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r reduced glutathione (GSH) export under both basal conditions and in cells
undergoing apoptosis have not yet been identified, although recent studies implicate some members of the
multidrug resistance-associated protein family (MRP/ABCC) in this process. To examine the role of MRP1 in
GSH release, the present study measured basal and apoptotic GSH efflux in HEK293 cells stably transfected
with human MRP1. MRP1-overexpressing cells had lower intracellular GSH levels and higher levels of GSH
release, under both basal conditions and after apoptosis was induced with either Fas antibody or
staurosporine. Despite the enhanced GSH efflux in MRP1-overexpressing cells, intracellular GSH levels were
not further depleted when cells were treated with Fas antibody or staurosporine, suggesting an increase in
GSH synthesis. MRP1-overexpressing cells were also less susceptible to apoptosis, suggesting that the stable
intracellular GSH levels may have protected cells from death. Overall, these results demonstrate that basal
and apoptotic GSH release are markedly enhanced in cells overexpressing MRP1, suggesting that MRP1 plays
a key role in these processes. The enhanced GSH release, with a concurrent decrease of intracellular GSH,
appears to be necessary for the progression of apoptosis.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Glutathione (GSH) is involved in a number of biochemical
processes and its levels in various cellular compartments are tightly
controlled. The two primary mechanisms by which cells regulate
intracellular GSH levels are by altering the rate of its biosynthesis and
the rate of GSH export from cells. Interestingly, cells undergoing
apoptosis release large quantities of GSH into the extracellular space
by a transport-mediated process [1–6]. The significance of GSH release
to the apoptotic process, and the transport mechanisms remain poorly
defined. Because of the protective role of GSH, it has been
hypothesized that GSH depletion increases reactive oxygen species
which can act as secondmessengers to activate apoptotic pathways, or
it may lead to a change in the redox state of proteins whose catalytic
activity may be required for apoptosis to proceed [7,8].

The proteins responsible for GSH export remain largely unknown,
although there is growing evidence that some of the multidrug
resistance-associated proteins (MRP/ABCC) are involved in this
process [4,9–19]. Among the MRPs, MRP1 is the best characterized
[4,9,10]. MRP1 is expressed in all mammalian cells that have been
examined, making it a likely candidate for the major GSH transporter,
and several studies have shown that MRP1-overexpression is
associated with lower levels of intracellular GSH and higher levels of
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extracellular GSH [11–15]. In addition,Mrp1−/− mice have higher GSH
levels in tissues that normally express this protein, whereas GSH
levels are unchanged in tissues that do not normally express Mrp1
[16,17]. The MRP proteins are also thought to be involved in apoptotic
GSH release, but this is also not well defined. Other studies have
associated increased cytotoxicity in cells overexpressing MRP1 to loss
of intracellular GSH [18,19].

In addition to the MRPs, the rat organic anion transporting
polypeptide 1 and 2 (Oatp1/Slc21a1 and Oatp2/Slc21a5) have also
been shown to accept GSH as a substrate [20,21], and human OATP8
has been implicated in GSH transport [22–24]; however, recent
studies failed to confirm the latter findings [4,25]. Based largely on the
use of pharmacological inhibitors and indirect GSH detection
methods, Franco and colleagues [23,24] concluded that cellular GSH
export in Jurkat T cells is mediated by the OATP proteins. In contrast,
Hammond et al. [4] used RNAi in the same cell model and a
comparison with a different lymphocyte cell line to demonstrate
that the MRP proteins rather than the OATP proteins are responsible
for GSH export. The latter study demonstrated that decreasing MRP1
expression in Jurkat cells leads to a decrease in both basal and
apoptotic GSH release, suggesting that MRP1 is a major player in both
these processes [4].

To further characterize the role of MRP1 in basal and apoptotic GSH
export, the present study assessed GSH export in HEK293 cells stably
overexpressing humanMRP1. The results suggest that MRP1 is a major
contributor to GSH export in this cell model.
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2. Materials and methods

2.1. Materials

Fas antibody clone CH-11 was purchased from MBL International
Corporation (Woburn, MA). Fluorescent caspase 3 substrate Ac-DEVD-
AMC was from Calbiochem (San Diego, CA), Annexin V-APC was from
BD Pharmingen (San Jose, CA), calcein-AM was from Molecular
Probes-Invitrogen (Carlsbad, CA) and [3H]LTC4 from PerkinElmer
(Waltham, MA). All other chemicals and reagents were purchased
from Sigma-Aldrich (St. Louis, MO).

2.2. Cell culture and transfection

HEK293 cells were obtained from the American Type Culture
Collection (ATCC, Manassas, VA) and cultured in Dulbecco's modified
Eagle's medium supplemented with 10% fetal bovine serum
(Mediatech, Herndon, VA) and 5 mg/mL penicillin/streptomycin
(Gibco, Grand Island, NY), and incubated at 37 °C in a 5% CO2

atmosphere. Human MRP1 cloned into the pcDNA3.1 vector
(Invitrogen, Carlsbad, CA) was kindly provided by Dr. Susan Cole,
Queen’s University, Ontario, Canada. HEK293 cells were transfected
with MRP1 using Fugene 6 transfection reagent (Roche, Notley, NJ).
Stable cell lines were created by culturing transfectants in 800 µg/
ml G418 (Invitrogen, Carlsbad, CA) for 3 weeks. Expression of MRP1
in the G418 resistant clones was determined by real time
quantitative RT-PCR, and by immunoblot and functional analyses.
For all experiments, 0.5×106 cells were plated per well of a 6-well
plate. When confluent, cells were washed once with KH buffer
(Krebs–Henseleit Buffer: 118 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4,
25 mM NaHCO3, 0.6 mM MgSO4, 1.25 mM CaCl2 and 10 mM Hepes/
Tris; pH 7.5) and all experiments were performed in KH buffer
containing 0.5 mM acivicin, an inhibitor of γ-glutamyl transpepti-
dase activity.

2.3. mRNA expression

Total RNA was isolated using the RNeasy Mini Kit and the
RNase-Free DNase set (Qiagen, Valencia, CA). Oligonucleotide
primers were designed using Primer Express 1.5 (Applied Biosys-
tems, Foster City, CA) as previously described [4]. PCR analysis was
performed using iScript One-Step RT-PCR kit with SYBR Green (Bio-
Rad, Hercules, CA) and the Roto-Gene 3000 real time light cycler
(Corbett Research, Phenix Corporation, Hayward, CA). Total RNA
(10–100 ng) was used, and the data are presented relative to
human β-actin.

2.4. MRP1 protein expression

Whole cell lysates were collected as previously described [26].
Briefly, cells were washed once in PBS and collected in 1X phosphate
buffered saline solution (Invitrogen, Carlsbad, CA) containing 10 mM
EDTA, 1 mM phenylmethanesulfonylfluoride (PMSF) and 1:100
dilution of mammalian protease inhibitor cocktail (Sigma, St. Louis,
MO). After centrifugation at 10,000 ×g at 4 °C for 10 min, pellets were
frozen overnight at −80 °C. Pellets were thawed on ice and lysed in 1×
PBS solution containing 10 mM EDTA, 25 mM Tris–HCl, pH 7.4, 300 mM

NaCl, 1 mM CaCl2, 1% Triton X-100, 1 mM PMSF, and 1:100 dilution of
mammalian protease inhibitor cocktail by passing through a 25-gauge
needle. The lysate was centrifuged at 10,000 ×g for 5 min. The
concentration of the supernatant (whole cell lysate) was determined
using Bio Rad’s DC protein assay. Protein (10 µg) was run on a 4–20%
Tris–HCl Ready Gel (Bio-Rad, Hercules, CA) using a tank blotting
system from Bio-Rad and detected using chemiluminescence (Perkin
Elmer, Boston, MA). MRP1 primary antibody, MRPr1 (Axxora, San
Diego, CA), was diluted in Tris-buffered saline Tween-20 (TBST)
containing 1% low fat poweredmilk and 1% bovine serum albumin at a
1:200 dilution. The secondary antibody was horseradish peroxidase-
conjugated goat anti-rat IgG (1:15000).

2.5. GSH release

Cells were preincubated for 20min at 37 °C in KH buffer containing
0.5 mM acivicin to inhibit γ-glutamyl transpeptidase activity. The
culture medium was collected to analyze for extracellular GSH at
different times of incubation. Cells were lysed with 5% perchloric acid
containing 1 mM EDTA, centrifuged at 18,000 ×g for 5 min and the
resulting supernatant was analyzed for intracellular GSH using an
enzymatic assay containing 5,5′-dithio-bis(2-nitrobenzoic acid) and
glutathione reductase [27]. The pellet was dissolved in 1 M NaOH and
used for protein analysis using the Lowry protein assay [28]. Results
are expressed either as nmol GSH/mg protein or as the ratio of
extracellular to intracellular GSH.

2.6. Calcein release activity

Cells were incubated with 1 µM calcein-AM at 4 °C for 1 h, washed
with KH buffer, and resuspended in KH buffer plus 0.5 mM acivicin.
Calcein in the extracellular buffer was analyzed by removing 200 µl of
the medium at different times of incubation, and this was placed in a
96-well plate. For intracellular calcein, cells were lysed with KH buffer
plus 2% Triton X-100, centrifuged for 5 min at 18,000 ×g and the
supernatant added to the 96 well plate. Samples were analyzed on a
SPECRTAmax Gemini XS spectrofluorometer (Molecular Devices
Corporation, Sunnyvale, CA) at 37 °C, excitation 485; emission 530.
Cells without calcein were measured to detect background fluores-
cence. Protein was analyzed using the DC protein assay (Bio-Rad,
Hercules, CA). The calcein release data were expressed as average
fluorescence/mg protein and then converted to percent of calcein
released (supernatant) from total calcein made by cells (supernatant+
cell lysate).

2.7. Membrane vesicle preparation

Plasma membrane vesicles were prepared from transfected
HEK293 cells using sucrose gradients as previously described
[29,30]. Briefly, cells were collected into a transport buffer solution
containing 250 mM sucrose, 10 mM Hepes/Tris pH 7.5, 20 mM KCl,
0.20 mM CaCl2, homogenized 20–25 times with a B pestle of a Dounce
homogenizer on ice, and centrifuged at 800 ×g. The supernatant was
layered onto sucrose gradients made up of 32% and 16% sucrose
solutions, and centrifuged at 100,000 ×g. The discrete band formed at
the 16–32% interface was collected and centrifuged further at
100,000 ×g. The resulting pellet was resuspended in the transport
buffer described above and quantified using the DC protein assay (Bio-
Rad, Hercules, CA).

2.8. Vesicle transport assay

ATP dependent transport of [3H]LTC4 was measured by rapid
filtration through nitrocellulose filters (Millipore, Billerica, MA).
Vesicles (8 µg) were incubated with 5mM ATP or similar concentration
of NaCl with 10 mMMgCl2, 100 µg/ml creatine phosphokinase, 10 mM
phosphocreatine, and 50 nM [3H]LTC4 (20 nCi) in transport buffer at
37 °C. Final incubation volume was 100 µl. After incubation, the
reaction was stopped with 900 µl of an ice-cold buffer containing
300 mM sucrose, 10 mM Hepes/Tris pH 7.5, and 20 mM KCl, filtered
through the nitrocellulose filters, and further washed with 4ml of this
wash buffer. After addition of 4 ml of OptiFluor (Perkin Elmer, Boston,
MA), radioactivity associated with the filters was determined by liquid
scintillation counting using a Beckman Coulter scintillation counter
LS6500 (Fullerton, CA).



Fig. 1.MRP1mRNA and protein expression, and functional activity in transfected HEK293
cells. (A) Real time RT-PCR was performed on HEK293 cells transfected with human
MRP1 together with vector-transfected (pcDNA3.1) or parental cells (HEK293). MRP1
levels were normalized to human β-actin and data are expressed as fold change relative
to control (HEK293 cells). Values aremeans±SE, n=6. (B)Western blot for humanMRP1
protein expression (10 µg of proteinwas loaded for each sample). Blotting for human β-
actin was done to ensure consistent protein loading. Blot is representative example of
three experiments. (C) Membrane vesicles (8 µg protein) isolated from vector-
transfected or MRP1-overexpressing HEK293 cells were incubated with 50 nM [3H]
LTC4 with or without 5 mM ATP for 5 min. The ATP dependent uptake of [3H]LTC4 was
determined. Data represent means±SE, n=3. ⁎Significantly different from vector-
transfected cells, Pb0.05. (D) Parental, vector-transfected, and cells transfected with
MRP1 were incubated for 1 h with 1 µM calcein-AM at 4 °C and percent of total calcein
release was determined over 60 min. Values are means+SE, n=3. ⁎Significantly
different from control cells, Pb0.05.

Fig. 2.HEK293 cells overexpressingMRP1 release significantly greater quantities of GSH
when compared to parental or vector-transfected cells. Extracellular (A), intracellular
(B), and total (i.e., extracellular plus intracellular) (C) GSH levels were measured in
parental, vector-transfected or MRP1-overexpressing cells over 6 h. Values are means±
SE, n=3–6. ⁎Significantly different from control cells, Pb0.05. #Significantly different
from time 0, Pb0.05.
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2.9. Plasma membrane integrity

Plasma membrane integrity was assessed by two methods: lactate
dehydrogenase (LDH) release [31], and by propidium iodide exclusion
as measured by flow cytometry. LDH release was expressed as a
percentage of total LDH activity (lysed untreated cells), which was
measured in cells lysed with 0.5% Triton X-100.

2.10. Phosphatidylserine externalization

At specified timepoints after treatment, cells were stained with
Annexin V-APC and propidium iodide in KH buffer containing 2.5 mM
CaCl2. Cells were analyzed for propidium iodide exclusion and
increases in Annexin V-APC staining using a Becton Dickinson
FACSCalibur flow cytometer (Franklin Lakes, NJ) at the University of
Rochester Flow Cytometry Core. Data were analyzed using Cell Quest
software, gating out propidium iodide positive cells and including
Annexin V positive cells for phosphatidylserine externalization.
2.11. Caspase 3-like activity

The caspase 3-like activity assay is based on one provided by BD
PharMingen. Briefly, cells were placed in cell lysis buffer (10 mM
Tris–HCl, 10 mM NaH2PO4/NaHPO4 pH 7.5, 130 mM NaCl, 1% Triton X-
100, and 10 mM sodium pyrophosphate) and frozen at −80°C until
activity assay. Cell lysates were thawed and centrifuged at 18,000 ×g
for 15 min at 4°C. The supernatants were then combined with 1×
HEPES buffer (20 mM HEPES pH 7.5, 10% glycerol, and 2 mM DTT) and
30 µM Ac-DEVD-AMC. Caspase 3-like activity was measured as a
change in fluorescence over 20 min using a SPECRTAmax Gemini XS
spectrofluorometer (Molecular Devices Corporation, Sunnyvale, CA)
at 37 °C.

2.12. DNA fragmentation

Cells were analyzed for a subG1 population which corresponds
to cells with fragmented DNA using flow cytometry. At appropriate
times, treated cells were trypsinized and centrifuged at 200 ×g for
7 min. The supernatant was removed and cells fixed in 70% ethanol
and stored at 4 °C, until staining. For staining, cells were centrifuged
at 200 ×g for 7 min, the supernatant removed and the pellet
resuspended in 1 mg/ml RNase A in 1 X PBS. Cells were vortexed
and incubated for 30 min at room temperature. After the incubation
period, cells were centrifuged again at 200 ×g for 7 min and
resuspended in 20 µg/ml PI solution. Flow cytometry was
performed on a Becton Dickinson FACSCalibur flow cytometer
(Franklin Lakes, NJ) at the University of Rochester Flow Cytometry
Core.
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2.13. Statistical analysis

Statistical analysis was performed using Statview 5 (SAS Institute
Inc., Cary, NC). Data were analyzed using one-way ANOVA and Fisher’s
PLSD posthoc analyses. In all cases p values of less than 0.05 were
considered statistically significant.

3. Results

3.1. HEK293 cells overexpressing MRP1 demonstrate increased transport
of LTC4 and calcein

HEK293 cells and the empty vector transfected cells contained low
levels of MRP1 mRNA and protein (Fig. 1). Several MRP1-over-
expressing clones were obtained and tested, including one in which
MRP1 expression was approximately 10-fold higher than in control
Fig. 3. Staurosporine or Fas Antibody/CHX significantly enhances GSH release from MRP1
transfected cells (A, B). Cells were untreated (□, Δ) or treated with 10 µM staurosporine (×,○
Intracellular GSH (C, D) and total GSH (E, F) at time 0 (white bars) or at 6 h (grey or black bars)
0.5 µg/ml Fas Antibody and 50 µg/ml CHX (D,F) (black bars). Values are means±SE, n=3–6.
cells (Fig. 1A). Protein expression, as determined by western blotting,
corroborated the RNA data (Fig. 1B).

To test whether the expressed MRP1 protein was functional,
transport activity of LTC4 and calcein were determined. LTC4 is a
glutathione S-conjugate and a substrate for MRP1 [32–34], and
previous studies have shown that calcein is a substrate for the MRP
transporters [35,36]. Membrane vesicles from the MRP1-overexpres-
sing cells exhibited increased [3H]LTC4 transport activity (Fig. 1C)
indicating the presence of functional transporters. Of significance,
calcein release in the MRP1-overexpressing cells was enhanced
approximately 2 to 3 fold, indicating the presence of functional
transporters at the plasma membrane (Fig. 1D). Total calcein
(intracellular+extracellular) was constant throughout the experiment
and was similar among the different transfectants (data not shown),
indicating that the changes in calcein export observed were not due to
insufficient loading of calcein-AM.
-overexpressing HEK293 cells. GSH release was measured in pcDNA3.1-, and MRP1-
) (A, C, E) or with 0.5 µg/ml Fas Antibody and 50 µg/ml CHX (×, ○) (B, D, F) for up to 6 h.
, from either untreated cells (grey bars) or cells treatedwith 10 µM staurosporine (C, E) or
⁎Significantly different from control cells at 6 h, Pb0.05.



Fig. 4. Activation of caspase 3-like proteases in MRP1-overexpressing cells treated with
staurosporine or Fas Antibody/CHX is significantly lower than in vector-transfected
HEK293 cells. pcDNA3.1- and MRP1-transfected HEK293 cells were untreated (□, Δ) or
treated with 10 µM staurosporine (×, ◊) (A), or treated with 0.5 µg/ml Fas Antibody and
50 µg/ml CHX (×, ◊) (B), for up to 6 h. Values are means±SE, n=3–5. ⁎Significantly
different from control cells, Pb0.05.
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3.2. MRP1-overexpressing HEK293 cells have lower intracellular GSH
levels and higher basal GSH export rates

The parental and empty vector-transfected cells released GSH
relatively slowly over time, consistent with the low basal MRP1
expression in these cells, whereasMRP1-overexpressing cells released
GSH at twice the rate of control cells (Fig. 2A). LDH release was low for
all cells suggesting that GSH release was not due to a compromised
plasmamembrane (data not shown). HEK293-MRP1 cells also had less
than half of the intracellular GSH found in the control cells (Fig. 2B).
Despite the high rate of GSH efflux, the intracellular levels in the
MRP1-overexpressing cells remained constant over the 6 h (Fig. 2B),
suggesting that the GSH synthesis rate may be increased. Indeed, total
GSH (i.e. extracellular plus intracellular) significantly increased over
time in the HEK293-MRP1 cells, but remained relatively constant in
the other cells (Fig. 2C).
Fig. 5. Staurosporine and Fas antibody/CHX significantly increase the percentage of cells
with subG1 DNA content in vector-transfected cells, and to a lesser extent in MRP1-
transfected cells. pcDNA3.1 (A) and pcDNA3.1/MRP1-(B) transfected cells were
untreated (◊) or treated with 10 µM staurosporine (□) or with 0.5 µg/ml Fas Antibody
and 50 µg/ml CHX (Δ) for up to 12 h. Values are means±SE, n=4. ⁎Significantly different
from untreated cells, Pb0.05.
3.3. Staurosporine and Fas antibody/cycloheximide (CHX) enhance GSH
release, and this is especially prominent in the MRP1-transfected cells

When treated with staurosporine or Fas antibody/cycloheximide
(CHX), GSH release was increased in both the control and in theMRP1-
overexpressing cells (Fig. 3A and B, respectively). At these doses of
staurosporine and Fas antibody/CHX intracellular GSH levels were
unaffected, although there was a downward trend (Fig. 3C and D).
However, both apoptotic stimuli increased the total amount of GSH
(i.e., intracellular plus extracellular GSH) in both vector- and MRP1-
transfected cell lines, with the most striking increase observed in
HEK293-MRP1 cells (Fig. 3E and F). As previously noted in Fig. 2,
intracellular GSH levels in the HEK293-MRP1 cells were less than half
of those of the vector-transfected cells without apoptotic stimuli (Fig.
3C and D). At 6 h after the apoptotic stimulus, total GSH (i.e.
intracellular plus extracellular) in the MRP1-overexpressing cells was
significantly higher, and both staurosporine and Fas antibody/CHX
increased total GSH to such an extent that the levels were almost
comparable to the GSH concentrations in the vector-transfected cells
(Fig. 3E and F).

3.4. When treated with staurosporine or Fas antibody/CHX, caspase
3-like activity, DNA fragmentation, and phosphatidylserine externalization
are elevated in vector-transfected cells, but to a lesser extent in the
MRP1-overexpressing cells

To determine whether the enhanced GSH release observed in the
HEK293-MRP1 cells was associated with altered susceptibility to
apoptosis, different apoptotic endpoints were measured. Staurospor-
ine and Fas antibody/CHX increased caspase 3-like activity in vector-
andMRP1-transfected cells, but the level of caspase 3 activation in the
HEK293-MRP1 cells was approximately half of that observed in the
vector-transfected cells (Fig. 4). Another MRP1 clone with comparable
levels of MRP1 mRNA and protein was also examined for GSH levels
and caspase 3 activation giving similar results (data not shown). The
reason for the decreased caspase activation despite the enhanced GSH
release and the lower intracellular GSH levels in the HEK293-MRP1
cells is unclear, but may be due to an enhanced rate of GSH synthesis
Fig. 6. Staurosporine-induced or Fas antibody/CHX-mediated increase in phosphati-
dylserine externalization is lower in MRP1-overexpressing cells. pcDNA3.1 transfected
cells were untreated (white bars) or treated with apoptotic inducing agent (light grey
bars). HEK293-MRP1 cells were untreated (dark grey bars) or treated with apoptosis
inducing agent (black bars). Cells were analyzed for the percentage that were Annexin V
positive and propidium iodide negative when treated with 10 µM staurosporine (A) or
with 0.5 µg/ml Fas Antibody and 50 µg/ml CHX (B) for up to 6 h. Values are means±SE,
n=3–5. ⁎Significantly different from control cells, Pb0.05.
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observed in the HEK293-MRP1 cells, as suggested by the increase in
total GSH (Figs. 2 and 3).

DNA fragmentation, a late marker of apoptosis, was determined by
measuring the percentage of cells with subG1 DNA content. In
agreement with the caspase 3 activity data, the percentage of cells
with subG1 DNA content increased in the vector-transfected cells
treated with staurosporine or Fas antibody/CHX (Fig. 5A), but a
smaller effect was noted in the MRP1-overexpressing cells (Fig. 5B).
The percentage of cells with subG1 DNA at time zero was higher in the
MRP1-overexpressing cells (Fig. 5B), but the significance of this is
unknown. Because of this high percentage of MRP1-transfected cells
with subG1 DNA at time zero, the difference in subG1 content
between untreated and treated cells is less in the HEK293-MRP1 cells
when compared to the vector-transfected cells (Fig. 5).

To determine the effect of MRP1 expression on phosphatidylserine
externalization during apoptosis, HEK293-MRP1 and vector-trans-
fected HEK293 cells were treated with staurosporine or Fas antibody/
CHX, and phosphatidylserine on the extracellular membrane was
assessed by labeling with fluorescently tagged Annexin V. Cells were
also stained with propidium iodide to determine plasma membrane
integrity. Staurosporine and Fas antibody/CHX significantly increased
phosphatidylserine externalization in vector-transfected cells, but no
significant increase in phosphatidylserine externalization was
observed in the MRP1-overexpressing cells (Fig. 6). These data
corroborate the results obtained from the caspase 3 activity and
DNA fragmentation assays, and collectively suggest that the MRP1-
overexpressing cells exhibit decreased sensitivity to apoptosis.

3.5. Vincristine stimulates GSH export in HEK293-MRP1 cells

Vincristine, a compound known to be co-transported with GSH via
the MRP proteins [37,38], was used to further enhance GSH release in
Fig. 7. Vincristine enhances basal and staurosporine-induced GSH release in MRP1-
overexpressing HEK293 cells. pcDNA3.1-, and MRP1-transfected HEK293 cells were
untreated (vehicle), treated with 10 µM staurosporine, 50 µM vincristine, or both
staurosporine and vincristine for 6 h. GSH release (A), total GSH (B), and caspase 3-like
activity (C) were measured. Values are means±SE, n=3. ⁎Significantly different from
control cells, Pb0.05. #Significantly different from staurosporine-only treatment,
Pb0.05.
these cells. Vincristine significantly increased both basal and apoptotic
GSH release in HEK293-MRP1 cells, but not in the vector-transfected
cells (Fig. 7A). In addition, vincristine by itself or in combination with
staurosporine or Fas antibody/CHX did not further increase caspase 3
activity in the vector-transfected cells (Fig. 7C). Total GSH (i.e.,
intracellular plus extracellular GSH) was unaffected (Fig. 7B). Thus,
in agreement with the results presented above, the HEK293-MRP1
cells are relatively resistant to apoptosis.

4. Discussion

The present study demonstrates thatMRP1 is an effectivemediator
of both basal and apoptotic GSH export. Basal GSH efflux increased
significantly in the MRP1-overexpressing cells, implicating MRP1 as
an important mediator of basal GSH release, and extending previous
observations in other cell lines [13,15,39]. Because of the enhanced
basal GSH export in the HEK293-MRP1 cells, steady state intracellular
GSH levels were significantly lower in these cells (Fig. 2A and B).
Interestingly, when placed in KH buffer, intracellular GSH levels did
not decrease over time in the HEK293-MRP1 cells despite the
enhanced efflux, which is corroborated by the increase in total GSH
over time, suggesting increased GSH synthesis. Because GSH synthesis
is regulated via feedback inhibition [40], the high GSH export rate in
the HEK293-MRP1 cells may stimulate GSH synthesis in an attempt to
replenish and maintain intracellular levels. An upregulation of GSH
synthesis was also previously noted in Fly-eco fibrosarcoma cells
overexpressing MRP1 [41].

Enhanced GSH release during apoptotic cell death has been
previously observed [3,4,6], and recent work from our laboratory
has implicated the MRP transporters, and in particular MRP1, in this
process [4]. To further examine the role of MRP1 in apoptotic GSH
release, HEK293-MRP1 cells were treated with staurosporine or Fas
antibody/CHX to induce apoptosis. The results indicate that the MRP1
overexpressing cells had significantly higher levels of GSH release,
supporting the role of MRP1 in GSH export during apoptosis.

Paradoxically, despite the high GSH export and low intracellular
GSH levels in the MRP1-overexpressing cells, these cells were more
resistant to apoptosis. It is now well established that enhanced GSH
release, with a concurrent depletion of intracellular GSH levels, is
important for the progression of apoptosis [2,4,42]. Stimulating GSH
release in baby hamster kidney-21 (BHK) cells overexpressing MRP1
with verapamil enhances phosphatidylserine externalization and
caspase activation [19], whereas inhibiting GSH export reduces or
slows down the appearance of apoptotic endpoints [2,4]. The present
results demonstrate that HEK293-MRP1 cells had approximately 50%
of the caspase 3 activity as the vector-transfected cells (Fig. 4). Further
stimulation of GSH export with vincristine, a compound co-trans-
ported with GSH by the MRPs [37,38], did not increase caspase
activation in HEK293-MRP1 cells (Fig. 7). In addition to low caspase
activation, DNA fragmentation and phosphatidylserine externaliza-
tion were significantly lower in the HEK293-MRP1 cells compared
with vector-transfected cells (Figs. 5 and 6). Because effector caspases,
such as caspase 3, are involved in the activation of downstream
proteins in the apoptotic pathways, it is not surprising that other
apoptotic endpoints were not altered. For instance, ICAD, an inhibitor
of caspase activated DNase (CAD), is cleaved by caspase 3 thus
releasing CAD which migrates to the nucleus and cleaves DNA [43,44].
The increase in DNA fragmentation is a later event compared to the
activation of caspase 3 as observed in the vector-transfected cells (Fig.
5A) and is lower in the MRP1-overexpressing cells (Fig. 5B).

These data suggest that enhanced GSH release on its own is not
sufficient to increase apoptosis in HEK293 cells overexpressing MRP1,
but that a concurrent decrease in intracellular levels is also required.
These findings provide insight into previous studies that reported that
treatment of cells with compounds that stimulate GSH release is
sufficient to induce cell death [18,19]. Intracellular GSH levels were not
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depleted in the HEK293-MRP1 cells treated with staurosporine or Fas
antibody/CHX despite elevated GSH release. This significant increase
in total GSH over time in the MRP1-overexpressing cells (Figs. 3 and 7)
suggests that there is an increase in GSH synthesis as the cells try to
compensate for the loss of GSH. An increase in GSH synthesis has been
observed in the highly metastatic B16 melanoma F10 (B16–F10) cell
line when treated with agents that deplete GSH in an effort to induce
cell death [45]. B16–F10 cells have high levels of intracellular GSH, and
when stimulated to release GSH using verapamil or Bcl-2 antisense
oligonucleotides they exhibit an increase in γ-glutamylcysteine
synthetase (γ-GCS) activity and GSH levels [45]. One possible
explanation for the increase in GSH synthesis is that the loss of GSH
increases the amount of reactive oxygen species in the cells which
have been suggested to induce transcription of both the heavy and
light subunits of γ-GCS by the transcription factor Nrf2 [46,47].
Additionally, if cells use reactive oxygen species or changes in the
redox state of proteins as signaling mechanisms in apoptotic path-
ways, an increase in the de novo synthesis of reduced GSH may
prevent or attenuate these signals, slowing the progression of
apoptosis and providing resistance to cell death.

Additionally, apoptotic endpoints measured in the vector-trans-
fected HEK293 cells were not as high or did not occur as rapidly as
previously observed in Jurkat cells when treated with Fas antibody or
staurosporine [4]. Jurkat cells release a significantly greater quantity of
GSH with a concurrent depletion of intracellular GSH when treated
with either apoptotic agents [4]. Therefore, longer treatment of the
vector-transfected HEK293 cells with the apoptotic agents may result
in greater loss of intracellular GSH release and increased apoptosis.

Overall, the present results provide additional direct evidence that
MRP1 is an effective mediator of GSH release under basal conditions,
and during both death receptor-mediated and chemically-induced
apoptosis. In addition, the results indicate that enhanced cellular GSH
release with a concurrent decrease of intracellular GSH appears to be
necessary for the progression of apoptosis.
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