Corresponding author. Pacific Agri-Food Research Centre, Agriculture
and Agri-Food Canada, 4200 Highway 97, Summerland, BC, Canada VOH
1Z0. Fax: +1 250 494 0755.

E-mail address: TheilmannD@agr.gc.ca (D.A. Theilmann).

Baculoviruses with their high rate of infection, high
efficacy in control of target species and low impact on
non-target organisms are attractive alternative to tradi-
tional chemical pesticides.

The Baculoviridae are a diverse family of rod-shaped,
occluded viruses that have circular dsDNA genomes
ranging in size from 80 to 180 kb. They are divided
into two genera: the Nucleopolyhedrovirus (NPVs) and
the Granulovirus (GVs). NPVs typically produce large
occlusion bodies (OBs) containing numerous virions
while GVs produce smaller granular OBs containing
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single virions. NPVs have been further subdivided into
two distinct groups (I and II) based on molecular
phylogenetic characteristics (Zanotto et al., 1993). Two
naturally occurring, but biologically distinct baculoviruses
have been identified that infect and kill early instar 7 ni
larvae, TnSNPV and Autographa californica multiple
nucleopolyhedrovirus (AcMNPV). AcMNPV, the arche-
type baculovirus, is a group I NPV that exhibits a broad
host range across numerous lepidopteran species including
T. ni. Conversely, TnSNPV exhibits a narrow host range
infecting 7. ni exclusively and is a group II NPV. These
two viruses provide a unique opportunity to develop a
model system that will identify the shared and unique
molecular features found between these two distinct viral
systems.

In this study the complete genome of TnSNPV has been
sequenced and analyzed to provide a framework for
determining the molecular basis for the biological differ-
ences between AcMNPV and TnSNPV. The TnSNPV
genome comprises 134,394 bp and codes for 144 putative
genes having open reading frames of 150 nucleotides or
longer. Comparative analysis of these two viruses has
shown that they contain many genes that are evolutionarily
related, as well as genes such as the F protein, that may play
a role in their observed biological differences. Bioinformatic
analyses also identified a putative type II cyclobutane
pyrimidine dimer-photolyase in the TnsNPV genome, which
was characterized by sequence alignment and phylogenetic
analysis.

Results
Nucleotide sequence analysis of the TnSNPV genome

A linear map of the 144 predicted open reading frames
(ORFs) for the complete TnSNPV genome is illustrated in
Fig. 1. Arrows indicate open reading frames and the
direction of transcription (left to right clockwise, right to
left counterclockwise). Previous estimates for the molecular
mass of the TnSNPV genome ranged from 115.5 to 119.2
kbp (Davis and Wood, 1996). Sequence data obtained from
the contiguous assembly of 2233 sequences produced a
genome size of 134,394 bp (accession no. DQO017380),
slightly larger than that of AcMNPV (133,894 bp). The
overall G + C content of the entire genome was 39.0%,
similar to the content recorded for ACMNPV (41%) (Ayres
et al,, 1994). Initial ORF prediction carried out using
Genemark (Borodovsky and McIninch, 1993) identified 303
putative coding regions. ORFs were defined as methionine-
initiated open reading frames encoding putative proteins of
more than 50 amino acids with minimal overlap. Homology
searches with these putative ORFs were performed using a
standalone implementation of BLAST using the tBlastx
(translated query vs. translated database), Blastn (nucleotide
vs. nucleotide) and Blastp (protein vs. protein) algorithms.

A total of 144 putative ORFs, including the 29 core genes
found in all baculoviruses (Lauzon et al., 2004) and the 62
genes common among members with lepidopteran hosts
(Herniou et al., 2003), were identified.

According to convention, the adenine residue of the start
codon of the polyhedrin ORF was designated as the zero
point in the genome. Sixty-nine ORFs were found to code in
a clockwise (+) orientation with respect to the transcrip-
tional orientation of the polyhedrin gene (ORF 1) and 75
ORFs were found to code in the counter clockwise
orientation. Appreciable overlap occurred between 25
ORFs. Table 1 outlines the characteristics of the 144
putative ORFs from TnSNPV. Identity and similarity scores
with AcCMNPV and non-AcMNPV homologues uncovered
by Blast were calculated with ClustalW using the Blosum62
scoring matrix.

Homologous repeat sequences

Variable numbers of homologous region (4r) sequences,
composed of direct repeats which contain an imperfect
palindrome core, have been identified in all of the
currently sequenced baculovirus genomes (Kool et al.,
1995). These regions range in number from a low of 4 in
PlxyGV (Hashimoto et al., 2000) to a high of 13 in
LAMNPV (Kuzio et al., 1999). Homologous regions have
been shown to enhance RNA polymerase II-mediated
transcription of baculovirus early promoters (Guarino and
Summers, 1986; Theilmann and Stewart, 1992) and serve
as origins of replication in transient replication assays
(Ahrens et al., 1995; Kool et al., 1995; Pearson and
Rohrmann, 1995; Pearson et al., 1992; Theilmann and
Stewart, 1992). Unlike AcMNPV no obvious /r sequences
were identified in TnSNPV; however, two regions that may
function as Ars were identified as they contained short
homologous repeat sequences with limited similarity (nt
43140-44236 and 125146—125520; Fig. 1). A number of
additional sequences were identified in the TnSNPV
genome using DotPlot analysis (DNASTAR) that con-
tained a number of short repeat sequences (1233—1347,
2782-2893, 39821-39907, 45290-45342). These short
repeat sequences were separated by variable lengths of
intervening sequences. No homology between these
TnSNPV sequences and other baculovirus Ar sequences
was observed.

Baculovirus-repeated ORFs (bro genes)

Bro genes show sequence similarity to ACMNPV ORF 2
(Ayres et al., 1994) and have been identified with varying
frequency in a number of other baculoviruses including 16
in LAMNPV (Kuzio et al., 1999), 5 in BmNPV (Gomi et al.,
1999; Kang et al., 1999), 3 in OpMNPV (Ahrens et al.,
1997), 3 in HearNPV (Chen et al., 2001) and 7 in XecnGV
(Hayakawa et al., 2000). Bro genes have also been found to
be associated with regions of viral genome rearrangement
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Fig. 1. Linear map of the 144 predicted ORFs for the complete TnSNPV genome. Arrows indicate open reading frames and the direction of transcription. ORFs
were defined as methionine-initiated open reading frames encoding putative proteins of more than 50 amino acids with minimal overlap. According to
convention, the adenine residue of the start codon of the polyhedrin gene was designated as the zero point in the genome. Sixty-nine ORFs were found to code
in a clockwise (+) orientation with respect to the transcriptional orientation of the polyhedrin gene (ORF 1) and 75 ORFs were found to code in the counter
clockwise orientation.

but the molecular basis for this is unknown (Li et al., 2002a, Genes associated with virion structure

2005). Two baculovirus-repeated ORFs (bro genes) were

identified in TnSNPV (ORF 108 and 129) and were The 15 structural protein genes conserved in all
designated brol to bro2, respectively, based on their order baculoviruses sequenced to date (Hayakawa et al., 2000)

in the genome. are also present in TnSNPV. These structural protein genes
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include those coding for capsid-associated proteins vp39
(ORF 77), vp91 (ORF 76) and odv-ec27 (ORF 13); basic
DNA binding protein p6.9 (ORF 22); ODV envelope
proteins odv-e¢18 (ORF 12), odv-e25 (ORF 81), odvp-6e
(ORF 8) and odv-e66 (ORF 96); ODV-associated proteins
tegument protein gp41 (ORF 73) and p74 (ORF 17); genes
for proteins associated with the occlusion body, polyhedrin
(ORF 1) and p10 (ORF 18); as well as vp1054 (ORF 42)
and pk-1 (ORF 3). An Ld130 or fusion protein homologue
was found at ORF 143. Interestingly, TnSNPV polyhedrin
(ORF 1) was nearly 100% identical to the polyhedrin gene
of an NPV isolated from Thysanoplusia orichalcea L.
(Lepidoptera: Noctuidae) (ThorNPV) in Indonesia (Cheng
and Carner, 2000). The two genes differed at amino acid
123 where a valine was present in TnSNPV and an
isoleucine in ThorNPV. Comparison of TnSNPV REN
profiles with published restriction fragment profile of
ThorNPV showed that there is extensive variation between
the profiles of the two genomes indicating they are not the
same virus.

Regulation of gene expression

Ten genes were previously identified as being required
for maximal late gene expression in AcMNPV (Lu and
Miller, 1995). Nine of these genes were identified in the
TnSNPV genome: lef-4 (ORF 78), lef-5 (ORF 87), lef-6
(ORF 21), lef-8 (ORF 33), lef-9 (ORF 49), lef~10 (ORF 41),
lef-11 (ORF 27), 39k (ORF 26) and p47 (ORF 31). A lef-12
homologue was not identified. Similarly, no lef~12 homo-
logue was identified from the analysis of the group II
Mamestra configurata NPV (MacoNPV) genome (Li et al.,
2002b).

Inhibitors of apoptosis

The baculovirus p35-like genes were the first baculovirus
gene family shown to be involved in the inhibition of
apoptosis (Clem, 1997). A second family of inhibitors of
apoptosis (iap) has been found in all members of the
Baculoviridae sequenced to date. Apoptotic inhibition has
been rescued in AcMNPV p35 deletion mutants with a
variety of baculovirus iap homologues (Seshagiri and
Miller, 1997). Two TnSNPV ORFs (35 and 58) show
homology to iap genes. ORF 35 shows strong homology
with numerous baculovirus homologues as well as
AcMNPV iap-1. ORF 58 shows strong homology with
AcMNPV iap-2. No p35 or AcMNPV iap-4 homologues
were identified in TnSNPV.

Auxiliary genes

Auxiliary genes are defined as being non-essential for
viral replication, but they provide a selective advantage to
the virus in terms of its epizoological relationships with
insect hosts. Baculovirus genomes can often contain a large

variety of auxiliary genes. These genes include proliferating
cell nuclear antigen (pcna), protein tyrosine phosphatase
(ptp), ubiquitin, pl0, superoxide dismutases (sod), con-
otoxin-like peptide (ctl), cathepsin, chitinase, ecdysteroid
UDP-glucosyltransferase (egt), fibroblast growth factor
(fef), actin rearrangement-inducing factor-1 (arif-1), viral
enhancing factor (vef) and protein kinase (pk) 1 and 2.
Homologues for all these genes except vef and pk2 were
found in the TnSNPV genome.

Transcriptional regulation

Putative early and late promoters were identified by
searching 125 bp upstream of each ORF ATG start codon for
either the TATA with a CAKT capsite (located approxi-
mately 25—40 bp downstream) or the DTAAG motif. Table
1 indicates L and or E for the presence of late and early
promoters, respectively. A total of 166 putative early and
late promoters were identified. In many cases two putative
promoters could be identified for a single open reading
frame. Eight ORFS (2, 6, 26, 27, 34, 67, 132 and 137)
displayed a classic late or early promoter motif outside the
designated 125 bp upstream region. Two additional ORFs
(62 and 75) both contained late promoter motifs 3’ of the
ATG start site. A promoter motif could not be identified 5
of the putative ATG start site on the remaining 46 ORFs. It
seems likely that additional, as yet unidentified, promoter
sequences might exist within the TnSNPV genome, similar
to other baculoviruses.

Homology between TnSNPV, AcMNPV and other
baculoviruses

TnSNPV (narrow host range) and AcMNPV (broad host
range) can co-exist simultaneously within 70 ni and yet
display the very different genetic properties of type II and
type I NPVs, respectively. To identify genes that may be
related to the biological differences and similarities of these
viruses, it is helpful to identify both homologous and non-
homologous gene sequences between the two viruses.
Additionally, the levels of homology with other single and
multiple nucleopolyhedrovirus genes may also help con-
tribute to a better understanding of evolutionary relation-
ships and host range.

The key properties of the TnSNPV genome are outlined
in Table 1, which shows homology to AcCMNPV genes and
also the best hit to a non-AcMNPV gene. In order to assess
their relative protein identity and similarity with the
AcMNPV genome, each TnSNPV ORF was aligned
pairwise with its ACMNPV homologue. The percent identity
and similarities ranged from a high of 91% and 96% for
AcMNPV polyhedrin to a low of 12% and 25% for the
conotoxin-like homolog (Table 1).

Putative AcMNPV homologues were reported for 94
(65%) of the putative TnSNPV ORFs. The remaining 50
putative TnSNPV ORFs did not produce a significant hit
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with the AcMNPV genome. Many of these ORFs did
however return significant hits with other non-AcMNPV
genomes.

Of particular interest among the non-baculovirus homo-
logs identified was a putative class II cyclobutane pyrimi-
dine dimer (CPD) photolyase gene (TnSNPV orf65) (Table
1, Fig. 1). This is the first photolyase gene reported to date
in any completely sequenced baculovirus genome. Results
from partial sequencing have also recently identified a
baculovirus photolyase gene in the Chrysodeixis chalcites
NPV (ChchNPV) (van Oers et al., 2004). Twenty-five ORFs
(5,6,7,30,32, 36, 50, 51, 62, 67, 85, 98, 99, 100, 104, 110,
111, 121, 124, 127, 131, 134, 137, 138 and 142) reported
very poor or no homology with any known protein in the
current databases.

A gene parity plot was used to compare the gene order
in TnSNPV and AcMNPV. Closely related viruses are
expected to display a near colinear arrangement of genes,
which decreases with increasing divergence (Hu et al.,
1998). The gene parity plot (Fig. 2) revealed a consid-
erable level of colinearity between AcMNPV and TnSNPV.
Eight regions (TnSNPV ORF 1-3; 9—16; 24-28; 41-49;
54-58; 70—-76; 77—83; and 86—92) had clusters of 3 or
more ORFs forming a linear arrangement. It is also
apparent that in general these clusters contained genes
having the highest level of identity, suggesting that there
has been selection pressure on amino sequence and gene
order or grouping. However, the gene with the second
highest identity, ORF 108 superoxide dismutase (SOD),
was not found in a colinear cluster. SOD is a highly
conserved baculovirus gene and is found in most

baculovirus genomes sequenced to date (Herniou et al.,
2001, 2003; Tomalski et al., 1991).

TnSNPV F protein

Envelope fusion proteins are essential for the spread of
BV during baculovirus infection. ACMNPV and other group
I NPVs contain a gene that encodes a GP64 homologue,
while type II NPVs utilize envelope fusion proteins related
to the LAMNPV LDI130 or SES8 proteins, also known as
Fusion (F) proteins. The two proteins are distinctly different
in structure and sequence, yet both mediate membrane
fusion and are required for virus attachment and cell entry.
The TnSNPV genome was found to encode a typical group
II NPV F protein (Tn143) and does not encode a homologue
of GP64. As both TnSNPV and AcMNPV are highly
virulent for 7. ni, a comparison of the TnSNPV F protein
and AcMNPV GP64 may shed light on the relationship
between these two fusion proteins and their roles in
baculovirus infection and host range.

An alignment with homologous F proteins Tn143, Se8
and the non-functional Ac23 is shown in Fig. 3. The
predicted signal peptides, transmembrane domains and
conserved cysteine residues for all three proteins are shown.
Tn143 shares greater sequence identity (46%) and similarity
(68%) with Se8 compared to Ac23 (19% and 40%,
respectively) and this homology is also evident in the
location of key cysteines in the three proteins. The F protein
for AcCMNPV also includes a 13 amino acid leader sequence
not found in SeMNPV or TnSNPV, which may potentially
be incorrect. A second methionine, found at position 14,
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Fig. 2. Gene parity analysis of the genome organization of AcMNPV and TnSNPV. The genomes are represented on the horizontal (TnSNPV) and vertical
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‘Tn143 Predicted

Cleavage Site
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I o e e e — i ML R FKVI VWL
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TmEASKLISDE KT oH H E_BKE
VIA[ATLIT[VIE[AIK F|A VQ S| Ql NR
ILLSIT ST VVGRIDRI] T F ILEDISA ERMYG

59

Tn143 53 [MQF E@TWHFIVE AAlVFLRL|KDMF D[QVK KFIYK a- - - . SNI I QT 106
Se8 44 MQF;’,IQ IWHEHVI|E G SV EYIR L|Q ST HQIOJA @ OSFIL ONQT SAEDDC[ANVKYL KL 102
A3 60 LRHHTDDRFVEVIKKFNEVSVILIQELNNIKSKI EILIYEAQVSTCTINVRQI KQINRISS1 I KARL 118
AAAN%
Tn 143 107 ELEKTIMSKEIVVNLDIESIEIRKSGNYESPSKYTLS----RSKRGLF PSL]C-]
Se8 103 |E|I HMLSV PINLIAQOQHNTL L VPLTPSNATLTKATL SPTKRRSKRGL HN FMGHVDKY 161
Ac23 119 |[EINQLQEFL|TJQLNKNL ITYSVESISILSNDVLDNI DLENYDDS- - - - - - - - GE[EDVIYDEYE QP 169
* * —_
Tn143 162 [L FG|- LIMDSDDAHE L LANGRB@I QFR EDVK- - KERE 217
Se8 162 LFG—IMDSDDAHELS&LAHITT SILNI S I EIL1/VL AD[YVIDHE FHA SRMRIDADK QC[R 219
A3 170 (SHW S NM TV SIDA[QAIL[L RNP PKDRVM F L DTV T/T viS SKY[EIEIMENCIIVSNR - - - T V[EIN ElgM 225
Tn 143 218 VSTKIHLI[CSEIDRLDS DQIKD EDDKR s[§]- -4 TKLLEEMKNVS P 274
Se8 220 I11TEN T K ET NDL D NA ]ﬁ@H - - F[VIv s PEIR|L L|NEMNNV S|GIHL|A 276
Ac23 226 FLANM N D! DAAJAILIA KMLIE R TIMK QT R K I SNT DDDTILL|TIEMKKL T QT[LIY 284
Tn143 275 KG - Hy[DN - FER@IHVFIT ERKLLFITEVPL VINQOK - Q[V[EI 330
S8 277 G- -|L p TEKA -MHV|LIDN HYV F V1| AlE FI1 PLV S|SEA -[FEDV[FH S I|PL 331
Ac23 285 NQNR DENK[DMN S Y FDL SQAYKLIHL DLNT VIMEITM P LILIK|S|T A v S{ENLIMRVMT V 343
Tn 143 331 PFC-KCAIILPDSKYLGVS DRRNEVREDDT|R - E LGHDMY Qv v \3’@337
Se8 332 |PYIC|DIK S/HKCAIMIL PDSKYLGV S VIDRRNYVRILIDDT|- - T RIM SDK VML C/FR|PQT I 388
Ac23 344 |[PFCRGK-MOL LT SGNEMEGTI TDSKNY YV PV SIDNFRQDIC[QE FTGYNEFLCPETEPIATM 401
Tn 143 388 - LCDIRI FILIKNDKDIIN FEK[DCDVRU[GK[FE S E|1 K - - 1 T[DLEINRWL Y V L| E[NE VFD 443
Se8 389 -|JAKLCDVIRI FMKNDKDI DYKRDCDVRVGREE S E|L A--TS§ NWL Y VLIQND I[DILIN T Q 444
Ac23 402 N § ELL[EMEMG-RYS VDNM 1 ANYNPKKA[YVNTL LD YR KW 1 EPNTTVS- - - 456
Tn 143 444 LQKG——DNSVSANTLVLSPGIHGII AT GKH SRTFIET—- KNL QM 498
Se8 445 [CJI PSATIT[D|GEGI APVIVLRAGVGI 1/HATGNDN LIT(T KK S R VHD|L - - Vil EIL 501
Ac23 457 - - VHYYCHDALVEVDTKVISPGVAVM FS|TMAQ ST RITYDNVTI[T SR AV VIS/H s|TITYyw P 513
Tn 143 499 IDTA LSAK TLQLQ LM AlGIDE[T] 557
Se8 502 MGL S FT VALlQD[1] 1 SVDDMK I[NNDLEHT SIRLIYIDLRRIR T S %560
Ac3 514 KKK FNENNYIDQMLILIEIKIATT S FI PTVDNETR P PHKEHI KDYT ST PHH FLEHQ 572
Predicted Transmembrane Domains p—
Tn 143 558 Q@ETENSWLSN--FFSSI D F H V] TIIEISMFS- 613
%8 561 VIDIDNGDI FAGMS SWES ST GI[DFHY| AC TLC619
Ac3 573 YTNSAAPDEDSQDDSNTT[VVITAT KRCHQSNNVVVQYK|NN 631
Tn143 Predicted Region of Low Complexity
Tn143 614 - - - -IC REDPI VDREMQFMN PK P I[RK[K [LoNKL[EINTDED- - - - - - - 661
Se§ 620 - - - FK GSHT RFJDRDM@YQTTI. [RIRGKKHVDSTEDMEME PM- - - - - - - - - - 665
Ac23 632 NE FVTILONNLEIDNRAYINL PNEYIDSDDMPKPLYPLLGFNDDLILKDDKPVLEPMITERTK 69

Fig. 3. ClustalW alignment of the TnSNPV (Tn143), SeMNPV (Se8) and AcMNPV (Ac23) fusion protein homologs. Shaded regions indicate regions of 66%
or greater similarity. Narrow boxed regions indicate regions of complete identity. Heavy boxed regions indicate predicted signal peptides (N-terminal end) and
transmembrane domains (C-terminal end). Conserved cysteine residues are overlined (Pearson et al., 2000). The inverted square bracket indicates the predicted
cleavage site [AEA-SK] for the Tn143 signal peptide, " predicted furin cleavage site consensus sequence; * furin conserved amino acid residues. The
underlined Tn143 residues indicate a predicted region of low complexity as predicted using Clustal W (Thompson et al., 1994). The dark shaded box indicates

the Tn143 predicted coiled coil region. Distinct domains were predicted for

the putative TnSNPV F protein using the Simple Modular Architecture Research

Tool (SMART) (Letunic et al., 2002; Nielsen et al., 1997; Schultz et al., 1998).

would agree more closely with the predicted start sites of
both SeMNPV and TnSNPV. Removal of these additional
13 amino acids does not, however, significantly change the
alignment of the F proteins (data not shown).

GP64 homologs are typically highly related (>74%
amino acid sequence identity) and found only in group I
NPVs. Conversely, F proteins are considerably less homol-
ogous (20—40% amino acid sequence identity) (Pearson and
Rohrmann, 2002) and are typically found in both NPVs and
GVs. Tnl43 exhibits 46% identity with Se8, the most
similar homologue. Tn143 also has low homology (18%
identity) with the env gene of TED, an insect retrovirus
known to be integrated into the 7. ni genome (Friesen et al.,
1986) and capable of transposition into the baculovirus
genome (Friesen and Nissen, 1990; Ozers and Friesen,
1996).

Phylogenetic analysis was performed on the predicted
amino acid residues of 22 putative baculovirus F proteins
using the neighbor-joining method (Saitou and Nei, 1987)
(Fig. 4). The resulting cladogram shows a clear separation
between groups I and II NPVs and concurs with the

positioning of TnSNPV as a group II baculovirus (Herniou
et al., 2003; Zanotto et al., 1993). TnSNPV is contained
within a clade with the other group II viruses MacoNPV-A,-B
and SeMNPV. The close relationship between these three
viruses was also mirrored by many other TnSNPV genes
(Table 1).

To functionally compare TnSNPV F protein (Tn143)
with AcMNPV GP64, we constructed several TnSNPV F
protein expression vectors for use in transient transfection
assays to compare syncytia formation (Blissard and Wenz,
1992). Two constructs were designed, ptntTnF and pie2TnF,
that expressed Tnl43 under the control of its native
promoter or the highly expressed OpMNPV ie2 early
promoter (Hegedus et al., 1998), respectively. AcMNPV
gp64 expression was under control of the native ACMNPV
promoter (Blissard and Wenz, 1992). Syncytia formation
was monitored in the 7. ni cell line Tn5B-1 (Hi-5) using
previously described methods (Blissard and Wenz, 1992).
Transfected Hi-5 cells were examined and scored for the
formation of multi-nucleated syncytia by phase contrast
microscopy after a short exposure to low pH media. Hi-5
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Fig. 4. Phylogenetic analysis using the predicted amino acid residues from
22 baculovirus F proteins. Sequences were aligned with a gap penalty of 10,
an extend gap penalty of 0.05 and a delay of divergence of 40%.
Phylogenetic analysis was performed using the neighbor-joining method
(Saitou and Nei, 1987) with branch lengths and 1000 bootstrap replicates.
The same topology was reflected in analysis of other highly conserved
genes including structural proteins of the occlusion-derived virus envelope
(data not shown). Scale represents 0.1 substitutions per site for the trees’
branch length.

cells transfected with pAcgp64 developed, as expected,
numerous large syncytia after exposure to reduced pH
conditions (Fig. 5). In comparison, Hi-5 cells transfected
with Tn143 under the native TnSNPV or the OpMNPV ie2
promoter developed many smaller syncytia after exposure to
reduced pH conditions (Fig. 5). No significant difference
between the two Tn143 expression constructs was observed.
Control constructs and mock-transfected cells exposed to
acidic pH conditions exhibited no signs of cell fusion.

Photolyase

Blast homology searches revealed that 7765 encodes a
putative class II cyclobutane pyrimidine dimer (CPD)-
photolyase. This predicted photolyase protein shares very
high homology with photolyase genes from more than 27
different organisms including: Drosophila melanogaster,
Fowlpox virus, Monodelphis domestica (short-tailed opos-

sum), Myxoma virus, Potorous tridactylus (long-nosed
potoroo), Oryzias latipes (Japanese medaka), Danio rerio
(zebrafish), Carassius auratus (goldfish) and the recently
discovered photolyase of C. chalcites NPV. Tn65 photo-
lyase encodes a 502-aa protein with a predicted molecular
weight of 58.6 kDa and has been tentatively identified as an
early gene product based upon promoter sequence locations.
Two putative overlapping early promoters (containing
TATA and CAKT sequences with a capsite approximately
26 and 28 bp downstream) are located 41 bp upstream from
the putative ATG start position.

ClustalW pairwise alignment scores of the type II CPD
photolyase were calculated and identity and similarity
scores ranged from 23% to 45% and 37% to 57%,
respectively. Among the proteins compared, the ChchNPV
photolyase generated the highest homology scores (45%
identity, 57% similarity) while the zebrafish (D. rerio)
generated the second highest homology scores (37%
identity, 54% similarity). A phylogenetic analysis using
the predicted amino acid residues from 15 class II CPD
photolyase genes and TnSNPV orf65 is shown in Fig. 6.
The alignment of the five most similar genes, with the
location of the photolyase domain that binds the light
harvesting cofactor and the FAD binding domains, is shown
in Fig. 7.

Discussion

TnSNPV has been recognized as a useful biological
insecticide for several decades and has been used success-
fully in numerous field trials (Jaques, 1974). In addition, the
virus has been reported to have been isolated from locations
around the world (del Rincon-Castro and Ibarra, 1997;
Fielding and Davison, 1999). To enable the further develop-
ment of this virus as a viral insecticide and to further
understand the biology of this virus we have sequenced the
entire TnSNPV genome.

The genome size of TnSNPV was determined to be
134,394 bp, larger than previously predicted by restriction
fragment analyses (Davis and Wood, 1996; del Rincon-
Castro and Ibarra, 1997). Sequence analysis predicted 144
open reading frames based on methionine-initiated ORFs
encoding putative proteins of more than 50 amino acids
and a minimal overlap with adjacent ORFs (Table 1).
BLAST searches and comparisons with previously
sequenced baculoviruses indicate that 119 ORFs were
homologues of known baculovirus genes. The 144 ORFs
identified were densely arranged with minimal intergenic
distances. Their distribution with respect to transcriptional
orientation was random and evenly divided between
clockwise and counterclockwise directions (Fig. 1).
Twenty-five ORFs showed no significant homology to
any genes in the current databases.

Sequence data have been reported for small regions of a
South-African isolate of an SNPV from 7 ni, which
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Fig. 5. Fusion assay analysis of TnSNPV F protein and comparison to AcMNPV GP64 in transfected 7. ni Tn5b-1 cells. Cells were transfected with constructs
expressing TnSNPV F and GP64 and exposed to low pH media. The ptntTnF and pie2TnF constructs express the predicted TnSNPV F fusion protein under the
control of the native TnSNPV and OpMNPV ie2 promoter, respectively. The gp64 construct expresses GP64 under the control of the native AcMNPV
promoter. Cells were incubated for 30 min in media (pH 5.0), washed twice with normal pH media and examined for syncytia formation by light microscopy at
40x and 200x magnifications. Mock control cells were transfected with constructs expressing GFP.

included coding sequences for ie/ (ORF 16), polyhedrin
(ORF 1), p26 (ORF 19), lef-6 (ORF 121), SeMNPV orf128
homolog (ORF 120) and p/0 (ORF 18). Interestingly,
comparisons of the predicted proteins of these genes with
the TnSNPV sequences reported in this study show

significant divergence (Table 1). The South African NPV
isolated from 7. ni would therefore appear to represent a
closely related but separate viral species.

Comparison of the TnSNPV genes with the nr GenBank
database showed that the gene with the highest homology
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Fig. 6. Phylogenetic analysis using the predicted amino acid residues from 15 class II CPD photolyase genes and TnSNPV orf65. Sequences were aligned with
ClustalW using a gap penalty of 10, an extend gap penalty of 0.05 and a delay of divergence of 40%. Phylogenetic analysis was performed using the neighbor-
joining method (Saitou and Nei, 1987) and branch numbers represent bootstrap scores (%) of 1000 replicates. Scale represents 0.1 substitutions per site for the

trees’ branch length.
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Fig. 7. ClustalW alignment of TnSNPV photolyase (ORF 65) with class II CPD photolyases from ChchNPV, zebrafish (D. rerio), goldfish (C. auratus) and
short-tailed opossum (M. domestica). Shaded boxed regions indicate regions of 60% or greater identity. The conserved photolyase domain that binds the light
harvesting cofactor (solid overline; pfam00875) and the FAD binding domains (dashed overline; pfam03441) were identified by comparison with the conserved
domain database (Marchler-Bauer et al., 2003).

was polyhedrin from ThorNPV, which had only a single Comparison of TnSNPV and AcMNPV
conservative amino acid difference. Interestingly, ThorNPV

exhibits a tetrahedral polyhedra which is quite distinct TnSNPV and AcMNPV represent two separate lineages
from the more common TnSNPV polyhedral shape. This of the NPV genus (groups I and II) yet both are highly
suggests that the single amino acid 123 may be responsible virulent for 7. ni. We were interested in elucidating the
for the altered polyhedra shape, a supposition that could be similarities and differences between these two genomes in
tested by mutating the TnSNPV gene. If such a mutation order to extend our understanding of the molecular differ-
did not alter polyhedra shape, it would suggest that other ences in their pathology. These two viruses have diverged
viral genes may be involved in determining polyhedral significantly. They possess a total of 94 genes in common

structure. with an average amino acid identity and similarity of 37%
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and 53%, respectively (Fig. 2, Table 1). In contrast the
average identity and similarity of the non-AcMNPV genes
with the highest homology to each ORF of the TnSNPV
genome was 49% and 65%. Not surprisingly, the predicted
AcMNPV protein with the highest identity was polyhedrin
(91%), and the second highest identity (72%) was super-
oxide dismutase (SOD). SOD is not conserved in all
baculovirus genomes sequenced to date and has been
classified as a potentially beneficial but non-essential gene
(Herniou et al., 2003). It is therefore surprising that it ranks
as one of the most highly conserved genes between
TnSNPV and AcMNPV. Although no function has been
attributed to this gene in any baculovirus, it is assumed that
it is required for reducing oxidative stress in infected cells.
The very high homology between the TnSNPV and the
AcMNPV SODs may imply some type of host-specific SOD
function.

Many of the genes in common between TnSNPV and
AcMNPYV could be involved in the adaptation to the host, T.
ni. On average the identity between TnSNPV and AcMNPV
proteins was quite low compared to the best non-AcMNPV
BLAST hit. To identify common genes that are potentially
required for infection of 7. ni, we identified those TnSNPV
and AcMNPV genes that had higher percent identity scores
than the average best non-AcMNPV identity score (48%)
(Table 1). Of the 18 genes examined that met this criteria,
10 are found in all baculoviruses (odvp-6e/odv-e56,
Acorfl42, odv-ec27, p74, p47, lef8, lef9, vif-1, Acorf-92,
Acorf-22) and four are found in all lepidopteran baculovi-
ruses (polyhedrin, ubiquitin, fp25k, Acorf-93) (Herniou et
al., 2003). The other four genes (cathepsin-like protein,
chitinase, gp37 and sod) are only found in a subset of
viruses. The relatively high degree of conservation between
these particular TnSNPV and AcMNPV genes suggests that
these genes may be important for infection of the common
host 7. ni. Interestingly, four of these genes are known to be
required for late gene transcription (p47, lef-8, lef-9 and vif-
1), six are structural genes (polyhedrin, odvp-6e/odv-e56,
fp25k, odv-ec27, p74, gp37) and three are known or
thought to provide non-essential auxiliary functions (sod,
cathepsin-like protein, chitinase). Of the structural proteins,
ODV-EC27 and P74 are known to be required for oral
infectivity, which suggests that they interact with host
proteins for infection. It is unknown if the core late RNA
polymerase proteins have host-specific interactions. Cathe-
psin and chitinase require intimate interaction with the host
in order to disrupt the exoskeleton, produce liquefaction and
release occlusion bodies. Saville et al. (2002) recently
showed that deletion of the AcMNPV cathepsin ER reten-
tion motif (KDEL) resulted in a virus that had increased
virulence for 7. ni, suggesting that this protein can impact
host specificity. In addition to the genes described above it
is also possible that non-homologous genes in the two
genomes could be essential for the infection of 7. ni for
each respective virus as alternate infection pathways may be
utilized.

Photolyase

Photoreactivation is the process of reversing the harmful
effects of ultraviolet light (200—300 nm) upon exposure to
blue light (350—450 nm) and subsequent repair by a photo
reactivating enzyme called DNA photolyase (Sancar, 2003).
Cyclobutane pyrimidine dimers (CPDs) are the most
frequently observed form of DNA damage produced by
shortwave ultraviolet (UV-C) light and account for approx-
imately 70—80% of lesions in vivo. CPD photolyases can be
separated into two subclasses (I and II) based on amino acid
sequence similarity (Kanai et al., 1997; Yasui et al., 1994).
The TnSNPV photolyase is a type II CPD photolyase and is
similar to the recently reported ChchNPV photolyase (van
Oers et al.,, 2004). Interestingly the most similar non-
baculoviral proteins are the photolyases from zebrafish and
goldfish (Figs. 6 and 7).

Several poxviruses are known to encode type II CPD
photolyases and functional analysis of myxoma and shope
fibroma proteins has demonstrated that they are catalytically
active and effective in eliminating lethal photoproducts in
wild-type viruses (Bennett et al., 2003; Srinivasan et al.,
2001). Shope fibroma and myxoma virus CPD photolyase
genes are highly conserved and share 85% amino acid
identity over 445 residues (Bennett et al., 2003). The
TnSNPV identity scores with other type II CPD photolyase
genes (including ChchNPV) were relatively low, ranging
from 23 to 37. Phylogenetic analysis did not place TnSNPV
photolyase in a clade with any of the known photolyases
and its origin remains unclear.

Baculoviruses are typically exposed to large amounts of
ultraviolet light both inside and outside their insect hosts.
Therefore, an adaptive mechanism for dealing with the UV-
induced damage incurred during normal transmission
would be beneficial to the overall fitness of the virus.
The identification of photolyase in both TnSNPV and
ChchNPV suggests that some baculoviruses have devel-
oped mechanisms to deal with UV light. However, only
two photolyase genes have been identified out of the 30
baculovirus genomes that have been sequenced to date.
Therefore, most baculoviruses either do not require photo-
lyase or have developed alternate methods to repair UV
damage.

Synergism between TnSNPV and AcMNPV during viral
infection of T ni has been reported (Lara-Reyna et al., 2003)
and clearly an opportunity for gene transfer between these
two viruses would exist. An enzyme such as TnSNPV
photolyase should provide an increase in fitness by enabling
genomic DNA damage repair and it would not require the
formation of a functional protein complex such as that
observed with helicase (Bideshi and Federici, 2000).
However, AcMNPV does not contain a photolyase and it
must be concluded that selection for the incorporation of
this gene is not favored under normal circumstances.
Occlusion-derived virus (ODV) of NPVs which initiate
the primary midgut infection can contain virions that
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incorporate single (S) or multiple (M) nucleocapsids per
envelope. TnSNPV is an S phenotype and therefore fewer
genomes per virion may have a lower tolerance for UV
inactivation and require additional UV-repair provided by
photolyase. AcCMNPV may also use alternative genes such
as PCNA (proliferating cell nuclear antigen) (O’Reilly et al.,
1989) to combat the damaging effects of UV light.
Interestingly, incorporation of an algal virus pyrimidine
dimer-specific glycosylase (cv-PDG) into the AcMNPV
genome enhanced UV protection for BV but not for ODV,
which is the form that is most exposed to UV light (Petrik et
al., 2003). However, this DNA repair enzyme decreased the
dose and time required for lethality relative to wild-type
virus in Spodoptera frugiperda larvae but not in 7. ni larvae.

F protein

As TnSNPV is a group II NPV we were very interested in
comparing the activity of the fusion protein (Tn143) with
that of AcCMNPV GP64 in cells derived from their common
host 7 ni (Fig. 5). The F protein of TnSNPV has numerous
features common to viral fusion proteins including a signal
peptide, a transmembrane domain and a peptide cleavage
site. In addition, the protein contains numerous conserved
cysteine residues and a putative coiled coil region (Figs. 3
and 4). Envelope proteins from retroviruses, paramyxovi-
ruses, filoviruses and orthomyxoviruses have all been
characterized by similar features (Eckert and Kim, 2001;
Skehel and Wiley, 2000). Fusion assays showed that Tn143
is a functional F protein capable of generating numerous
syncytia. Although these syncytia were significantly smaller
than those formed by GP64 (Fig. 5), they were similar to
those produced by other functional F proteins (Westenberg
et al., 2004). AcMNPV GP64 null viruses can be rescued by
F proteins from Lymantria distria MNPV and SeMNPV.
However, virus production by viruses pseudotyped with the
F protein from either SS MNPV or LAMNPV was approx-
imately 2 log units lower than the AcMNPV-GP64 control
viruses (Lung et al., 2002). TnSNPV and AcMNPV are both
highly virulent for 7. ni yet they use completely different
classes of fusion proteins. It would be very interesting to
determine if the TnSNPV F protein could rescue an
AcMNPV GP64 null virus more efficiently than the
SeMNPV and LAMNPV F proteins, which infect different
hosts.

All group I NPVs, including AcMNPYV, utilize GP64 for
cell-to-cell transmission of infection (Monsma et al., 1996)
but also contain a non-functional F protein homologue
(AcMNPV Ac23; Fig. 3 and Table 1), which has been
shown to be a pathogenicity factor (Lung et al., 2003). It has
been suggested that GP64 is a recent addition to group I
genomes and that it has displaced the envelope fusion
function of the F protein (Pearson et al., 2000). The fluid
nature of insect virus genomes (Herniou et al., 2003) and the
local proximity of TnSNPV and AcMNPV in co-infections
provides an opportunity for the horizontal transfer of gp64

to TnSNPV. Transfer would seem to be highly likely if these
genes were modular and conferred some fitness advantage.
However, the transfer of gp64 has not taken place and
experiments involving simultaneous infection with
AcMNPV and TnSNPV suggest that the two viruses are
equally fit during intra-host competition and that viral
recombination does not occur (Milks et al.,, 2001). Co-
infections are known to occur in naturally infected insects
collected in greenhouses in British Columbia (M. Erland-
son, unpublished data), suggesting that both F protein and
GPo64-based infection strategies can be simultaneously
successful.

A number of factors may be preventing TnSNPV from
incorporating gp64 into its genome. Broad host range
multinucleocapsid viruses like ACMNPV may use gp64 as
a mechanism to quickly transmit budded virus to tracheal
cells before virus replication is complete (Washburn et al.,
2003). This early transmission may provide less of an
advantage for an S phenotype virus such as TnSNPV, which
has fewer nucleocapsids for early packaging. Sequencing
the TnSNPV genome has revealed the considerable differ-
ences in genomic content between these two viruses. These
differences, and the complex interplay of genetic elements
associated with them, may simply be too great to permit the
exchange of the key components such as the fusion gene or
apo4.

Sequencing the genome of TnSNPV provides a complete
genetic database that will permit us to compare and contrast
the pathogenic mechanisms of groups I and II viruses for the
host 7. ni. In addition, it will permit the further development
of TnSNPV as a biocontrol agent for 7. ni, which is
becoming a significant economic problem in greenhouses in
Canada (Janmaat and Myers, 2003).

Materials and methods
Viral DNA isolation

TnSNPV was prepared by feeding fourth instar larvae on
16 mm® plugs of artificial diet inoculated with approx-
imately 500 PIBs, adding fresh diet as required and allowing
the infection to proceed for 5 days. Larvae were then
collected and TnSNPV genomic DNA was extracted from
purified polyhedra as previously described (Erlandson,
1990).

TnSNPV DNA shotgun cloning and sequencing

Cloning and initial sequence assembly was carried out by
Greenomics (Wageningen, The Netherlands). Six-fold cov-
erage was obtained using a shotgun sequencing strategy.
Total TnSNPV genomic DNA was sheared by nebulization
into fragments with an average size of 1200 bp and blunt
end repaired using Pfu DNA polymerase (Stratagene)
according to manufacturer’s protocols. Viral DNA frag-
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ments were then size fractionated using gel electrophoresis
and ligated into the EcoRV restriction site of pBluescript SK
(Stratagene). Ligation products were transformed into E.
coli XL2-Blue competent cells (Stratagene). Recombinant
clones were picked randomly from the resulting trans-
formants and DNA templates for sequencing were further
prepared using a Qiagen BioRobot 9600. Individual clones
were sequenced using the ABI Prism Big Dye Terminator
Cycle Sequencing Kit (Perkin Elmer) with FS AmpliTaq
DNA polymerase (Perkin Elmer) and analyzed using an
ABI 3700 DNA Analyzer.

Sequence analysis

Initial base calling and assembly was carried out using
the PHRED base caller and PHRAP assembler software
(Bonfield et al., 1995; Ewing and Green, 1998). The GAP4
interface and its features were then used for editing and
sequence finishing. Consensus calculations with a quality
cut-off value of 40 were performed from within GAP4 using
a probabilistic consensus algorithm based on expected error
rates outputted by PHRED. Sequencing of PCR products
was used to fill any remaining gaps in the sequence.
Sequence traces were manually edited to correct errors in
automated base calls. Final contiguous sequence assembly
was repeated using DNASTAR (Lasergene) and Sequencher
(Gene Codes Corporation). After a completed sequence had
been assembled, each base call within the assembly was
manually inspected.

The TnSNPV genome is generally homologous with
other baculovirus genes and open reading frames (ORFs)
were easily identified using a combination of Genemark,
Blast analyses and visual inspection. Gene homology
searches were performed using the current downloadable
GenBank database and standalone implementations of the
Blastx, Blastn and Phi-blast algorithms (Altschul et al.,
1990). Sequence alignments and percent similarity/identify
scores were obtained using ClustalW (Thompson et al.,
1994). Phylogenies were calculated using ClustalW align-
ments and the neighbor-joining method with DSGene
(Accelrys) and Mega2 (Kumar et al., 2001).

Cultured cell lines

T. ni (Tn5b-1) cells were cultured in TC100 medium
(Invitrogen) supplemented with 10% fetal bovine serum
(FBS), gentamicin (50 pg/ml) (Invitrogen) at 27 °C in sterile
6-well plates (NUNC) at a density of 1 x 10° cells/well.

F protein expression vector construction

PCR was used to amplify the TnSNPV F protein (ORF
143) from wild-type TnSNPV genomic DNA. Three primers
were synthesized. Primer 407 (5'-TGG TGA AGC TTA
CGA ACG CAA ACA ACA) included a HindIIl site (bold)
upstream of the A in the ATG start site for ORF 143 (bold)

(genome positions 131413—-131428 italicized). Primer 409
(5-AGA ATT CGT GAA ATG CCG CAG AAA ACT)
contains the terminal stop codon of F protein ORF and
additional 3’ polyA signal regions (genome positions
129263-129282 italicized). This primer pair produced a
2184-bp product that was directionally cloned into
p2ZOp2E (Hegedus et al., 1998) under the OpMNPV [E2
promoter and named pie2TnF. A third primer was con-
structed to amplify the TnSNPV protein F and its native late
and early gene promoters. Primer 408 (5-AAC AAG CTT
CGT GGG TTG TGA GAG C) (genome positions 131791—
131806 italicized) included a HindIIl site (bold) was used
with 409 (above) to generate a 2560-bp product that was
directionally cloned into p2ZeoKS (Pfeifer et al., 1997) and
named ptntTnF. The resulting constructs pie2TnF and
ptntTnF along with a plasmid expressing the AcMNPV
GP64 (pAcgp64) were used in transient transfections under
various pH conditions to evaluate syncytia formation. A
plasmid that constitutively expressed green fluorescent
protein (GFP) was used to determine transfection efficiency.

Cell fusion assay

Two micrograms of each plasmid was transfected into
monolayers of TnSb-1 or Sf-9 cells in 6-well tissue culture
plates using lipofectin. Lipofectin was produced as
described (Campbell, 1995). Cells were washed once with
1.5 ml Graces’ medium after 4 h of incubation at 27 °C and
allowed to grow in TC100 medium for 48 h. At this time the
pH was reduced in treatment wells by replacing the media
with low pH Graces’ (pH 5.0) supplemented with 10% FBS.
Cells were incubated 30 min in pH 5.0 and then washed
twice with normal (pH 6.1) Graces’ media and allowed to
grow 4 h in Graces’ media supplemented with 10% FBS.
Control wells were washed and treated with normal pH
Graces’ and incubated in Graces’ supplemented with 10%
FBS.

Quantification was performed by photographing wells
and comparing the relative amount of membrane fusion
present in control and treatment wells. GFP fluorescence
from the control plasmid was used to estimate overall
transfection efficiency.
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