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ABSTRACT The theory of fluorescence ments of different polarizations is pro- product of the isotropic and the rota-
correlation spectroscopy is reexam- posed for study. From the results of the tional factors. The theory is illustrated
ined with the aim of separating the experiments the isotropic factor of the by an experiment in which rotational
contribution of rotational diffusion. fluorescence intensity correlation func- diffusion of porcine pancreatic lipase
Under constant excitation, fluores- tions can be determined, which is inde- labeled with Texas Red was observed.
cence correlation experiments are pendent of the rotational motion of the Texas Red is a label that allows precise
characterized by three polarizations: sample molecule. This function can be fluorescence correlation experiments
one of the incident beam and two of the used to represent each fluorescence even in the nanosecond time range.
two photon detectors. A set of experi- intensity correlation function as the

INTRODUCTION

In fluorescence correlation spectroscopy (FCS) the
behavior of individual fluorescent molecules is studied
(Elson and Magde, 1974). Most applications of FCS are

related to translational motion: the detected fluorescence
intensity of a molecule changes as the molecule enters or

leaves the sample domain. Translational diffusion of
labeled material in various environments is often under
direct scrutiny (Magde et al., 1974; Schlessinger et al.,
1976; Webb, 1976; Sorscher et al., 1980; Andries et al.,
1983; etc.). Translational diffusion is sometimes used as a

toor to study binding reactions restricting diffusion (Bor-
ejdo, 1979; Thompson and Axelrod, 1983). Scanning as a

peculiar type of translational motion has been used to
study the extent of polymerization or aggregation (Weiss-
man et al., 1976; Petersen, 1984; Palmer and Thompson,
1987).

In addition to translational motion, a number of pro-
cesses are known to be responsible for fluorescence inten-
sity fluctuations: rotational motion (Ehrenberg and Rig-
ler, 1974), conformational changes (Steinberg and Haas,
1982), spontaneous and photoinduced chemical reactions
(Elson and Magde, 1974), and some photophysical pro-
cesses (Ehrenberg and Rigler, 1974; Kaindler et al., 1982;
Kasketal., 1985).

Several theoretical papers have been published on FCS
applications to rotational motion (Ehrenberg and Rigler,
1974, 1976; Aragon and Pecora, 1975, 1976; Yardley and
Specht, 1976; Hoshikawa and Asai, 1985). Despite the
fact that important information can be derived from the
FCS measurements in the wide range of rotational corre-

lation times, from 108 to 1 s, relatively few experiments

have been followed up (Borejdo et al., 1979; Kask et al.,
1987). One reason for this has been the danger of
confusing unwanted contributions from the other pro-
cesses, e.g., from photobleaching or from translational
motion.

It is widely known that rotational motion is expressed
in various ways and to multiple extents at different
polarizations of fluorescence experiments. This property
has been used to separate the rotational contribution in
fluorescence photobleaching recovery (Wegener and
Rigler, 1984) as well as in time-resolved fluorescence
depolarization (Tao, 1969).
The first attempt to separate the rotational contribu-

tion in FCS was that of Borejdo et al. (1979), who studied
fluctuations of the polarization ratio of fluorescence. In
the present work the theory of FCS is reexamined with
the aim of separating the contribution of rotational diffu-
sion in fluorescence intensity correlation functions. As a

model in illustrative experiments, porcine pancreatic
lipase labeled with a highly fluorescent and photostable
marker Texas Red (Titus et al., 1982) has been chosen.

THEORY

Factorization of the fluorescence
intensity correlation function
There exist a multitude of random variables determining
the probability density of the sample molecule of absorb-
ing or emitting photons. Let us separate the orientation of
the molecule Q(t) from all the other variables Q(t),
including the position (in space), chemical state, configu-
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ration, and electronic state of the fluorophore molecule.
The probability density of absorption is expressed as a

function of Q and Q:

Wa(t) = A 2(Q(t))Fa(Q(t)). (1)

Here A'2(Q) depends on the direction of the transition
moment of absorption of the molecule, ^ga (Q), in respect
to the electric vector of the exciting light, a (Ehrenberg
and Rigler, 1974):

A (,A())= 3 (Ra*)2 (2)

Similarly to Eqs. 1 and 2, the expressions for the detection
of the light emission look like

W,(t) == E2(II(t))F'(Q(t)), (3)

E2( At(Q)) = 3 (e - 'e)2 (4)

Here ALi is the unit vector of the transition moment of the
emission of the molecule, and e is the direction of the
polarization of the light detector.

Let us imagine an experiment in which fluorescence of
a molecule is exited by two short light pulses at the time
moments tI and t3 (tl < 3), and the joint probability
density to detect fluorescence photons at t2 and t4 is
measured. (Of course, to estimate the probabilities, the
experiment has to be repeated very many times.) The
measured function is a fourth-order correlation function
G(4) (t,, t2, t3, 14), useful to be studied in the FCS theory
(Aragon and Pecora, 1975), although only the second-
order fluorescence intensity correlation function under
constant excitation is usually measured in experiments.

Using expressions 1 and 3, the fourth-order correlation
function is expressed as

G(4) (t1,t2,t3,t 4) = (A 2(1i)Fa (Qi)E2(112)Fc(Q2)
*A -(13)F,(Q3)E2(04)F,(Q4) )(5)

Assume now that Q and Q are independent sets of
variables. This assumption means that formula 5 can be
factorized as

G(4) (tl, t2, G3, 14) =(A2(1)E2(Q2)A2(Q3)E2(Q4)
(Fa(QI)Fc(Q2)Fa(Q3)Fe (Q4)) (6)

(A similar assumption was used by Wegener and Rigler
[1984] in the theory of fluorescence photobleaching
recovery.) Let us call the first factor in this formula the
rotational factor, and the second factor would be the
isotropic correlation function.
As we have already noted, in fluorescence correlation

experiments the second-order correlation function under
constant excitation is usually measured. This is expressed

as an integral from the fourth-order correlation function:

GI2) (r) = ]' dt" G(4) (t', 0, t", r)dt' = (7)

dtf f0 (A2(t')E2(0)A2(t")E2(T))

(Fa(t')Fe(O)Fa(t")Fc(r)) dt'. (8)

To give an idea how the information about the rota-
tional motion of the fluorophore molecule can be obtained
from the experiment, we shall make some further assump-
tions now. We shall assume that the molecule has only a

single fluorescence unit. We shall also assume monoex-

ponential decay of fluorescence. Under these assump-

tions

(Fa(Qi)Fc(Q2)Fa(Q3)Fe(Q4) ) =

= S12)(t3 - ti)r-2 exp[-(t2 - t1 + 14 - t3)/r],

if t I< t2 < t3 < t4; 0 for the other values of t3. (9)

Here

SI2) (t) = (Fa(O)Fa( t) ) / [ l-exp(-t/Tr)] (10)

is a slowly decreasing function if compared to the fluores-
cence decay. (For photostable immobile molecules
S(2) (t) = constant. In case of rhodamines the fastest
process contributing to the decrease of S(2) (t) is usually
the populating of the tripleL excited states, which has a

relaxation time in the range of microseconds [Kaindler et
al., 1982].) Therefore, S(2) (t3 -tl) in Eq. 9 can well be
taken equal to S(2) (X). Under this approximation Eq. 8
leads to

G2)(T) = S(2)()rT-2 dt' 'dt"

(A 2(t )E2(O)A (t )E(T)) x exp[(t' -T + t")/T]. (11)

In Eq. 11, S(2) (r) has the meaning of the isotropic
correlation function of the classical fluorescence intensi-
ty. Photon antibunching is described along with rotational
diffusion by the remaining part of Eq. 11. For example, in
the case of spherical molecule, this part has been
expressed by Aragon and Pecora (1975). According to
their expressions,

G(2)(T) S(2)(T) [C57 - dim exp(-r/re)]
im

- exp[-l(l + 1)DT], (12)

where D is the rotational diffusion coefficient and

Clm = (4Xr)-' Z- ffffA 2(gt1)E2(Go)A 2(01.)E2(g,)
llml
12m2

Y,I mI (0t) Y, mlMI(at-) YIM (at-) YIM(10o) Y12M2(00) YI*2M2(lat')

[1 + (l,(lI + 1) - 1(I + 1))D-r][1 + 12(12 + 1)DTr]

x dQl, dQo dl,. dQ,; (13)
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dim = (47r) E' ffffA2(1f 20)E2(oo)A2(IIt_)E2(g,)
12m2

YIM(Qt)Yi*m(Q,-) YIIMI(o,w)yl*lml(oO) yl2M2(00)yl*2M2(Qt')
[1 + (1(1 + 1)- l,(II + 1))Dr,][1 + 12(12 + I)D-r]

x dOt, dQodOt.dO. (14)

Expressions 13 and 14 are rather clumsy. Great simpli-
fication of formula 11 can be achieved in the limit

-e 0. (15)

This approach has extensively been used in FCS theory
(Ehrenberg and Rigler, 1974; Aragon and Pecora, 1975;
1976; etc.) and is acceptable if fluorescence decay is much
faster than rotational relaxation. It permits carrying out
the integration in formula 11 taking simply Qt, = Q)o and

= QJT:
G(2)(T) Sl()(r)[1 exp (-r/r¢)I

. (A 2(O)E2(O)A 2(T)E2(T)). (16)

The first factor of formula 16 accounts for the classical
intensity correlations of fluorescence of the molecule in
the fully unpolarized experiment, the second factor
describes a quantum effect in FCS, the photon antibunch-
ing phenomenon, and the third factor describes rotational
correlations. We shall call the product of the first and the
second factors the isotropic factor or the isotropic correla-
tion function.

It should be noted here that assumption 15 is not only
needed for the simplification of the outlook of some

analytical expressions but is also actually necessary for
separation of the rotational contribution as a factor.

Eq. 16 shows the way to separate the rotational factor
in the results of experiments. If we were able to carry out
the experiment (or to find out the combination of the
measured functions) under the conditions when the rota-
tional factor is constant, this would mean that we can

independently measure the isotropic factor. Merely the
independent measurement of the isotropic factor is the
key question even though the rotational factor is our

specific interest.
A possible way to determine the isotropic correlation

function is to average over all possible polarizations
(Kask, 1986). This is an inconvenient way because either
the experiment of fully unpolarized excitation or the
experiments using a sequence of excitation pulses of
different polarization should be required. We shall use

another approach to the problem.

The properties of the rotational
factor
The rotational factor

eT)pe- (At(g)Et(r )A (T)E2 ( 17)
depends on the geometry of the experiment, i.e., on

relative orientations of excitation polarization (a), and of
the two polarizations, el and e2, of fluorescence detection

at time moments 0 and r, respectively. Of course, the
rotational factor depends also upon the properties of the
molecule under study. The simplest model is the spherical
rigid molecule. Assume also that the two transition
moments of the molecule are parallel:

Ma = Me = M. (18)

The behavior of the molecule in solution is described by
the equation of rotational diffusion

dP(Q, t)/dt = DL2P(i, t). (19)

L is the angular momentum operator.

The special solution of Eq. 19 under initial condition
,u(O) = O is

P(g, tI4o) = E E Yim(jj)YM(iAi) exp [-I(l + I)Dt]. (20)
1-0 m--l

Functions Ylm are the spherical harmonics.
Definition of C(r), Eq. 11, gives the expression

C(r) = ff A2(Ao)E(j20A)P(Ao)
P(-,rjL-o)A2(MA)E2(a) d2jao d2a,

where

P(A ) = (4X7)-'.

(21)

(22)

Incorporating expressions 20 and 22 into Eq. 21, one gets

C(r) = (47r) -1 E exp [-l(l + 1)Dt] f A 2(AO)E 2(A )
I,m

* Ylm (O) d2P, x A2( ()E )Y* (a) d2a (23)

-E bim(,(ae, )b* (A, e2) exp [-l(l + 1) Dt]
im

=E B,(a,a, e2) exp [-I(l + 1)Dt].

(24)

(25)

Here

blm(ig, ) =- 2-7r-'/2 f A2(iA)E2(i)Yir( i) d2A,

B(&, I, e2) - -b1m(, I )bZ*(A, e2).
m---I

(26)

(27)

Choosing the usual relations between the Cartesian
(x, y, z) and polar coordinates (0, 4) of unity vector,

z = cos 0,

x = sin 0 cos,

y = sin 0 sin X, (28)

Kask et al. Rotational Contribution in Fluorescence Correlation Spectroscopy 215Kask et al. Rotational Contribution in Fluorescence Correlation Spectroscopy 215



and using expressions

d = sin 0 d0do,
Ylm (0, 4) (2ir)Y"/20,m (0) exp (im4),

Olm(0) = (- I)m[(21 + 1)(l - m)!/2(l + m)!]1/2
- (sinm 0) x "'P,(cos 0)/(cO cos 0)m,

P(cos 0) (1!2'1'O[(c2 0-1)'/[(cs 0)]', (29)

A2(i) = E2(x) sin2 s2cos

A2(9) - E2(9) sin2 0 sin2

2()= E2() = C2 0, (30)

we have carried out straightforward calculations for the
values of bl,,, (Table 1). For even m values,

bl__m =b* * (31)

Coefficients B, for a number of polarizations can simply
be calculated from the data of Table 1 (see Table 2).
The data for the xxx and xyy polarizations agree with

the results of Aragon and Pecora (1976). Cross-correla-
tion functions (such as those for xxy and zxy polariza-
tions) have not been calculated before.

Proceeding from the data of Table 2, it is possible to
find linear combinations of the correlation functions, for
which B2 = B4 = 0. An example of the isotropic correla-
tion function is

G,r - I0GZXY + 2G1YY + Gxxy- (32)

In the experiments described below the isotropic corre-

lation function is calculated according to a slight modifi-
cation of Eq. 32:

G,3t,r-20GC,y + 4Gyy + Gm + Gx (33)

The reason for the modification is the following. Go,r, like
any other autocorrelation function, must be symmetric
relative to the zero time axes. According to the simple
theory presented above, all the correlation functions are

symmetric and the pairs like Gxxy and G Y are equal.
Actually, Gxx,y and G,y are both asymmetric. To overcome

the symmetry problem, we have replaced G, of Eq. 24 by

TABLE 2 The values of 352B, dependent on the
polarizations 1162

I xxx XXy Xyy ZXy

0 3,969 1,323 441 441
2 6,480 540 180 -90
4 576 - 280 324 - 36

a linear combination, '/2(G,.y + G1,,), which is definitely
symmetric, because G,, (r)-G (-T).
The reader is, perhaps, interested why Gxy and Gy are

asymmetric. The source of the asymmetry can be found in
the rotational factor of the fourth order correlation func-
tion, (A2(t1)E (t2)A2(t3)E(t4) ). Asymmetry of the fac-
tor can be pictured by imaging the most favorable rota-
tional movement of a molecule needed for the greatest
contribution to correlations. For the xxy polarization, we
expect that the transition moment of the molecule was

oriented towards, x, x, x, and y axes at the four consecu-

tive time moments when photons are absorbed or emitted,
respectively. For the xyx polarization the respective con-

secutive orientations are x, y, x, and x. In the first case the
orientation has to change only once, while in the second
case it has to do it twice. Consequently, G(4)y G (,4), at
tl < t2 < t3 < t4, and G(2) > G(x2) (r) atT >O.

METHODS

Optics and electronics
The apparatus for the experiment (Fig. 1) is nothing but a microflu-
orimeter equipped with the two photon detectors and a fast correlator
device (Kask et al., 1985, 1987). Fluorescence is excited by a focused
beam of a continuous wave dye laser at the 575-nm wavelength. The
dominant (TEMOO) mode of laser action and beam expansion over the
aperture of the focusing objective are needed to get a minimal beam
radius in focus. Using objective 6.3 x 0.16, a laser beam radius of about
1.5,um has been achieved.
The sample solution enters the filled cuvette through a syringe needle

which is accurately aimed at the focus of observation (Kask et al., 1987).
The solution flow, perpendicular to the exciting laser beam, is created in
the sample domain by connecting the input and the output of the filled
cuvette to two vessels at different solution levels. The flow exchanges the

TABLE 1 The values of 35bA, dependent on the polarizations U

im xx yy zz xz xy yz

00 63 63 63 21 21 21
20 -18 x 51/2 -18 x 51/2 36 x 51/2 3 x 5"/2 _6 x 51/2 3 x 51/2
22 9 x 301/2 9 x 301/2 0 -3 x 30'/2/2 0 -3 x 301/2/2
40 9 9 24 -12 3 -12
42 3 x 10"/2 -3x 101/2 0 3 x 101/2 0 -3 x 10"/2
44 3 x 701/2/2 3 x 701/2/2 0 0 -3 x 701/2/2 0
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FIGURE I Schematic diagram of the FCS apparatus.

bleached molecules for fresh ones. A flow velocity of about 50 mm/s has
been used.

Fluorescence is collected at right angles in respect to the exciting light
beam with the help of a water-immersion objective 30 x 0.90 (the
sample is at a 1.2-mm distance from the objective). A diaphragm is
positioned in the image plane of the observation objective to separate a

short segment of the image of the fluorescent trace of the laser beam for
further use. The sample volume is about 150 um3. Emission is optically
filtered using a simple prism monochromator which allows removing the
scattered light at the laser wavelength, and also the two most intense
lines of the Raman scattering from water. The remaining background
emission from pure water (approximately 1012 water molecules per
sample volume) is about equivalent to fluorescence of a single molecule
of Texas Red.
The light emerging from the output slit of the monochromator is

divided into two beams of certain polarization. If autocorrelation
functions (polarizations xxx or xyy) are measured, a polarizer and a

half-transparent beamsplitter are used; if cross-correlation functions
(xxy or zxy) are measured, a birefringence polarizer is used.
The electronic part of the apparatus (Kask et al., 1985) consists of

two photon detectors, a time-to-amplitude converter (type 1701, Polon,
Nuclear Equipment Establishment, Warsaw, Poland), and a multichan-
nel pulse-amplitude analyzer (type NTA 1024, EMG, Works for
Electronic Measuring Gear, Budapest, Hungary). The photon detectors
consist of a photomultiplier (type R928, Hamamatsu TV Co., Ltd.,
Hamamatru, Japan) whose output is fed to a constant fraction discrimi-
nator via a preamplifier. The time response function of the system has
been measured using short (0.1 -ns) pulses from the mode-locked cavity
dumped argon ion laser; it has a full width at half maximum of 0.7 ns.

Data reduction (curve fitting including deconvolution) has been
carried out on the Cadmus 9200 (Periphere Computer Systeme GmbH,
Miinchen, FRG) computer.

Sample preparation and
characterization
Porcine pancreatic lipase (PL) prepared according to Sikk et al. (1985)
was a gift from Dr. P. Sikk. Texas Red (TR) was purchased from Sigma
Chemical Co., St. Louis, MO, Tris from Serva Fine Biochemicals,

Heidelberg, FRG, and Sephadex G-15 and Sephadex G-100 from
Pharmacia Fine Chemicals AB, Uppsala, Sweden. The other reagents
were from Reakhim (USSR). All the solutions were made in bidistilled
water.

For purposes of labeling, some grains of TR (-0.4-0.5 mg) were

added to the solution of I mg of PL in 0.9 ml of 0.15 M sodium
carbonate buffer, pH 9.0, at 0OC. The mixture was left overnight while
being stirred in the dark at OOC. The excess of the dye was removed on a

Sephadex G-15 column, equilibrated with 10 mM sodium acetate, pH
5.8. The main fraction containing labeled protein was rechromato-
graphed on a Sephadex G-100 column equilibrated with 25 mM
Tris-HCI, pH 7.0, and colored fractions of 2 ml were collected. All these
buffers contained 2 mM CaCl2. The dye-to-protein ratio was estimated
by light absorption measurements to be near unity. The solutions for the
fluorescence correlation experiments were filtered through a glass filter
(1.7 gm, Saale Glas, German Democratic Republic), and contained
about 7 x 1011 M of PL-TR in 25 mM Tris-HCI, 2 mM CaC12, pH
7.0.

For independent characterization of the rotational diffusion of the
prepared material, a common fluorescence method, the time-resolved
fluorescence depolarization (TRFD; Tao, 1969) was at first applied at
220C. Fluorescence intensity decay has a slight deviation from a single
exponential law and an average r. value of 3.72 ± 0.03 ns. The
fluorescence anisotropy decay has at least two exponential terms. The
estimated amplitude and the decay time values are a, 0.053, rl 0.87
± 0.09 ns for the faster term and a2- 0.287, T2 33.2 ± 2.0 ns for the
slower term, respectively. According to usual interpretation the slower
term characterizes the rotational diffusion of the whole molecule
whereas the faster term results from the partial rotational freedom of
the label.
The fluorescence polarization ratio II/Il was measured to be 2.09.

Experimental procedures
For each fluorescence correlation experiment, 250 ml of solution was

prepared, or the amount that flows through our cuvette in 10 h at a flow
velocity of 50 mm/s. Laser beam power of 20 mW was employed. The
mean photon counting rate varied from 50,000 to 200,000 s-', depend-
ing on the type of the beam divider and the detected light polarization.
(Less than a fifth of this was on account of pure solvent.) The apparent
mean number of the labeled molecules per sample volume (estimated
from the results of the experiments) varied from 5 to 7. The exact
number depends on the light polarization (owing to the change of the
relative amount of the scattered light), and on some uncontrolled
random qualities such as the exact concentration of the labeled protein,
the quality of optical adjustment, etc. Integration time of a single
experiment was about 10 h. Different polarizations (fii,62) were used:
xxx, xyy, xxy, xyx, and zxy. Experiments were run at the 220C
temperature.

Each fluorescence correlation experiment was followed by a long
subsequent reference experiment in which light from the incandescent
lamp was measured by the same equipment. The result of the reference
experiment was used to correct the results of the fluorescence correlation
experiments for elimination of instrumental distortions (Kask et al.,
1987), caused, for example, by inolinearities of the time-to-amplitude
converter and by the dead time effects.

Data reduction
After the correction by the reference experiment, the result is the
estimated fluorescence intensity correlation function over a segment of
its arguments around the zero value. (The zero argument is positioned at
the center of the scale by choosing a delay cable of suitable length in the
stop channel; see Fig. 1.)
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In the results of the experiments, in addition to the correlation
function of single molecule, a constant background is always present.
This background level is formed by the scattered light of constant
intensity and by the cross-correlation terms of intensities of independent
light sources (different molecules). This background level needs to be
subtracted. To estimate the value of the background, a criterion,
according to which the fluorescence intensity correlation function of a

single molecule should be zero at zero argument, was used. Preliminary
curve fitting including deconvolution was used to estimate the true value
of the baseline.
When the background level had been subtracted, the rest of the

correlation function was normalized to get its amplitude into accord
with the measured polarization ratio. As the next step, the isotropic
correlation function was calculated according to Eq. 33. To calculate the
rotational factor for each polarization, the correlation functions of the
polarized experiments were divided by the fit curve of the isotropic
correlation function.

FIGURE 3 The isotropic factor calculated according to Eq. (33).

After background subtraction and normalization, the
correlation functions of the polarized experiments look
like those in Fig. 2. The isotropic factor calculated
according to Eq. 33, can well be fitted by the antibunch-
ing factor (see the second factor of Eq. 16) multiplied by a

slowly decaying function (Fig. 3). The time constant of
the photon antibunching factor of the fit curve is Ta = 3.21
+ 0.09 ns. The calculated rotational factors are presented
in Fig. 4.

Cm,,, (Fig. 4) was fitted by the sum of a baseline and two
exponential functions. The estimated value of the baseline
was ao = 2.41; the amplitude and the decay time values of
the exponential functions were a, = 1.26 ± 0.04, r1 = 5.9
± 0.5 ns, a2 = 2.51 ± 0.06, r2 = 33.8 ± 0.7 ns. The

statistical error values were determined according to the
following procedure: (a) the result of each cycle of the
experiment (G., G,yy, Gzy, and Gxxy + GXYX) was fitted by
a sum of a small number of exponential functions; (b) a

set of simulated data was generated which differed from
the initial fit curves by a stochastic noise similar to the
noise of experiments; (c) the same data reduction proce-
dure as that used for the data of original experiments was
applied to the set of the simulated data; (d) data simula-
tion and fit procedures were repeated several times; (e)
the root mean value of the deviations was calculated and
assigned to the statistical error value of the respective fit
parameter.
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DISCUSSION

The rather simple theory of separation of rotational and
isotropic factors, presented above (Eq. 16), assumes that
the fluorescence lifetime is much shorter than the rota-
tional correlation time of the molecule. Therefore the
labeled lipase in water is not a proper model object for the
respective illustrative experiments because the label has
some segmental rotational flexibility (corresponding to
the rl = 0.9 ns term of the TRFD experiment), which is
faster than fluorescence decay. Nevertheless, we carried
out the experiments because, for the studies in the time
range where rotational relaxation of labeled proteins
occurs, we can use the other fluorescence method, TRFD,
for independent characterization of the sample.
To understand what kind of complications are expected

if the simple theory is applied instead of the more general
one, one has to compare Eq. 16 with Eq. 12. In Eq. 16 the
fluorescence antibunching and the rotational diffusion
contributions are separated as factors whereas in Eq. 12
their interference is more complex. According to the more
general formula 12, these contributions factor only at I»l,,
Te. Hence, if the assumptions of Eq. 12 are not met, then
the calculation of the rotational contribution by dividing
the measured correlation function by the isotropic corre-
lation function is justified only at Ir»>> Te.

Therefore the short-time edge of the C. (described by
the term T1 = 5.9 ns) should not be taken too seriously.
(Actually one should expect two noticeable terms at the
short-time edge of the rotational factor: a small I = 4
term having the decay time value of about 10 ns, and a
term corresponding to the faster term of the TRFD
experiment having the decay time value of about 0.9 ns.)
The decay time value of the slower term of C,,,., T2 =

33.8 ns, coincides with the respective data of the TRFD
experiment, r2 = 33.2 ns.

Although Eq. 33 has also been derived under assump-
tion 15, the isotropic factor calculated according to Eq. 33
looks correct. At least evident contribution from slow
rotational motion is absent. This is clear when one com-
pares the correlation function of Fig. 3 with that of Fig. 2
(upper left): the latter has a strong rotational term
decaying with the time constant of about 34 ns which is
practically absent in the Fig. 3. The time constant of the
photon antibunching factor, Ta = 3.2 ns, is a bit shorter
than fluorescence lifetime, ;e = 3.7 ns. The reason is the
high excitation intensity: Ta is equal to (Tr-' + I))-1
(I-light intensity, a-absorption cross section of the
molecule; Kask, 1987) rather than to Te of Eq. 9 (which
assumes low I value). We believe that the very slow decay
of the isotropic factor is the effect of reversible photo-
bleaching (Kandler et al., 1982); it has a correlation time
value of about 1 ,us.

The simple theory of rotational factor presented above
cannot be directly used for curve fitting: for example, the
theory rigidly predicts the value of the polarization ratio
of 3.0. (This value corresponds to Te - 0. To obtain more
realistic amplitude values of different terms of the corre-
lation functions, in case of rigid spherical rotators cum-

bersome Eqs. 13 and 14 should be used. The rotational
behavior of the labeled protein molecules is even more
complex.) Nevertheless, the theoretical rotational factors
calculated from the data of the Table 2 are also presented
(Fig. 5). The (6D)-l value of 33.8 ns was chosen in the
calculations in accordance with the decay time of the
slower term of the measured C,m,. The similarity between
Fig. 4 and Fig. 5 is evident.

It should be noted that the criterion G(O) = 0 is not the
only possible one for separating the contribution of a

single molecule in the intensity correlation function. In
longer time ranges, the criterion G(m) = 0 is a more

practical one and can be used instead.
A second point is about the long integration times

needed in the experiments reported above. Integration
times extending to hours are often impractical. However,
according to signal-to-noise calculations (Koppel, 1974),
the situation is rather different for the studies in the
intermediate time ranges, from 10-7 to 10-2 s, where a

few minutes of integration time should usually be suffi-
cient.
The results presented in Fig. 2 prove that Texas Red is

a label for which the fluorescence intensity correlation
functions at different polarizations can be measured with
sufficient precision even in the nanosecond time range.

As it has been shown, the rotational contribution can

well be separated from the other contributions such as

those of photobleaching, chemical transformations, or
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FIGURE 5 The rotational factors of a rigid molecule (theoretical
calculations).
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translational motion. Applications of FCS to rotational
motion are possible in a very broad range of correlation
times, from 10-8 to 1 s, which differs substantially from
the range of applications of TRFD.

Received for publication 21 March 1988 and in finalform 16
September 1988.
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