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1. Introduction

Over the last century, p-adic numbers and p-adic analysis have come to play a central role in
modern number theory.

To the best of our knowledge, we could not find any solvability criterion in the explicit form!' for
the monomial equation

xl=a, (1.1)

where ¢ is an integer >2 and a € Qp (except for ¢ =2, see [1] or [4]).

* Corresponding author.
E-mail addresses: far75m@yandex.ru, farrukh_m@iium.edu.my (F. Mukhamedov), msaburov@gmail.com,
msaburov@iium.edu.my (M. Saburov).
1 Any kind of solvability criterion was not mentioned in the classical books of the p-adic analysis except q = 2.
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Recently, J.M. Casas et al. [2] have attempted to provide a solvability criterion for the monomial
equation (1.1) concerning classification problems of high order Leibnitz algebras (see [3]). They pro-
vided a criterion in the explicit form for two cases (i) (g, p) =1, (ii) ¢ = p, and it was stated that the
solvability problem for g = mp® can be reduced to the cases (i) and (ii). It is worth to mention that
statements of the solvability criteria given in [2] were correct in the mentioned cases but their proofs
are long and complicate. Moreover, the provided algorithm for ¢ = mpS does not properly work. In
this paper, we want to show it by presenting rigorous and accurate proofs. More precisely, we pro-
vide the solvability criterion in an explicit form of the general case g = mp®. Note that our method
is completely different from [2].2 As it is usual, the solvability criteria of Eq. (1.1) in Q; and in Qp,
where p > 2, are slightly different from each other. Therefore, we shall separately study them. As an
application of the result, we describe the relationship between q and p in which the number —1 is
the g-th power of some p-adic number.

2. Preliminaries

We recall that Zp = {x € Qp: |x|p < 1} are Z}, = {x € Qp: [x|p =1} and the set of all p-adic integers
and units of Qp, respectively. Any element x € Z;; has a unique canonical form x =xp +x1 - p + x3 -
p2+---,where xge(1,2,...,p—1} and x; €{0,1,2,..., p—1}, i > 1. It is well-known (see [1]) that
any nonzero p-adic number x has a unique representation of the form x = p®@®x,, where x, € Z;;.

We are aiming to solve the monomial equation (1.1) in Q, whenever a € Q, and a # 0. After
substituting the forms x = p@®Wx, a = p°®@q, into (1.1), we can get that pTordr®x1 = pordp@gq_
This means that Eq. (1.1) has a solution in Q, whenever a € Q, if and only if the number ordp(a) is
divisible by q and the equation xI = a, has a solution in Z;;.

Therefore, it is enough to solve (1.1) in Z}, where a € Z}. The main idea to find a solvability

criterion for some polynomial equations over Zj is to apply Hensel's Lemma in a suitable form to the
given equation.

Lemma 2.1 (Hensel’s Lemma). (See [1].) Let f (x) be a polynomial whose coefficients are p-adic integers. Let 0
be a p-adic integer such that for some i > 0 we have that

f©)=0 (modp?*),  f' @ =0 (modp’), f' @ #£0 (modp™).
Then f (x) has a p-adic integer root xo such that xo = 6 (mod pi*+?).
3. Auxiliary results
The proof of the following lemma is straightforward.

Lemma 3.1. Let p be a prime, « and s be two positive integers. If p = 2 assume that o > 2.

(i) Forallx, y € Zp, we have (x + p®y)P = xP + p**1xP~1y (mod p**2);
(ii) Forall x € Z, y € Zp we have (x + pYy)P’ =xP + p¥*+sy (mod p?+st1);
(iii) For every x € 73 we have xP* =1 (mod ps*2).

By means of the previous lemma, we can prove the following result.

Lemma 3.2. Let p be a prime, q = p*> wheres e N,and a € Zy. letko=s+1ifp#2andko=s+2ifp=2.
The equation

2 Note that in [5] we have used other applications of these methods for cubic equations over Qp.
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x1=a (mod p) (3.1)
has a solution in Z for all k € N iff it has a solution in Z for some k > k.

Proof. The “only if” part is clear. Let Eq. (3.1) have a solution x, € Z for k =n, where n > ko. Now we
want to show that x;11 = xp, + €p"* is a solution of (3.1) for k =n + 1, where

q -1
Xp—Go—@1-p—---—dp1-pP"

e=ap — o

One can easily check (due to Lemma 3.1) that

q

i n+l).

X! =xl+e-p" (modp

We obtain that x?

i1 =a (mod p"). O

4. A criterion for the existence of a solution in Z}, with p > 2

Recall that a € Z is called an m-th power residue modulo p if the congruence equation x™
a (mod p) has a solution in Z. Let p > 2 and (a, p) = 1. It is well-known (see [6]) that a € Z i

an m-th power residue modulo p if and only if o’ =1 (mod p), where d =(m, p — 1).

[

Theorem 4.1. Let p > 2 be a prime, ¢ = mp® where p{m withs >0, andd = (m, p—1). Eq. (1.1) witha € Z;
has a solution in Zj, if and only if

p-1
(i) ag is an m-th power residue modulo p, i.e., aod =1 (mod p);

(ii) ags =g (mod pst1).

Proof. We shall consider two cases (p,q) =1 and q = p°, where s > 1. The general case ¢ = mp® can
be easily derived from the mentioned cases.

Cast l. Let (p, q) = 1. Suppose that Eq. (1.1) has a solution x € Z;. Then xg =ap (mod p), i.e. ag is
a g-th power residue modulo p.

Suppose that ag is a g-th power residue modulo p, i.e. there is X € Z such that X9 = ag (mod p). Let
us consider the polynomial fq q(x) = x?—a. Then, it is clear that fq q(x) =% —a=ao—a=0 (mod p).
On the other hand, we get f‘;'q()_c) =qx%~1 20 (mod p). Therefore, due to Hensel's Lemma 2.1, we
conclude that (1.1) has a solution x € Z;;.

Cask Il. Let ¢ = p* where s > 1. Suppose that (1.1) has a solution x € Z;. Then, by Lemma 3.1(ii)
a=x} 4+ pst1x; (mod ps*2). This yields that xj =a (mod ps*!). Since xj =ao (mod p) and x} =
Xo (mod p), we obtain that xo =do and af =a (mod ps*t1).

Suppose that ag =a (mod p*t!). According to Lemma 3.2, there is X € Z such that x4 =
a (mod p?*1). We want to show that (1.1) has a solution in Z:;. In fact, let us consider the same
function fg 4(x) =x? —a. We then get that f54(X) =0 (mod p2*1). It is clear that f; ,(X) =qx"~! =
0 (mod p°), and f(;qq(fc) =qx9~1 £ 0 (mod p**1). Therefore, Hensel's Lemma 2.1 implies that (1.1) has
a solution x € Zy. O

5. A criterion for the existence of a solution in Z;
Theorem 5.1. Let g € Nand a € Z3.

(1) If q is odd then Eq. (1.1) has a solution in Z for any a € Z3.
(i) If g =2°m, where m is odd and s > 1 then Eq. (1.1) has a solution in Z3 if and only ifa = 1 (mod 2512y,
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Proof. (i) Let g be odd. We shall consider the same function f;q4(x) =x? —a as before. It is clear
that fq,q(1) =0 (mod 2) and fé,q(l) # 0 (mod 2). Due to Hensel's Lemma 2.1, Eq. (1.1) has a solution
XeZs.

(ii% We consider only the case q =25 where s > 1. The general case q = 2°m can be easily derived
from this case.

Suppose that (1.1) has a solution x in Z3. Then due to Lemma 3.1(iii) we have that a =
1 (mod 2512),

Suppose that a =1 (mod 25%2). According to Lemma 3.2, there is X € Z such that X1 =
a (mod 2%+1). We again consider the same function fa,q(x) =x9 —a. We then obtain that f; q(X) =
0 (mod p**!). One can see that f; (X) =0 (mod 2°) and f; (%) # 0 (mod 257). So, Hensel's
Lemma 2.1 implies that (1.1) has a solution x € Z5. O

6. When —1 is the power of some p-adic integer
We are now ready to describe all p, g in which —1 is a g-th power of some p-adic integer.

Proposition 6.1. Let p be an odd prime and q € N with q > 2.

(i) The number —1 is any odd power of some 2-adic integer and is not any even power of any 2-adic integer;
(ii) If g = mp® where ptm with s > 1 then the number —1 is a q-th power of some p-adic integer if and only
if (mpp;_lu is even.

Proof. The statement (i) is obvious. We shall prove (ii).
According to Theorem 4.1, —1 is a g-th power of some p-adic integer if and only if p — 1 is an
m-th power residue modulo p and (p — 1)?° = —1 (mod pSt"). The last congruence always holds true.

However, it is clear that p — 1 is an m-th power residue modulo p if and only if % iseven. O
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