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Abstract

The present paper deals with a prey–predator model incorporating a prey-refuge and independent harvesting
in either species. Our study shows that, using the harvesting efforts as controls, it is possible to break the cyclic
behaviour of the system and drive it to a required state. The possibility of existence of bionomic equilibria has been
considered. The problem of optimal harvest policy is then solved by using Pontryagin’s maximal principle.
© 2005 Published by Elsevier B.V.
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1. Introduction

Economic progressandecological balancealwayshaveconflicting interests.Catering to thenecessities
and comforts of human beings invariably robs the ecological structure of the nature. This, more often that
not, leads to the extinction of a species of life. Often it is possible to prevent such extinction by proper
planning. Such a planning has to be either by force or dissentive. For example, if a particular activity
by individuals of a region is causing severe damage of the ecosystem of that region and if the activity is
inevitable then the governing authority of the region should plan a regulating policy which would keep
the damage of the ecosystem minimal. One such activity is harvesting, which has a strong impact on the
dynamic evolution of a population subjected to it. Reasonable harvesting policies is indisputably one of
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the major and interesting problems from ecological and economical point of view. The exploitation of
biological resources and harvest of population species are commonly practiced in fishery, forestry and
wildlife management. A management of multispecies fisheries which is needed to maintain an ecological
balance, that is disrupted due to over exploitation of many conventional fish stocks and growing interest
in harvesting new kinds of food from the sea.
The problem of predator–prey interactions under constant rate of harvesting or constant quota of har-

vesting of either species or both species simultaneously have been studied by some authors. For example,
Brauer and Soudak[2–5] studied a class of predator–prey models under constant rate of harvesting and
under constant quota of harvesting of both species simultaneously. They showed how to classify the
possibilities of the quantitative behaviour of the solutions to locate the set of initial values in which the
trajectories of the solutions approach to either an asymptotic stable equilibrium or an asymptotically
stable limit cycle. Recently, Dai and Tang[9] studied the following predator–prey model in which two
ecological interacting species are harvested independently with constant rates:

dx

dt
= rx

(
1− x

k

)
− a�(x)y − �,

dy

dt
= y(−d + ca�(x)) − h1. (1.1)

They showed that system (1.1) possesses very complicated dynamics.
In this paper we consider the following set of prey–predator system:

dx

dt
= �x

(
1− x

k

)
− �(1− m)xy

1+ a(1− m)x
− q1E1x,

dy

dt
= − �y + c�(1− m)xy

1+ a(1− m)x
− q2E2y, (1.2)

wherex andy denote the prey and predator population, respectively, at any timet . �>0 represents
the intrinsic growth rate of the prey,k is the carrying capacity of the prey in the absence of predator
and harvesting. The term�x/(1+ �x) denotes the functional response of the predator, which is known
as Holling type II response function[13]. c >0 is the conversion factor denoting the number of newly
born predators for each captured prey.�>0 is the death rate of the predator.E1�0, E2�0 denote the
harvesting efforts for the prey and predator, respectively.q1E1x andq2E2y represent the catch of the
respective species, whereq1 andq2 represents the catchability coefficients of the prey and predator,
respectively. The model incorporates a refuge protectingmxof the prey, wherem ∈ [0,1) is constant.
This leaves(1− m)x of the prey available to the predator.
Mite prey–predator interactions often exhibit spatial refugia which afford the prey some degree of

protection from predation and reduce the chance of extinction due to predation. Most of the theoretical
and empirical prey–predator studies in ecology has focused mainly in the analysis of predator behaviour,
a relatively small proportion of the ecological literature has addressed prey behaviour (see[17,11,20,8]).
Refuge of prey being a natural phenomena, we have taken it into consideration.
To find models that represent stable limit cycle, an attracting self-sustained oscillation, is one of the

main and primary problem in modern mathematical ecology. If a model has to describe some particular
ecological system, structurally stable features (like limit cycles), which are common in real life systems,
should be visible in the model. Hence, the necessity for finding conditions that guarantee the uniqueness
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of a limit cycle arises. Quite a good number of papers have appeared in the literature on uniqueness of
limit cycles in predator–prey system (see[6,15,12]and the references therein). Also a great deal of works
have already been performed on harvested predator–prey system (see[14,16,19,10]and the references
therein). Unfortunately,most of the results onharvestedpredator–preymodels deal onlywith the existence
or non-existence of periodic solutions and to the best of our knowledge no work has yet been done on the
problem of uniqueness of limit cycles in harvested predator–prey systems. The second objective of this
paper is to find out optimal harvesting strategies.
The content of this paper is as follows. In Section 2, we have proved that the system is uniformly

bounded which, in turn, implies that the system is biologically well behaved. In Section 3 we study the
existence of the equilibria and their dependence on the harvesting effortsE1 andE2.Wehave concentrated
more on the interior equilibrium of the system as we are interested in the coexistence of the species. In
Section 4,we study the stability and instability properties of the equilibria, and existence of limit cycles for
system (1.2). We also study the possibility of compressing an existing limit cycle to a point or introducing
a limit cycle into the systemwhen it is not present in it, using the harvesting effortsE1 andE2 as controls.
It has also been shown that hiding factorm also has a stabilizing or destabilizing effect on the system. In
Section 5, taking simple economic consideration into account, we discuss the possibilities of existence of
a bionomic equilibrium. In Section 6, the optimal policy of exploitation is derived by using Pontryagin’s
maximal principle. The problem ends with a brief concluding remarks.

2. Boundedness of the system

Theorem 1. All the solutions of system(1.2)which start inR2+ are uniformly bounded.

Proof. We define the functionw = x + (1/c)y. Therefore, time derivative

dw

dt
= dx

dt
+ 1

c

dy

dt
= �x

(
1− x

k

)
− �(1− m)xy

1+ a(1− m)x
− q1E1x − �

c
y + �(1− m)xy

1+ a(1− m)y
− q2E2

c
y.

Now for eachv >0, we have

dw

dt
+ vw�

k

4�
(v + � − q1E1)

2 − 1

c
(� + q2E2 − v).

Let us choosev > � + q2E2, then the right-hand side is positive. As we assume that bothE1 andE2 are
bounded, the right-hand side is bounded for all(x, y) ∈ R2+.
Thus we choose a�>0 such that dw/dt + vw< �.
Applying the theory of differential inequality[1], we obtain

0<w(x, y)<
�

v
(1− e−vt ) + w(x(0), y(0))e−vt ,

which upon lettingt → ∞, yields 0<w<(�/v). So, we have, that all the solution of system (1.2) that
start inR2+ are confined to the regionB, where

B =
{
(x, y) ∈ R2+ : w = �

v
+ � for and �>0

}
.
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3. Equilibrium analysis

Wenow study the existence of equilibrium of system (1.2). Particularly, we are interested in the interior
or positive equilibrium of the system. To begin with we list all possible equilibria:

(i) the trivial equilibriumP0(0,0),
(ii) equilibrium in the absence of predator(y = 0)P1((k/�)(� − q1E1),0),
(iii) the interior (positive) equilibriumP2(x∗, y∗),

where

x∗ = � + q2E2

[c� − a(� + q2E2)](1− m)
,

y∗ = �c

k

{
k[c� − (� + q2E2)a](1− m) − (� + q2E2)

[(c� − a(� + q2E2)a)(1− m)]2
}

− cq1E1

[c� − (� + q2E2)a](1− m)
.

From the expression for(x∗, y∗), it is clear that a nontrivial (interior) equilibrium point exists for system
(1.2) only if the harvesting ratesE1 andE2 satisfy

c� − (� + q2E2)a >0, (3.1)

(� + q2E2)[� + a(1− m)k(� − q1E1)] − c�(1− m)k(� − q1E1)<0. (3.2)

We see that an increase in fishing effort directed to the predator will increasex∗, which is natural as an
increase inE2 decreases the predator population and hence enhancing the survival rate of the prey. We
also observe that asm increasesx∗ increases. Againy∗ decreases whenE1 increases and this is happened
due to loss of food.
Now differentiatingy∗ with respect toE2 we observe that, for a fixed

E1 ∈
[
0,

�

q1

(
1− c� + a�

k(c� − a�)

)]
. (3.3)

y∗ attains its maximum value at

E2 = 1

q2

{
c�

a

[ka(1− m)(� − q1E1) − �]
[ka(1− m)(� − q1E1) + �] − �

}
(3.4)

and it decreases with further increases inE2. This maximum value ofy∗, for fixedE1 satisfying (3.3)
is given by

1

4k�a
{ka(� + q1E1) + � − 2ca�q1E1}[ka(1− m)(� − q1E1) + �].

Weobserve that ifE1> �/q1, then asm increases,E2 decreaseswhereas ifE1< �/q1, then asm increases,
E2 increases. Also we see that asm increasesx∗ increases byy∗ decreases, as loss of food for the predator
causing a slump in its survival rate.



T.K. Kar / Journal of Computational and Applied Mathematics 185 (2006) 19–33 23

4. Dynamic behaviour

In this section we study the stability properties of the equilibriaP0, P1 andP2. We also study the
possibility of transition of an interior equilibrium from a stable state to an unstable state and vice versa
using harvesting effortsE1 andE2 as controls. We also find the conditions under which the system
exhibits a unique globally stable limit cycle.
The Jacobian of the system about the equilibrium pointP0(0,0) is given by(

� − q1E1 0
0 −(� + q2E2)

)
.

We find that the eigenvalues for the steady state (0, 0) are� − q1E1 and−(� + q2E2), which is always
negative. Nowwe see that�−q1E1 is positive or negative according as the prey biotechnical productivity
(BTP)�/q1 is greater or less than the effort. Thus if the prey BTP exceeds the effort, the origin is saddle
point, otherwise the origin is a locally asymptotically stable node.
The Jacobian of the system about the equilibrium pointP1((k/�)(� − q1E1),0) is given by


−(� − q1E1)

−�(1− m)k(� − q1E1)

� + ka(1− m)(� − q1E1)

0 −(� + q2E2) + c�(1− m)(� − q1E1)k

� + ka(1− m)(� − q1E1)


 . (4.1)

Eigenvalues of matrix (4.1) are

(� − q1E1) and − (� + q2E2) + c�(1− m)k(� − q1E1)

1+ ak(1− m)� − q1E1
.

Now, if E2�0 and

�

q1

[
1− � + q2E2

k{c� − (� + q2E2)a}(1− m)

]
<E1<

�

q1

then both the eigenvalues are negative and henceP1 is locally asymptotically stable.
Jacobian matrix forP2 is given by(

X Y

Z 0

)
, (4.2)

where

X = � − 2�

k

(� + q2E2)

[c� − (� + q2E2)a](1− m)
− 1

kc�(1− m)
{�[k(c� − (� + q2E2)a)(1− m)

− (� + q2E2)] − kq1E1[c� − (� + q2E2)a](1− m)} − q1E1,

Y = − � + q2E2

c
,

Z = 1

k�(1− m)
{�[k(c� − (� + q2E2)a)(1− m) − (� + q2E2)]

− kq1E1[c� − (� + q2E2)a](1− m)}.



24 T.K. Kar / Journal of Computational and Applied Mathematics 185 (2006) 19–33

It can be shown that all the eigenvalues of matrix (4.2) will be negative if

E2 /∈
(

− �

q2
,
c�

q2a

[
ka(1− m)(� − q1E1) − �

ka(1− m)(� − q1E1) + �
− �

])
.

The second term in the above parenthesis will be positive if

E1 ∈
[
0,

�

q1

(
1− c� + a�

k(c� − a�)

)]
.

Therefore, interior equilibriumP2(x∗, y∗) will be asymptotically stable if

E1 ∈
[
0,

�

q1

(
1− c� + a�

k(c� − a�)

)]
, (4.3)

E2>
c�

q2a

[
ka(1− m)(� − q1E1)

ka(1− m)(� − q1E1)

]
− �

q2
. (4.4)

and unstable if

E1 ∈
[
0,

�

q1

(
1− c� + a�

k(c� − a�)

)]
,

and

E2<
c�

q2a

[
ka(1− m)(� − q1E1)

ka(1− m)(� − q1E1)

]
− �

q2
.

If

E1>
�

q1

(
1− c� + a�

k(c� − a�)

)
(4.5)

then the interior equilibrium will be asymptotically stable for allE2�0.

4.1. Uniqueness of limit cycles

It is known that for prey–predator systems existence and stability of a limit cycle is related to the
existence and stability of a positive equilibrium. If the limit cycles do not exist, in this case the equilibrium
is globally asymptotically stable. On the other hand if the positive equilibrium exists and unstable, there
must occur at least one limit cycle.
Let us consider system (1.2) in the form

dx

dt
= xg(x) − yp(x), x(0)>0,

dy

dt
= y(−� − q2E2 + q(x)), y(0)>0, (4.6)

where

g(x) = �
(
1− x

k

)
− q1E1, p(x) = �(1− m)x

1+ a(1− m)x
, q(x) = c�(1− m)x

1+ a(1− m)x
.
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Fig. 1. Both the prey and predator population converge to their equilibrium values.

Fig. 2. Phase space trajectories corresponding to different initial levels, which shows thatP2(44.47,9.36) is a global attractor.

Now we consider the following theorem (see[15]) regarding uniqueness of limit cycles of the
above system.

Theorem 2. Suppose for system(4.6)

d

dx

(
xg′(x) + g(x) − xg(x)(p′(x)/p(x))

−� − q2E2 + q(x)

)
�0
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Fig. 3. There exist Hopf-bifurcating small amplitude periodic solutions.

Fig. 4. Phase diagram of the limit cycle surroundingP2(10.79,18.2).

in 0�x <x∗ andx∗ <x�k. Then the above system has exactly one limit cycle which is globally asymp-
totically stable with respect to the set

{(x, y) | x >0, y >0}\{P2(x∗, y∗)}.
Following Theorem 2, we may state that when

E1 ∈
[
0,

�

q

(
1− c� + a�

k(c� − a�)

)]
and E2<

c�

q2a

[
ka(1− m)(� − q1E1) − �

ka(1− m)(� − q1E1) + �

]
− �

q2
,
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Fig. 5. Phase diagram of the limit cycle form = 0.15 (E1= 1.0 andE2 = 0.5).

Fig. 6. Both the population converge to their equilibrium values form = 0.45 (E1= 1.0 andE2 = 0.5).

then system (1.2) has unique globally stable limit cycle. Thus we see that when the system is unstable,
there exist unique globally stable limit cycle.

4.2. Simulation

Let � = 2.0, k = 600,� = 0.1,m = 0.01, a = 0.002,� = 0.00046,c = 0.01, q1 = 0.2, q2 = 0.02 in
appropriate units.
For the above values of parameters, ifE1 ∈ [0,9.98] andE2>0.813 thenP2(x∗, y∗) exists and stable

and ifE1>9.98 thenP2(x∗, y∗) exists and stable for allE2�0. On the other hand ifE1 ∈ [0,9.98] and
E2<0.813, then there exists unique globally stable limit cycle.
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Let us takeE1 = 5.0 andE2 = 2.0, then the corresponding equilibrium pointP2(44.47,9.36) is
asymptotically stable (seeFigs. 1and2).
Next let us takeE1 = 1.0 andE2 = 0.813 then oscillation occurs as shown inFig. 3.
Again takingE1= 1.0 andE2= 0.5, we see that the corresponding equilibrium pointP2(10.79,18.2)

is unstable. The phase diagram, as shown inFig. 4 is a limit cycle.
Thus takingE1 andE2 as control it is possible to drive the prey–predator system to required equilibrium

point and to prevent the cyclic behaviour of the system.
FromFigs. 5and6 we see that refuge parameter may also be used as control for system (1.2)

5. Bionomic equilibrium

Let

c1 = fishing cost per unit effort for prey species,
c2 = fishing cost per unit effort for predator species,
p1 = price per unit biomass of the prey,
p2 = price per unit biomass of the predator.
Therefore, the economic rent (net revenue) at any time is given by

II = (p1q1x − c1)E1 + (p2q2y − c2)E2

= II 1 + II 2 (say),

where II1= (p1q1x− c1)E1, II 2= (p2q2y− c2)E2 i.e., II1 and II2 represent the net revenues for the prey
and predator species, respectively.
The bionomic equilibrium[x∞, y∞, E1∞, E2∞] is given by the following simultaneous equations:

�
(
1− x

k

)
− �(1− m)y

1+ a(1− m)x
− q1E1 = 0, (5.1)

−� + c�(1− m)x

1+ a(1− m)x
− q2E2 = 0, (5.2)

II = (p1q1x − c1)E1 + (p2q2y − c2)E2 = 0. (5.3)

In order to determine the bionomic equilibrium, we now consider the following cases:
CaseI: If c2>p2q2y, i.e. the cost is greater than the revenue for the predator, then the predator fishing

will be stopped(E2 = 0). Only the prey fishery remains operational (i.e.c1<p1q1x).
We then havex∞ = c1/p1q1, sincec1<p1q1x <p1q1k. Hence 1− c1/kp1q1>0 and(y∞, E1∞) will

be any point on the line

�

(
1− c1

p1q1k

)
= �(1− m)y

1− a(1− m)(c1/p1q1)
+ q1E1

in the first quadrant of theyE1-plane.
CaseII: If c1>p1q1x i.e. the cost is greater than the revenue in the prey fishery, then prey fishery will

be closed (E1 = 0). Only predator fishery remains operational (i.e.c2<p2q2y).
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We then havey∞ = c2/p2q2. Now substitutingy∞ into (5.1) we getAx2 + Bx + C = 0 where
A = (a�/k)(1− m)>0, B = �/k − a�(1− m),C = −[� − (�(1− m)c2)/p2q2].
Therefore,

x± = −B ± √
B2 − 4AC

2A
.

Now if

(i) C <0, thenx+ is the only positive solution.
(ii) B <0, C >0, B2>4AC, then there are two solutionsx±. Substitutingx± into (5.2) we get

E±
2∞ = 1

q2

[
c�(1− m)x±∞
1+ a(1− m)x±∞

− �

]
.

E2∞ >0, providedx±∞ > �/(1− m)(c� − a�) andc�>a�.

CaseIII: If c1>p1q1x, c2>p2q2y, then the cost is greater than revenues for both the species and the
whole fishery will be closed.
CaseIV: If c1<p1q1x andc2<p2q2y, the revenues for both the species being positive, then the whole

fishery will be in operation.
In this case,x∞ = c1/p1q1 andy∞ = c2/p2q2.
Now substitutingx∞ andy∞ into (5.1) and (5.2) we get

E1∞ = �

q1

(
1− c1

kp1q1

)
− �(1− m)c2p1

p2q2[p1q1 + a(1− m)c1] ,

and

E2∞ = − �

q2
+ c�(1− m)c1

q2[p1q1 + a(1− m)c1] .

Now,

E1∞ >0 if
�

q1

(
1− c1

kp1q1

)
>

�(1− m)c2p1

p2q2[p1q1 + a(1− m)c1] , (5.4)

E2∞ >0 if �<
c�(1− m)c1

[p1q1 + a(1− m)c1] . (5.5)

Thus the nontrivial bionomic equilibrium point[x∞, y∞, E1∞, E2∞] exists if and only if conditions (5.4)
and (5.5) hold together.

6. Optimal harvesting policy

The fundamental problem incommercial exploitationof renewable resources is todetermine theoptimal
trade-off between current and future harvests. This problem is too formidable to solve if the political,
social and philosophical dimensions associated with it need to be examined. However, if we look at the
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problem from the economic view point only, we have to use the standard technique of time discounting
[7] to address questions of inter-temporal economic benefits. Time discounting of economic benefits (or
costs) is a normal practice in business management. It has been shown by Clark[7] that the concept of
maximizing sustained economic rent is unrealistic because it amounts to setting the discount rate equal
to zero.
Our objective is to maximize the present valueJ of a continuous time-stream of revenues given by

J =
∫ ∞

0
e−�t {(p1q1x − c1)E1(t) + (p2q2y − c2)E2(t)}dt , (6.1)

where� denotes the instantaneous annual rate of discount.We intend tomaximize (6.1) subject to the state
equations (1.2) by invoking Pontryagin’s maximal principle[18]. The control variableEi(t) (i = 1,2)
are subjected to the constraints

0�Ei(t)�(Ei)max.

The Hamiltonian for the problem is given by

H = e−�t {(p1q1x − c1)E1 + (p2q2y − c2)E2} + �1(F1 − q1xE1) + �2(F2 − q2yE2), (6.2)

where�1(t) and�2(t) are the adjoint variables and

F1 = �x(1− x/k) − �(1− m)xy

1+ a(1− m)x
,

F2 = −�y + c�(1− m)xy

1+ a(1− m)x
.

The control variablesE1 andE2 appear linearly in the Hamiltonian functionH .
Assuming that the control constraints are not binding i.e., the optimal solution does not occur at(Ei)min

or (Ei)max, we have singular control[7] given by

�H

�Ei

= 0, i = 1,2.

Now

�H

�E1
= 0 ⇒ �1 = e−�t

(
p1 − c1

q1x

)
, (6.3)

�H

�E2
= 0 ⇒ �2 = e−�t

(
p2 − c2

q2y

)
. (6.4)

Thus the shadow prices e�t�i(t), (i = 1,2) do not vary with time in optimal equilibrium.
Hence they satisfy the transversality condition at∞, i.e. they remain bounded ast → ∞.
Again�H/�E1 = 0⇒ �1q1x = �II 1/�E1 and�H/�E2 = 0⇒ �2q2y = �II 2/�E2.
This implies that, for each species, the user cost of harvest per unit effort must equal the discounted

value of the future marginal profit of effort at the steady-state effort level.
We intend to derive here an optimal equilibrium solution of the problem. Since we are considering an

equilibrium solution,x, y andE are to be treated as constants in the subsequent steps.
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Now

�̇1 = − �H

�x

= −
[
e�t (p1q1E1) + �1

{
�

(
1− 2x

k

)
− �(1− m)y

(1+ a(1− m)x)2
− q1E1

}

+ �2

{
c�(1− m)y

(1+ a(1− m)x)2

}]
. (6.5)

Substituting�1 and�2 into (6.4) and after simplification we get

�p1q1a
2(1− m)2x3 + {2�p1q1a(1− m) − �c1a

2(1− m)2}x2 + {�p1q1 − 2�c1a(1− m)}x − �c1

=
{
p1q1� − q1c�(1− m)

c2

q2

}
x − 2p1q1�x2

k
+ [{p1q1�a(1− m)2 − p1q1�(1− m)}x2

− {c1a�(1− m)2 + p1q1�a(1− m)2}x + (1− m)p2q1c�x]y. (6.6)

Again,

�̇2 = −�H

�y
= −

[
e−�tp2q2E2 + �1

{ −�(1− m)x

1+ a(1− m)x

}]
. (6.7)

Substituting�1 and�2 into (6.7) and after simplifying we get

y = �c2{1+ a(1− m)x}
p2q2(� + �) − q2�(1− m)

c1

q1
+ (1− m){p2q2a(� + �) − q2�(cp2 − p1)}x

. (6.8)

Again from (6.6) and (6.8) we get

Ax4 + Bx3 + Cx2 + Dx + E = 0, (6.9)

where

A = �p1q1a
2q2(1− m)3{p2a(� + �) − �(cp2 − p1)},

B = �p1q1a
2(1− m)2

{
p2q2(� + �) − q2�(1− m)

c1

q1

}
+

[
�a(1− m){2q1p1 − c1a(1− m)}

+2p1q1�
k

]
+ [q2(1− m){p2a(� + �) − �(cp2 − p1)}]

− [p1q1�(1− m){a(1− m) − 1}�c2a(1− m)],
C = [q2{p2(� + �) − �(1− m)}]

[
a�(1− m){2p1q1 − c1a(1− m)} + 2q1p1�

k

]

+
[
p1q1(� − �) + (1− m)

{
q1�

c2

q2
c − 2�c1a

}]
[(1− m)q2{p2a(� + �) − �(cp2 − p1)]

− �c2�(1− m)[p2q1c − a(1− m)(c1 + p1q1)],
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D = q2(1− m){p2a(� + �) − �(cp2 − p1)}
+ q2[p2(� + �)−�(1−m)]

[
p1q1(�−�) + (1− m)

{
q1�

c2

q2
c − 2�c1a

}]
− �c2a(1− m),

E = q2

{
p2(� + �) − �(1− m)

c1

q1

}
− �c1.

After finding possible values ofx = x∗ from (6.9), we havey = y∗ from (6.8).
We then have

E∗
1 = 1

q1

{
�

(
1− x∗

k

)
− �(1− m)y∗

1+ a(1− m)x∗

}

and

E∗
2 = 1

q2

{
−� + c�(1− m)y∗

1+ a(1− m)x∗

}
.

Hence once the optimal equilibrium(x∗, y∗) is obtained, the optimal harvesting effortE∗
1 andE

∗
2 can

be determined.
Simulation: For simulation let us take�=2.0,k=600, �=0.1,m=0.01, a=0.002,�=0.00046, c=0.01,

q1 = 0.2, q2 = 0.02,� = 0.005,p1 = 1.0,p2 = 6.0, c1 = 5.0, c2 = 6.0.
For the above values of parameters we get the optimal equilibrium (26.86, 19.37) and corresponding

optimal harvesting efforts areE∗
1 = 0.45,E∗

2 = 1.24.

7. Concluding remarks

In this paper a harvested predator–prey system with Holling type II response function is considered.
Incorporating a prey refuge into system (1.2) we have made the model more realistic since many prey
mite populations do have some form of refuge available. This work presents analysis of the effect of
harvesting efforts and prey refuge on the prey–predator system. We have proved that exactly one stable
limit cycle occurs in the system when the positive equilibrium is unstable. This proof also enables us to
conclude that local asymptotic stability of the positive equilibrium implies its global asymptotic stability.
It was also found that it is possible to control the system is such a way that the system approaches a
required state, using the effortsE1 andE2 as controls.
We then examine the possibilities of existence of bionomic (biological as well as economic) equilibria

of the system. Next the optimal harvesting policy is discussed using Pontryagin’s maximal principle.
Before ending this article, we would like to mention that there is still tremendous amount of work to

do in this model. For example,

(i) One can consider the effort levelsEi (i = 1,2) to be dynamic (that is time dependent) variable.
(ii) Optimal approach path consisting of a combination of bang-bang controls and nonequilibrium sin-

gular controls may be found though it is very difficult as pointed out by Clark[7].
(iii) Gestation period for predator is also an important characteristic to be considered. We leave it for

future considerations.
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