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In this paper we provide a solvability criterion for the monomial
equation xq = a over Qp for any natural number q. As an
application of the result, we describe a relationship between q
and p in which the number −1 is the q-th power of some p-adic
number.
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1. Introduction

Over the last century, p-adic numbers and p-adic analysis have come to play a central role in
modern number theory.

To the best of our knowledge, we could not find any solvability criterion in the explicit form1 for
the monomial equation

xq = a, (1.1)

where q is an integer �2 and a ∈Qp (except for q = 2, see [1] or [4]).
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Recently, J.M. Casas et al. [2] have attempted to provide a solvability criterion for the monomial
equation (1.1) concerning classification problems of high order Leibnitz algebras (see [3]). They pro-
vided a criterion in the explicit form for two cases (i) (q, p) = 1, (ii) q = p, and it was stated that the
solvability problem for q = mps can be reduced to the cases (i) and (ii). It is worth to mention that
statements of the solvability criteria given in [2] were correct in the mentioned cases but their proofs
are long and complicate. Moreover, the provided algorithm for q = mps does not properly work. In
this paper, we want to show it by presenting rigorous and accurate proofs. More precisely, we pro-
vide the solvability criterion in an explicit form of the general case q = mps . Note that our method
is completely different from [2].2 As it is usual, the solvability criteria of Eq. (1.1) in Q2 and in Qp ,
where p > 2, are slightly different from each other. Therefore, we shall separately study them. As an
application of the result, we describe the relationship between q and p in which the number −1 is
the q-th power of some p-adic number.

2. Preliminaries

We recall that Zp = {x ∈Qp: |x|p � 1} are Z∗
p = {x ∈Qp: |x|p = 1} and the set of all p-adic integers

and units of Qp , respectively. Any element x ∈ Z∗
p has a unique canonical form x = x0 + x1 · p + x2 ·

p2 + · · · , where x0 ∈ {1,2, . . . , p − 1} and xi ∈ {0,1,2, . . . , p − 1}, i � 1. It is well-known (see [1]) that
any nonzero p-adic number x has a unique representation of the form x = pordp(x)x∗ , where x∗ ∈ Z∗

p .
We are aiming to solve the monomial equation (1.1) in Qp whenever a ∈ Qp and a �= 0. After

substituting the forms x = pordp(x)x∗, a = pordp(a)a∗ into (1.1), we can get that pq·ordp(x)xq∗ = pordp(a)a∗.
This means that Eq. (1.1) has a solution in Qp whenever a ∈ Qp if and only if the number ordp(a) is
divisible by q and the equation xq∗ = a∗ has a solution in Z∗

p .
Therefore, it is enough to solve (1.1) in Z∗

p, where a ∈ Z∗
p . The main idea to find a solvability

criterion for some polynomial equations over Z∗
p is to apply Hensel’s Lemma in a suitable form to the

given equation.

Lemma 2.1 (Hensel’s Lemma). (See [1].) Let f (x) be a polynomial whose coefficients are p-adic integers. Let θ

be a p-adic integer such that for some i � 0 we have that

f (θ) ≡ 0
(
mod p2i+1), f ′(θ) ≡ 0

(
mod pi), f ′(θ) �≡ 0

(
mod pi+1).

Then f (x) has a p-adic integer root x0 such that x0 ≡ θ (mod pi+1).

3. Auxiliary results

The proof of the following lemma is straightforward.

Lemma 3.1. Let p be a prime, α and s be two positive integers. If p = 2 assume that α � 2.

(i) For all x, y ∈ Zp , we have (x + pα y)p ≡ xp + pα+1xp−1 y (mod pα+2);
(ii) For all x ∈ Z∗

p , y ∈ Zp we have (x + pα y)ps ≡ xps + pα+s y (mod pα+s+1);
(iii) For every x ∈ Z∗

p we have xps ≡ 1 (mod ps+2).

By means of the previous lemma, we can prove the following result.

Lemma 3.2. Let p be a prime, q = ps where s ∈ N, and a ∈ Z∗
p . Let k0 = s + 1 if p �= 2 and k0 = s + 2 if p = 2.

The equation

2 Note that in [5] we have used other applications of these methods for cubic equations over Qp .
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xq ≡ a
(
mod pk) (3.1)

has a solution in Z for all k ∈N iff it has a solution in Z for some k � k0 .

Proof. The “only if” part is clear. Let Eq. (3.1) have a solution xn ∈ Z for k = n, where n � k0. Now we
want to show that xn+1 = xn + εpn−s is a solution of (3.1) for k = n + 1, where

ε = an − xq
n − a0 − a1 · p − · · · − an−1 · pn−1

pn
.

One can easily check (due to Lemma 3.1) that

xq
n+1 ≡ xq

n + ε · pn (
mod pn+1).

We obtain that xq
n+1 ≡ a (mod pn+1). �

4. A criterion for the existence of a solution in ZZZ∗
p with p > 2

Recall that a ∈ Z is called an m-th power residue modulo p if the congruence equation xm ≡
a (mod p) has a solution in Z. Let p > 2 and (a, p) = 1. It is well-known (see [6]) that a ∈ Z is

an m-th power residue modulo p if and only if a
p−1

d ≡ 1 (mod p), where d = (m, p − 1).

Theorem 4.1. Let p > 2 be a prime, q = mps where p � m with s � 0, and d = (m, p −1). Eq. (1.1) with a ∈ Z∗
p

has a solution in Z∗
p if and only if

(i) a0 is an m-th power residue modulo p, i.e., a
p−1

d
0 ≡ 1 (mod p);

(ii) aps

0 ≡ a (mod ps+1).

Proof. We shall consider two cases (p,q) = 1 and q = ps , where s � 1. The general case q = mps can
be easily derived from the mentioned cases.

Case I. Let (p,q) = 1. Suppose that Eq. (1.1) has a solution x ∈ Z∗
p . Then xq

0 ≡ a0 (mod p), i.e. a0 is
a q-th power residue modulo p.

Suppose that a0 is a q-th power residue modulo p, i.e. there is x̄ ∈ Z such that x̄q ≡ a0 (mod p). Let
us consider the polynomial fa,q(x) = xq −a. Then, it is clear that fa,q(x̄) = x̄q −a ≡ a0 −a ≡ 0 (mod p).

On the other hand, we get f ′
a,q(x̄) = qx̄q−1 �≡ 0 (mod p). Therefore, due to Hensel’s Lemma 2.1, we

conclude that (1.1) has a solution x ∈ Z∗
p .

Case II. Let q = ps where s � 1. Suppose that (1.1) has a solution x ∈ Z∗
p . Then, by Lemma 3.1(ii)

a = xq
0 + ps+1x1 (mod ps+2). This yields that xq

0 ≡ a (mod ps+1). Since xq
0 ≡ a0 (mod p) and xp

0 ≡
x0 (mod p), we obtain that x0 = a0 and aq

0 ≡ a (mod ps+1).

Suppose that aq
0 ≡ a (mod ps+1). According to Lemma 3.2, there is x̄ ∈ Z such that x̄q ≡

a (mod p2s+1). We want to show that (1.1) has a solution in Z∗
p . In fact, let us consider the same

function fa,q(x) = xq − a. We then get that fa,q(x̄) ≡ 0 (mod p2s+1). It is clear that f ′
a,q(x̄) = qx̄q−1 ≡

0 (mod ps), and f ′
a,q(x̄) = qx̄q−1 �≡ 0 (mod ps+1). Therefore, Hensel’s Lemma 2.1 implies that (1.1) has

a solution x ∈ Z∗
p . �

5. A criterion for the existence of a solution in ZZZ∗
2

Theorem 5.1. Let q ∈ N and a ∈ Z∗
2 .

(i) If q is odd then Eq. (1.1) has a solution in Z∗
2 for any a ∈ Z∗

2 .
(ii) If q = 2sm, where m is odd and s � 1 then Eq. (1.1) has a solution in Z∗

2 if and only if a ≡ 1 (mod 2s+2).
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Proof. (i) Let q be odd. We shall consider the same function fa,q(x) = xq − a as before. It is clear
that fa,q(1) ≡ 0 (mod 2) and f ′

a,q(1) �≡ 0 (mod 2). Due to Hensel’s Lemma 2.1, Eq. (1.1) has a solution
x ∈ Z∗

2.
(ii) We consider only the case q = 2s where s � 1. The general case q = 2sm can be easily derived

from this case.
Suppose that (1.1) has a solution x in Z∗

2. Then due to Lemma 3.1(iii) we have that a ≡
1 (mod 2s+2).

Suppose that a ≡ 1 (mod 2s+2). According to Lemma 3.2, there is x̄ ∈ Z such that x̄q ≡
a (mod 22s+1). We again consider the same function fa,q(x) = xq − a. We then obtain that fa,q(x̄) ≡
0 (mod p2s+1). One can see that f ′

a,q(x̄) ≡ 0 (mod 2s) and f ′
a,q(x̄) �≡ 0 (mod 2s+1). So, Hensel’s

Lemma 2.1 implies that (1.1) has a solution x ∈ Z∗
2. �

6. When −1 is the power of some p-adic integer

We are now ready to describe all p,q in which −1 is a q-th power of some p-adic integer.

Proposition 6.1. Let p be an odd prime and q ∈N with q � 2.

(i) The number −1 is any odd power of some 2-adic integer and is not any even power of any 2-adic integer;
(ii) If q = mps where p � m with s � 1 then the number −1 is a q-th power of some p-adic integer if and only

if p−1
(m,p−1)

is even.

Proof. The statement (i) is obvious. We shall prove (ii).
According to Theorem 4.1, −1 is a q-th power of some p-adic integer if and only if p − 1 is an

m-th power residue modulo p and (p −1)ps ≡ −1 (mod ps+1). The last congruence always holds true.
However, it is clear that p − 1 is an m-th power residue modulo p if and only if p−1

(m,p−1)
is even. �
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