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The efficiency of dynamic Monte Carlo algorithms for off lattice systems composed of
particles is studied for the case of a single impurity particle. The theoretical efficiencies of
the rejection-free method and of the Monte Carlo with Absorbing Markov Chains method
are given. Simulation results are presented to confirm the theoretical efficiencies.

1. INTRODUCTION

One of the most difficult problems to solve in simulations of physical systems is the
problem of disparate time scales. In materials, this problem is evident from looking at
the timescales involved. The fundamental time for a move from quantum theory is on
the order of that of an inverse phonon frequency, about 10−13 sec, which is faster than
the clock cycle of a computer. The time scale to understand in aging of materials or for
geological materials is on the order of decades to centuries to the age of the earth, and
consequently much longer than the timescale that a program can be run on a computer.
Even if parallel computers can help to bridge this gap, they can at most gain on the order
of the number of processor elements. We are left with the realization that to bridge these
disparate time scales will require advanced algorithms and physical understanding of both
the system and its intrinsic dynamics.

In this paper we study the theoretical efficiency of advanced dynamic algorithms for
particle systems, in particular rejection-free Monte Carlo (RFMC) methods and Monte
Carlo with Absorbing Markov Chain (MCAMC) [1,2] methods for a system of particles
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in d dimensions. For simplicity we concentrate on a system containing only one impurity
particle. This work builds on recent papers examining the efficiencies of RFMC methods
for particle systems without disorder [3,4]. It is important to realize that both the RFMC
and MCAMC algorithms simulate exactly the same dynamic as that of the original dy-
namic Monte Carlo procedure, so no approximations are involved but rather the dynamic
is programmed using a different algorithm.

2. MODELS AND METHODS

2.1. Particle Models and Dynamic Monte Carlo
In this paper we study a system of particles in dimension d, with 1≤d ≤2. In the systems

studied the particles move in continuous space via a dynamic Monte Carlo procedure. The
dynamic Monte Carlo procedure is [4,5]: 1) Randomly pick one of the N particles; 2) A
new position for the particle is chosen by uniformly picking a point in a d-dimensional
hyperspherical volume of radius rchoose; 3) Reject the new position if it is outside of the
cage formed by its nearest neighbor particles; 4) Evaluate the energy difference ΔEj =
Enew,j − Eold,j between the old and the new positions of the chosen particle j; 5) Decide
whether or not the trial move is to be accepted, for example using a Metropolis criteria
where the new move is accepted if ΔEj ≤ 0 and otherwise accepted with a probability of
exp (−ΔEj/T ) with T the absolute temperature and where Boltzmann’s constant kB = 1;
and 6) If the trial move is accepted particle j is moved to the new position, otherwise
it stays in its old position. One pass through these six steps advances the time by one
Monte Carlo step (mcs).

We use a potential between two particles a distance r apart given by [4] U(r) = 0 if
r ≥ rc for a given cut-off radius and Up(r) = (1/rp) − (1/rp

c) for r ≤ rc. Between particles
of the same type we choose p = 12, since this is the repulsive portion of Lennard-Jones
interactions. Between a normal particle and an impurity particle we choose pi = 4. We
have only one impurity particle in the simulation, and start initially with the system in a
ground state. We perform the simulation in a fixed system volume, and hence at a fixed
density ρ. Periodic boundary conditions are used in all cases.

2.2. Rejection-Free Dynamic Monte Carlo (RFMC)
For the RFMC algorithm the system changes its configuration at every algorithmic step.

The time between these updates for the discrete-time RFMC algorithm in units of mcs is
given by [1,2,4,6] twait = 1 + �ln(r̃)/ln(Λ)� where �· · ·� is the integer part, r̃ is a random
number uniformly distributed in (0, 1], and Λ is the probability for the system to stay
in its current state in one dynamic Monte Carlo attempt. Consequently, Λ = 1

N

∑N
j=1 λj

since the probability that particle j is picked to attempt a move is 1/N and the probability
that the dynamic Monte Carlo trial move will be rejected given that particle j is picked
is given by λj. The average waiting time is given by 〈twait〉 = 1/(1 − Λ), and since this is
the efficiency it can be quite large for Λ ∼ 1.

2.3. Monte Carlo with Absorbing Markov Chains (MCAMC)
The idea of the MCAMC algorithm is to identify some fast degrees of freedom (here

a particle that changes position more rapidly than others), and have an algorithm that
calculates the waiting time between the current system configuration and the next system
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configuration where a particle other than a fast particle has moved. Then one step of the
algorithm advances time by m mcs, the time until the first ‘slow’ move occurs for a
particular configuration. In discrete space, with s states in the ‘fast’ subspace given by
an s × s matrix (the transient matrix) T, the waiting time is found by the solution of
the equation [1,2] �vT

initialT
m�e < r̃ ≤ �vT

initialT
m+1�e for a uniform random number r̃ in (0, 1].

Here �e is a vector of length s with all elements equal to unity, and the initial vector has
all zero elements except for unity in the initial state of the system. For s=1 this reduces
to the RFMC algorithm [6].

Before spending time devising and programming an actual MCAMC algorithm for par-
ticle systems in continuous space, the efficiency of such an algorithm should be estimated.
We can obtain this efficiency in a RFMC or dynamic Monte Carlo simulation by mea-
suring the average time 〈twait〉MCAMC required for a ‘slow’ particle to move. This is the
method used in the current paper.

3. THEORETICAL RESULTS

3.1. Rejection-Free Monte Carlo (RFMC)
We have previously predicted that for homogeneous d-dimensional particle systems

the asymptotic average waiting time for the RFMC algorithm at high densities and low
temperatures is [4] 〈twait〉 ∝ rd

choose T − d
2 ρ

p+2
2 . This result was found by noting that the

integral for λj (which are all the same for a homogeneous system in the ground state)
is strongly peaked for low temperatures and hence a Laplace saddle-point integration
approximation can be used. This gives the RFMC algorithmic efficiency to be [4]

〈twait〉 = [〈exp (−ΔE/T )〉]−1 ∝ rd
choose T − d

2

√∣∣∣detÃ
∣∣∣ (1)

where the elements of the d × d matrix are [4] Ãk� = −T ∂2

∂xk∂xl
ln [P (�x)]

∣∣∣
�x=�x0

where �x0 is

the equilibrium position and P (�x) is the integrand in the integral that gives 1−λj . For our
two-body interactions, which depend only on the distance a between the nearest-neighbor
particles, A�� ∼ a−p−2 and off diagonal elements are zero. Since for a homogeneous system

in the ground state ρ ∝ a−d one has that
∣∣∣detÃ

∣∣∣
1
2 ∼ [a−p−2]

d
2 ∼ ρ

p+2
2 .

For our case with a single impurity the same analysis holds, but now rather than having
to perform one integral to obtain all λj, we have to perform a slightly different integral
for each particle j. Each integral for a λj may have a different local environment for the
system in the ground state and the impurity particle has a different two-body interaction
than that between non-impurity particles. Since every λj will have the temperature
enter into the integral the same way, we obtain the prediction that asymptotically at low
temperatures the efficiency will be given by 〈twait〉 ∝ T − d

2 even for the case of a system
with disorder. For the disordered case the RFMC algorithmic efficiency is

〈twait〉 ∝ rd
choose T − d

2 N

⎡
⎣

N∑

j=1

(
det

∣∣∣Ãj

∣∣∣
)− 1

2

⎤
⎦

−1

. (2)

3.2. Monte Carlo with Absorbing Markov Chains (MCAMC)
Even for a single impurity particle the efficiency of MCAMC is complicated. Under

certain assumptions [7] the ratio of the efficiency of the MCAMC algorithm to that of the
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RFMC algorithm can be shown to be

RMCAMC =
〈twait〉MCAMC

〈twait〉 ∝ 1 +
1

N

√√√√√
det

∣∣∣Ã
∣∣∣

det
∣∣∣Ãimpurity

∣∣∣
. (3)

Thus the MCAMC efficiency compared to the RFMC efficiency is independent of the
temperature. This is in marked contrast to the case of discrete state systems [1].

4. SIMULATION RESULTS

To perform the simulations we found that relaxation to the ground state from an initial
state was very slow. Therefore we performed a quenching procedure by cooling the system
slowly from high temperature. Once the system was quenched we measured the efficiency
of the RFMC method by measuring 〈twait〉 and measured the efficiency of the MCAMC
method by measuring 〈twait〉MCAMC. We studied one- and two-dimensional systems, and
106 independent samples are averaged at each temperature.

Figure 1 shows the results for a single impurity particle with pi=4, p=12, N=100, and
ρ=2. For d=1 with a single impurity all nearest-neighbor distances a values are equal
except for two. The measured values for the nearest neighbor distances at T=1 were
aimpurity = 0.137(1) and a = 0.507(2). From these values the efficiency ratio RMCAMC

from Eq. (3) is predicted to be almost unity. For our parameter values the MCAMC
algorithm is not much more efficient than is the RFMC algorithm. The behavior of the
efficiency on the temperature is ∼ T − d

2 as predicted, and is shown in Fig. 1. We find that
both the RFMC and MCAMC efficiencies for the single impurity case at this density are
comparable to that for the homogeneous case. This is because of compensation effects
that are present in d=1 but absent in higher dimensions [7].

For d=2 simulation results are shown in Fig. (2) for the efficiencies versus the tem-
perature. The simulations were performed with N=100 and ρ=4.0. Again it is seen
that asymptotically the efficiency goes as T − d

2 . Furthermore, the asymptotic efficiency
ratio RMCAMC is approximately independent of T . Unlike the d=1 case, the MCAMC
algorithm significantly outperforms the RFMC for the inhomogeneous lattice. This is
because due to ‘cage’ effects a≈aimpurity. From Eq. (3) for our parameters the predicted
ratio is RMCAMC≈21, and the ratio of the intercepts of the two lines in Fig. (2) is about
19. For ρ=8 the predicted value would be RMCAMC≈320.

5. CONCLUSIONS AND DISCUSSION

We have studied the efficiencies of the rejection-free Monte Carlo (RFMC) and the
Monte Carlo with Absorbing Markov Chains (MCAMC) algorithms for particle systems
with an impurity particle. We have compared our theoretical predictions of the asymptotic
efficiency to that from simulations in d=1 and d=2. We find that even with impurities
both the RFMC and MCAMC algorithms have efficiencies that grow as the temperature
is lowered as T − d

2 . We also find that the ratio of the MCAMC to the RFMC asymptotic
efficiencies is approximately independent of T . For d=1 there is very little gain in efficiency
by having the impurity particle put into a MCAMC algorithm, as opposed to using the
simpler RFMC algorithm. In contrast, in d=2, due to the ‘cage’ effect, the MCAMC
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Figure 1. The efficiencies of RFMC and
MCAMC for d=1 is shown as a function
of temperature T . This is for ρ = 2.0
and N = 100. The solid line has slope
− 1

2
. The disordered system has efficien-

cies of both the RFMC and MCAMC algo-
rithms that are almost the same as those
for RFMC for the homogeneous system.
The units for twait are mcs per particle.
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Figure 2. The efficiencies of RFMC and
MCAMC for d=2 is shown as a function
of temperature T . This is for ρ = 4.0 and
N = 100. The lines have slope −1. The
efficiencies of the MCAMC algorithm for
the disordered system are almost the same
as those for the RFMC for the homoge-
neous system. The units for twait are mcs
per particle.

algorithm can be orders of magnitude more efficient than the RFMC algorithm. Further
studies of the efficiencies in d=3 and for ab initio dynamic Monte Carlo [8] would be of
interest. Actual implementations of the MCAMC algorithm requires further development,
but this study shows that the algorithm could be a big improvement over the RFMC
algorithm for d≥2.
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