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SUMMARY

Several species of pathogenic bacteria replicate
within an intracellular vacuolar niche. Bacteria that
escape into the cytosol are captured by the autopha-
gic pathway and targeted for lysosomal degradation,
representing a defense against bacterial exploita-
tion of the host cytosol. Autophagic capture of
Salmonella Typhimurium occurs predominantly via
generation of a polyubiquitin signal around cytosolic
bacteria, binding of adaptor proteins, and recruit-
ment of autophagic machinery. However, the com-
ponents mediating bacterial target selection and
ubiquitination remain obscure. We identify LRSAM1
as the E3 ligase responsible for anti-Salmonella auto-
phagy-associated ubiquitination. LRSAM1 localizes
to several intracellular bacterial pathogens and
generates the bacteria-associated ubiquitin signal;
these functions require LRSAM1’s leucine-rich
repeat and RING domains, respectively. Using cells
from LRSAM1-deficient individuals, we confirm that
LRSAM1 is required for ubiquitination associated
with intracellular bacteria but dispensable for ubiqui-
tination of aggregated proteins. LRSAM1 is therefore
a bacterial recognition protein and ubiquitin ligase
that defends the cytoplasm from invasive pathogens.

INTRODUCTION

A number of pathogenic bacteria adopt an intracellular lifestyle

to escape extracellular immune responses and replicate within

a protected niche. One such species is Salmonella Typhimurium,

which is capable of invading epithelial cells and replicating within

a host-derived membrane vacuole. Bacteria that escape from

these Salmonella-containing vacuoles (SCVs) into the cytosol
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are captured by the autophagic pathway. Autophagy therefore

represents a barrier to bacterial exploitation of the host cytosol,

enabling the cell to sequester deleterious cargos within

a double-membrane compartment termed the autophagosome.

Following cargo capture, autophagosomes fuse with lysosomes

to degrade their contents.

Autophagic capture of bacteria occurs via at least two known

routes. The first is a ubiquitin-dependent process in which

bacteria are surrounded by a coat of polyubiquitin. The ubiquiti-

nated coat is bound by ubiquitin interacting autophagy adaptor

proteins (e.g., NDP52 and p62), resulting in recruitment of auto-

phagic machinery (Shaid et al., 2012). The second route is

ubiquitin independent and relies on production of diacylglycerol

(DAG) in membranes surrounding the bacteria (Shahnazari et al.,

2010). The signals and adaptor proteins involved in this pathway

are yet to be fully defined. In the case of S. Typhimurium, the

ubiquitin-dependent pathway dominates under most conditions

(Shahnazari et al., 2010). Recently, a role for galectin-8 in sensing

vacuolar damage induced by S. Typhimurium was discovered

(Thurston et al., 2012). The authors propose a model whereby

the autophagy adaptor protein NDP52 is recruited by galectin-

8 in a transient fashion to damaged vacuoles, but persistence

of NDP52 localization requires ubiquitination (Thurston et al.,

2012). These data indicate that ubiquitination plays a key role

in marking cytosol-exposed bacteria for autophagy.

Despite the importance of ubiquitination in degradation of

bacteria, the components that mediate this process have not

yet been characterized. Ubiquitination requires a tripartite

complex of E1, E2, and E3 enzymes. E3s represent the most

numerous and diverse group and are responsible for target

selection. The majority of known E3 ligases are of the RING

type, with some 600 representatives in the human genome

(Deshaies and Joazeiro, 2009), but the targets of many remain

undefined. We previously showed that the LRR-containing

RING E3 ligase LRSAM1was required for autophagy of S. Typhi-

murium in epithelial cells (Ng et al., 2011). The presence of an

LRR domain (often a feature of innate pattern recognition recep-

tors), and E3 ligase activity led us to postulate that LRSAM1
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might be the E3 ligase involved in ubiquitin-dependent anti-

Salmonella autophagy. Given the known role for LRSAM1 in

endocytic and exocytic cargo sorting, we hypothesized an

extension of this function to encompass autophagic cargo selec-

tion (Amit et al., 2004). In this study we further characterize the

role and mechanism of LRSAM1 action and show that LRSAM1

is the E3 ligase responsible for bacteria-associated ubiquitina-

tion prior to autophagy and therefore drives the major antibacte-

rial autophagy pathway. LRSAM1 recognizes bacteria via its

LRR domain and promotes ubiquitination in a RING domain-

dependent manner without the need for other recognition or

accessory proteins. We therefore propose that LRSAM1 is

a pattern-recognizing E3 ligase in the autophagy pathway and

is active against a range of intracellular bacteria.

RESULTS

LRSAM1 Localizes to Bacteria and Restricts
Cytoplasmic Replication
We had previously observed that cells deficient for LRSAM1

were unable to mediate anti-Salmonella autophagy (Ng et al.,

2011). However, the functions of LRSAM1 in this process re-

mained unclear. To gain insight into the role of LRSAM1 in

anti-Salmonella autophagy, we stained for endogenous

LRSAM1 and the autophagosome marker LC3 during infection

of HeLa cells with S. Typhimurium (Figure 1A). We observed

a proportion of S. Typhimurium (5% ± 1.8%, means ± SEM

from three independent experiments) colocalized with both

LRSAM1 and LC3 at 45 min postinfection. We also stained

for endogenous LRSAM1 during infection of HeLa cells with

S. Typhimurium and other intracellular pathogenic bacteria

(Figures 1B and 1C) and found that LRSAM1 extensively colocal-

ized with bacteria. In HeLa cells, the rate of endogenous

LRSAM1 localization to internalized S. Typhimurium SL1344

was 10% ± 1.6% at 40 min following infection (mean ± SEM

from three independent experiments). In addition, we observed

LRSAM1 localization to internalized adherent invasive Escheri-

chia coli (AIEC, 18% ± 3.9%), Shigella flexneri DIcsB (29% ±

5.3%), and Listeria monocytogenes EGDe (25% ± 6.2%)—all

bacterial strains that are susceptible to autophagy (Fig-

ure 1B) (Lapaquette et al., 2010; Meyer-Morse et al., 2010;

Ogawa et al., 2005). Colocalization was rarely seen between

LRSAM1 and the autophagy-evading wild-type S. flexneri or

L. monocytogenes 15313 (3% ± 1.5% and 4% ± 1.9% of inter-

nalized bacteria, respectively). LRSAM1 localization to S. Typhi-

murium was also seen in infected macrophages (Figure S1A).

This broad correlation of LRSAM1 localization with antibacterial

autophagy strongly suggested that LRSAM1 was important in

the autophagy process, but it remained unclear whether

LRSAM1 bacterial association was required for control of

bacterial infection. We therefore confirmed that knockdown

of LRSAM1 resulted in increased numbers of intracellular Salmo-

nella (Figures 1D, S1B, and S1C), consistent with previous

observations that loss of autophagy during Salmonella infection

results in increased bacterial replication within epithelial cells

(Huett et al., 2009; Kuballa et al., 2008; Lapaquette et al., 2010;

Thurston et al., 2009). In the absence of LRSAM1, bacterial repli-

cation was increased to the same extent as with knockdown of

ATG16L1 (Figure S1D), a protein crucial for antibacterial auto-
Cell Host &
phagy (Figure 1D) (Rioux et al., 2007), underlining the importance

of LRSAM1 to autophagic degradation of this pathogen.

Upon infection of epithelial cells, S. Typhimurium resides in

SCVs, which recruit lysosomal membrane proteins including

LAMP1. The environment of the SCV serves as a protective

niche, promoting bacterial survival and replication; bacteria

that are released from SCVs and exposed to the cytosol become

targets for ubiquitin association and degradation (Birmingham

et al., 2006). LRSAM1 knockdown did not affect the efficiency

of S. Typhimurium invasion into HeLa cells (Figure 1D, 1 hr time

point), nor the proportion of bacteria initially within SCVs, as

evidenced by equivalent LAMP1 staining of bacteria at 1 hr post-

infection (Figures 1E and S1E). However, at 6 hr postinfection

a significantly increased proportion of Salmonella in LRSAM1-

depleted cells was LAMP1-negative, suggestive of exit from

the SCV into the cytoplasm without subsequent destruction by

autophagy (Figure 1E). We next directly quantified cytoplasmic

S. Typhimurium using differential digitonin permeabilization and

antibody staining of cytoplasmic bacteria (Malik-Kale et al.,

2012) (Figures 1F and S1F). LRSAM1- and ATG16L1-knockdown

cells had higher numbers of bacteria per cell than control cells at

6 hr postinfection, indicative of enhanced replication in the cyto-

plasm. When these data were examined in terms of the propor-

tion of cytoplasmic bacteria compared to control cells, we further

confirmed that both ATG16L1- and LRSAM1-deficient cells

showed increased proportions of cytoplasmic bacteria with

56% ± 15% and 57% ± 16% of total internalized bacteria,

respectively, compared to just 13% ± 3% in controls (means ±

SEM from three independent experiments). Examples of

LAMP1 and cytoplasmic anti-Salmonella staining are shown in

Figures S1E and S1F. Investigation of the maturation status of

SCVs revealed that LRSAM1 colocalizes with markers of the

early maturation phase of the vacuolar compartment including

Rab4, but not Rab11 or sorting nexin-3 (Figure 1G) (Birmingham

et al., 2006; Braun et al., 2010; Smith et al., 2005). These data

underlined a prominent role for LRSAM1 in antibacterial auto-

phagy; we therefore set out to further investigate the role of

LRSAM1 domains in the recognition and autophagy of bacteria.

LRSAM1 Localizes to Bacteria via Its LRR Domain
To elucidate the mechanism of LRSAM1 action, we used an

RNAi knockdown/rescue strategy. We generated a series of

siRNA-resistant constructs to express full-length or truncated

LRSAM1 during knockdown of endogenous protein (Figure 2A).

Cotransfection of these constructs with control siRNA duplexes

demonstrated no significant effect of LRSAM1 construct expres-

sion on anti-Salmonella autophagy (Figure 2B). LRSAM1 knock-

down resulted in loss of anti-Salmonella autophagy, which was

rescued by expression of the full-length LRSAM1 protein, but

not by DLRR or DRING domain mutants (Figures 2C and 2D).

Examination of the localization of these mutants during S. Typhi-

murium infection showed that in cells expressing solely LRSAM1

DRING, LRSAM1 still localized to internalized bacteria (Fig-

ure 2E). In contrast, LRSAM1 DLRR did not associate with

bacteria, despite equivalent cytoplasmic expression. This was

also the case for the D190 mutant. In a reciprocal experiment,

we observed that a truncated protein composed of only the

N-terminal 190 amino acids (aa) of LRSAM1 (N190) efficiently

localized to internalized bacteria (Figure 2E).
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Figure 1. LRSAM1 Localization to Bacteria and Limitation of Cytoplasmic Growth

(A–C) Inset features are marked with arrowheads. (A) Colocalization of LRSAM1 (green) and LC3 (red) with bacteria (blue) is observed 45min following infection of

HeLa cells with S. Typhimurium SL1344. (B and C) Endogenous LRSAM1 (green) localizes to SL1344, wild-type AIEC, S. flexneri DIcsB, and L. monocytogenes

EGDe (DNA, blue) 40 min following infection of HeLa cells. Autophagy-evading wild-type S. flexneri and L. monocytogenes 15313 did not show LRSAM1 co-

localization. Scale bars = 5 mm. (B) Histogram profiles were generated along a line connecting the triangles in merged insets. (C) Rotated, deconvoluted 3D

reconstruction of SL1344-infected HeLa cells; x, y, and z indicators are inset.

(D) Viable intracellular S. Typhimurium SL1344 in HeLa cells after control siRNA (black), siLRSAM1 1 (gray), or siATG16L1 (white). Data represent means ± SEM,

n = 6.
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Figure 2. Roles of LRSAM1 Domains in Autophagy and Localization; Timing of LRSAM1 Recruitment

(A) Schematic of LRSAM1 and truncated LRSAM1 constructs; LRR (gray), IGF (insulin-like growth factor, white), CC (coiled-coil, black), SAM (sterile alpha motif,

white), and RING (gray) domains are shown.

(B–D) Anti-S. Typhimurium SL1344 pDsRed2 autophagy in GFP-LC3 HeLa cells cotransfected with control siRNA (B), siLRSAM1 1 (C), or siLRSAM1 2 (D), and

FLAG-LRSAM1. Constructs marked R1 or R2 rescue LRSAM1 expression under siRNA1 or siRNA2 conditions, respectively (siRNA1 targets within the LRR

domain, so DLRR constructs rescue expression under siRNA1 knockdown). FLAG-LRSAM1 expression from full-length and truncated constructs is shown with

control anti-actin blots. Data represent means ± SEM, n = 150 infected cells per group. Data in (B) and (C) are pooled from at least two independent experiments.

(E) HeLa cells cotransfected with LRSAM1 siRNA and FLAG-LRSAM1, stained 40 min postinfection. FLAG-LRSAM1 DRING (green) localizes to SL1344 (DNA,

blue). Neither FLAG-LRSAM1DLRRnor LRSAM1D190 localizes to SL1344. The LRR domain of theN190 construct is sufficient to localize to intracellular bacteria.

All profiles are shown from a line joining the two arrowheads in merged insets. Scale bars = 5 mm.
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Given that the LRR was necessary and sufficient to mediate

LRSAM1 localization, we hypothesized that the RING domain

would be required to mediate ubiquitin association, and that

loss of autophagy following LRSAM1 knockdown was due to

a reduction in the association of ubiquitin with Salmonella. Stain-

ing of endogenous ubiquitin in HeLa cells expressing wild-type

LRSAM1 showed that full-length LRSAM1 colocalized with

ubiquitin around intracellular Salmonella (Figure 3A). Cells

expressing solely LRSAM1 DRING did not show such ubiqui-

tination, despite LRSAM1DRING/Salmonella colocalization (Fig-

ure 3B). Expression of either DLRR or DRING constructs failed to

restore bacterial ubiquitin association following LRSAM1 knock-

down (Figure 3C), demonstrating that both LRR and RING

domains are required for the colocalization of ubiquitin with

bacteria in vivo.
(E) HeLa cells were infectedwithS. TyphimuriumSL1344 for 1 or 6 hr and stained f

separate experiments; data were pooled and plotted as a mean percentage of

between control and LRSAM1-depleted samples (n = 72) at 1 hr. At 6 hr, LRSAM

(F) HeLa cells transfected with control siRNA, siLRSAM1, or siATG16L1 were s

bacterial numbers per cell plotted from data pooled from three independent expe

assess differences in each of the bacterial distributions compared to siControl-tr

ATG16L1-depleted cells.

(G) LRSAM1 colocalizationwithmarkers of vacuolar maturation in HeLa cells 1 hr f

Rab4, but not Rab11 or SNX3 (red). DNA, blue; scale bars = 5 mm. See also Figu

Cell Host &
It has been proposed that transient galectin-mediated NDP52

recruitment to S. Typhimurium occurs simultaneously with the

recruitment of ubiquitin and autophagy adaptors around bacte-

rial targets, with ubiquitin-dependent NDP52 recruitment domi-

nating postinvasion events (Thurston et al., 2012). The kinetics

of LRSAM1 recruitment on S. Typhimurium infection were

consistent with thismodel; peak LRSAM1 localization to bacteria

(40 min) occurred prior to peak bacterial ubiquitin and NDP52

colocalization (60 min) (Figure 3D). LRSAM1 has also been re-

ported to bind to GABARAPL2, an ATG8-like molecule (Stelzl

et al., 2005), suggesting that it might serve to recruit autophago-

somal components directly. We therefore tested a number of

autophagy proteins and ubiquitin-binding adaptors for LRSAM1

binding. Using coimmunoprecipitation, we observed an interac-

tion between LRSAM1 and NDP52, but not GABARAPL2, LC3,
or LAMP1. LAMP1-positive bacteria were counted from 24 cells in each of three

total internalized bacteria ± SEM. No significant differences were observed

1 null samples showed decreased LAMP1-associated bacteria.

tained for bacteria 6 hr following infection with SL1344. Histogram indicates

riments. The Kolmogorov-Smirnov test with Bonferroni correction was used to

eated cells and showed a significant increase in highly infected LRSAM1- and

ollowing infection with SL1344. LRSAM1 (green) localizes to bacteria alongwith

re S1.
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Figure 3. Bacteria-AssociatedUbiquitination

(A) FLAG-LRSAM1 (green) and endogenous

ubiquitin (red) colocalize with SL1344 (DNA, blue)

in HeLa cells 40 min following infection; 5 mm

scale bar.

(B) FLAG-LRSAM1 DRING (green) localizes to S.

Typhimurium (DNA, blue), but ubiquitin (red) does

not colocalize in HeLa cells at 40 min post-

infection.

(C) Ubiquitin association with SL1344 pDsRed2

60 min after infection of HeLa cells cotransfected

with control siRNA (black) or siLRSAM1 1 (gray)

and LRSAM1 rescue constructs. Data represent

means ± SEM, n = 75 infected cells per group,

data pooled from two independent experiments.

(D) Bacteria/marker colocalization between

SL1344 and endogenous LRSAM1 (triangles),

GFP-NDP52 (circles), or endogenous ubiquitin

(squares) in HeLa cells (n = 60 infected cells per

group). Data represent means ± SEM.
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or p62 (Figure 4A). These findings were confirmed using purified

LRSAM1 protein to coprecipitate NDP52 from cell lysates

(Figures 4B and 4C), and mixing of purified LRSAM1 and

NDP52 proteins resulted in coelution from streptavidin beads

(Figures 4D and 4E). Using truncations (Figure 4B), we found

that the NDP52 SKICH domain (responsible for Nap1 interaction

[Thurston et al., 2009]) and the ubiquitin-binding zinc finger

domain are both dispensable for the LRSAM1/NDP52 interac-

tion. NDP52 aa 127–255were essential for LRSAM1 binding (Fig-

ure 4F). Reciprocal analysis of LRSAM1 identified the LRR (aa 1–

190) region as being required for NDP52 binding (Figures 4G and

4H). These results led us to conclude that there is an LRSAM1

LRR-binding surface in the aa 127–255 region of NDP52, sepa-

rate from characterized binding sites for ubiquitin, Nap1, or

galectin (Thurston et al., 2009, 2012), and that the LRSAM1/

NDP52 interaction is not dependent on mutual ubiquitin binding.
782 Cell Host & Microbe 12, 778–790, December 13, 2012 ª2012 Elsevier Inc.
LRSAM1 Localizes to Bacteria
Independently of NDP52
Given the role for galectin-8 and NDP52

in the marking of bacteria that are tar-

geted by autophagy, as well as our

observed LRR-mediated binding of

LRSAM1 to NDP52, we investigated

whether LRSAM1 targeting to bacteria

required NDP52. Staining of S. Typhimu-

rium-infected cells for LRSAM1 and

NDP52 showed both endogenous pro-

teins localized to intracellular bacteria

(Figures 5A, S2A, and S2B, Movie S1).

However, although NDP52 and LRSAM1

each colocalized with bacteria, they

appeared to localize to spatially separate

subdomains around bacteria. We there-

fore directly tested the requirement for

NDP52 in LRSAM1 localization to

bacteria by NDP52 knockdown (Figures

S2C and S2D). NDP52 ablation did not

hinder the localization of endogenous
LRSAM1 to intracellular Salmonella at 40 min postinfection

(siControl = 12.5% ± 1.9%; siNDP52 = 10.5% ± 1.8%;

means ± SEM from three independent experiments), demon-

strating that LRSAM1 localization is NDP52 independent

(Figure 5B).

Together with data indicating that persistence of NDP52 local-

ization to bacteria requires ubiquitination (Thurston et al., 2012),

our findings suggest that functional LRSAM1 might also be

required for persistent NDP52 and p62 recruitment to bacteria.

This was indeed the case, as both NDP52 (Figure 5C) and p62

(Figure 5D) localization to bacteria were significantly reduced

by LRSAM1 knockdown at 1 hr postinfection, and expression

of LRSAM1 DLRR or DRING did not rescue adaptor recruitment.

LRSAM1 D190 (lacking the LRR domain) was also unable to

rescue LC3, NDP52, or ubiquitin localization to intracellular S.

Typhimurium following LRSAM1 depletion (Figure 5E). To further
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Figure 4. LRSAM1 Binds NDP52

(A) HA-NDP52 coprecipitates with FLAG-Strep2-LRSAM1 in cotransfected HEK293T cells; other autophagy proteins tested do not.

(B) NDP52 construct schematics are shown; SKICH (gray), CC (coiled-coil, white), Zn (zinc finger, black).

(C) Purified recombinant FLAG-LRSAM1 was added to 293-F cell lysates expressing HA-NDP52 or mutants. LRSAM1 and bound NDP52 were precipitated with

anti-FLAG beads, washed, and LRSAM1 was eluted with FLAG peptide. Washes and elution fractions were blotted for FLAG-LRSAM1 and HA-NDP52.

(D) Coomassie-stained gel showing purified LRSAM1 and NDP52 proteins eluted from anti-FLAG beads prior to mixing and coaffinity purification.

(E) Pure 3xFLAG-Strep-LRSAM1 and 3xFLAG-NDP52 (from [D]) were mixed and then purified over streptavidin beads. Bound protein was eluted with biotin.

NDP52 and LRSAM1 coeluted, indicating direct binding.

(F) FLAG-Strep2-NDP52 constructs cotransfected with HA-LRSAM1 in HEK293T cells; NDP52 N127 and D127-255 do not bind to LRSAM1.

(G) FLAG-Strep2-LRSAM1 constructs cotransfected with HA-NDP52 in HEK293T cells; LRSAM1 and LRSAM1 N190 bind to NDP52.

(H) Purified recombinant FLAG-LRSAM1 D190 was added to 293F cell lysates expressing HA-NDP52. LRSAM1 D190 and bound NDP52 were precipitated,

eluted, and blotted as in (C). NDP52 was removed by initial washes and did not coelute with LRSAM1 D190.
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determine if loss of autophagy in the absence of LRSAM1 was

dependent on the generation of a ubiquitin signal around

bacteria, we examined ubiquitin-independent antibacterial auto-

phagy. We found that the DAG-dependent pathway was unaf-

fected by LRSAM1 knockdown (Figure 5F). Using a previously

characterized DAG biosensor (Shahnazari et al., 2010), we co-

transfected control, LRSAM1-, or NDP52-targeting siRNA into

GFP-LC3 HeLa cells. Following 1 hr of S. Typhimurium infection,

the proportion of bacteria solely LC3 positive as well as those

positive for both LC3 and DAG were scored (Figure 5F). Under

LRSAM1- or NDP52-depleted conditions, there was a 7-fold

reduction in the ubiquitin-dependent (non-DAG) autophagy

pathway. However, the rate of DAG-mediated autophagy
Cell Host &
(DAG and LC3 double-positive bacteria) was unaffected by

either LRSAM1 or NDP52 knockdown (Figure 5F). These data

demonstrate that LRSAM1 localizes to intracellular Salmonella

independently of NDP52 and that LRSAM1 is required for the

maintenance of NDP52 around bacteria. Furthermore, LRSAM1

function is required for the ubiquitin-associated autophagy

pathway.

LRSAM1 Is an E3 Ligase that Targets Bacteria
We wished to conclusively establish LRSAM1 as an E3 ligase

capable of recognizing and marking bacteria for autophagy via

a ubiquitin signal independently of other cellular proteins. Given

our results demonstrating that LRSAM1 targeting of bacteria
Microbe 12, 778–790, December 13, 2012 ª2012 Elsevier Inc. 783



Figure 5. LRSAM1 Functions Independently of NDP52

(A) Endogenous LRSAM1 (green) and endogenous NDP52 (red) localize to SL1344 (DNA, blue) in HeLa cells 1 hr postinfection; scale bar = 5 mm.

(B) Control HeLa cells (upper panels) or cells depleted of NDP52 (lower panels) were infected with S. Typhimurium (DNA, blue) for 1 hr and stained for endogenous

LRSAM1 (green). LRSAM1 localization to bacteria was unaffected by NDP52 knockdown. Scale bars = 5 mm.

(C) HeLa cells transfected with either control siRNA and LRSAM1 (black bar) or siLRSAM1 and a full-length LRSAM1 rescue construct (LRSAM1 R1, gray bar) had

equal rates of bacteria/NDP52 colocalization. Cells lacking full-length LRSAM1 did not show the same level bacteria/NDP52 colocalization. Data represent

means ± SEM, n = 50 infected cells per group.

(D) HeLa cells were cotransfected with GFP-p62 and siRNA along with LRSAM1. Cells were infected 48 hr following transfection. Cells transfected with either

control siRNA and LRSAM1 (black bar) or siLRSAM1 and a full-length LRSAM1 rescue construct (LRSAM1 R1, gray bar) had equal rates of bacteria/p62

colocalization. Cells in which LRSAM1was knocked down, or those expressing truncations lacking either the LRR or RING domains, failed to show the same level

of bacteria/p62 colocalization. Data represent means ± SEM, n = 50 infected cells per group.

(E) LRSAM1 knockdown in HeLa cells followed by rescue with empty FLAG vector (black), LRSAM1 (gray) or LRSAM1 D190 (white). Only full-length LRSAM1

restored LC3, NDP52 and ubiquitin localization to Salmonella. Data represent means ± SD, n = 50, data pooled from 2 independent experiments.

(F) HeLa cells stably expressing GFP-LC3 were transfected with siRNA against LRSAM1 or NDP52. The percentage of GFP-LC3+ bacteria (ubiquitin-dependent

pathway, gray) or GFP-LC3+ DAG+ bacteria (ubiquitin independent pathway, black) are shown. Data represent means ± SEM, n = 50 infected cells per group,

pooled from 2 independent experiments. See also Figure S2 and Movie S1.
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was NDP52 independent, we studied the only known LRSAM1

target, TSG101, a component of the endosomal sorting com-

plex. Knockdown of TSG101 did not result in a significant loss

of anti-Salmonella autophagy (Figure S3). However, such an

approach does not eliminate other possible LRSAM1 partners

or accessory proteins. We therefore turned to an in vitro ubiqui-

tination system to definitively establish a role for LRSAM1 as an

E3 ligase and define the minimal requirements for its activity.

Each reaction contained purified FLAG-LRSAM1 (Figure 6A), re-

combinant E1 (UBA1) and E2 enzymes, HA-tagged ubiquitin,

ubiquitination buffer, and Salmonella. We supplied recombinant,

purified HA-ubiquitin in trans, thus ensuring all ubiquitination

occurred in vitro. We identified the necessary E2-conjugating

enzymes by screening six putative LRSAM1-interacting E2s

identified from published proteomic data sets (Lim et al., 2006;

Rual et al., 2005; Stelzl et al., 2005) (Figure 6B). LRSAM1-medi-

ated ubiquitination was predominantly confined to the bacterial

pellet and required E1, UBE2D2 or UBE2D3, and LRSAM1 itself

(Figures 6B and 6C). Consistent with our in vivo staining, we

found that LRSAM1 could also generate robust ubiquitin signals

when supplied with Shigella, Listeria, and AIEC in vitro. LRSAM1

also showed enrichment in the insoluble fraction of bacteria in an

LRR-dependent and RING-independentmanner (Figures 6D and

6E). Reciprocally, ubiquitination of Salmonella required the
784 Cell Host & Microbe 12, 778–790, December 13, 2012 ª2012 Els
LRSAM1 RING domain, but not the LRR domain. These data

confirmed the roles of the LRR and RING domains established

by our observations of LRSAM1 truncations in infected cells

(Figures 2 and 3), namely localization and ubiquitination, respec-

tively. Significantly, LRSAM1 itself was ubiquitinated in a RING-

dependent manner, even in the absence of bacterial targets,

suggestive of E3 ligase autoubiquitination (Figures 6C and 6D).

By performing in vitro ubiquitination reactions using ubiquitin

mutants, we found that LRSAM1-driven polyubiquitination

favored K6- or K27-linkages (Figure 6F).

Due to the autoubiquitination of LRSAM1 observed in the

in vitro assay, we sought to determine whether the bulk of

in vitro ubiquitination signal was due to LRSAM1 driving ubiqui-

tination around bacteria or due to LRSAM1 being autoubiquiti-

nated. To control for the nontarget-mediated autoubiquitination

of E3 ligases that is observed in vitro and has been used to iden-

tify RING E3 ligases (Jenkins et al., 2005), we used two comple-

mentary approaches: (1)We added an additional RINGE3 ligase,

HRD1, which has no known affinity for bacterial targets, using

identical conditions, and (2) we examined bacteria from in vitro

reactions for ubiquitination by microscopy. We observed that

both LRSAM1 and HRD1 displayed apparent autoubiquitination,

and much of this signal was resistant to IsoT treatment, which

degrades unanchored ubiquitin chains. In the case of LRSAM1,
evier Inc.
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this signal was RING dependent but LRR independent (Fig-

ure 6G). These results were not unexpected since the promis-

cuity and autoactivity of RING ligases is known, and the HRD1

truncation used in these experiments lacks the native trans-

membrane domain, thus eliminating at least one possible

target-specificity determinant. However, visualization of bacteria

following in vitro ubiquitination reactions demonstrated addi-

tional bacterial targeting. Notably, wild-type LRSAM1 yielded

IsoT-resistant distinct ubiquitin signals localized to bacteria,

but no ubiquitin was observed on bacteria incubated with

LRSAM1 mutants lacking the RING domain or with HRD1 (Fig-

ure 6H). Together these data suggest that bacteria can be tar-

geted with ubiquitin in an LRSAM1-dependent manner.

LRSAM1 Loss in CMT Decreases Antibacterial
Autophagy but Has No Effect on Recruitment
of Ubiquitin to Protein Aggregates
A recent report has shown that a cohort of patients with Charcot-

Marie-Tooth (CMT) disease lacks expression of LRSAM1

(Guernsey et al., 2010). Loss of LRSAM1 expression is induced

by a frameshift that truncates the predicted protein sequence

(losing the entire RING domain) and results in no detectable

levels of LRSAM1 protein (Figure S4A). LRSAM1 null patient-

derived lymphoblasts (LCLs) were less able to mediate antibac-

terial ubiquitination of S. Typhimurium SL1344 compared to

control cells (Figures 7A and 7B), confirming our results based

on LRSAM1 knockdown. However, we were unable to observe

replication of SL1344 in LCLs (Figure S4B), suggesting that

S. Typhimurium is toxic to these cells, as has been previously re-

ported (Ko et al., 2009). Using a less virulent strain ofS. Typhimu-

rium (NTCC12023) (Clark et al., 2011), we found that LRSAM1

null LCLs are less able to control bacterial replication compared

to wild-type cells (Figure 7C). Examination of S. Typhimurium

NTCC12023 in HeLa cells revealed no apparent alterations in

the autophagy of these bacteria compared to SL1344, as indi-

cated by LRSAM1 or NDP52 colocalization (Figure S4C).

Although we have previously demonstrated that LRSAM1 is

dispensable for responses to inducers of classical autophagy

(Ng et al., 2011), we wished to further examine the role of

LRSAM1 in the autophagic targeting of nonbacterial targets.

Since many neurodegenerative disorders appear to be linked

to autophagy of protein aggregates, we postulated that CMT

patients might exhibit aggregate-driven autophagic defects. To

test this hypothesis, we transfected control and LRSAM1 null

cells with an aggregate-inducing protein containing 80 glutamine

residues fused to mCherry (polyQ80-mCherry). By confocal

microscopy, we observed that ubiquitination of polyQ80-

mCherry aggregates appeared unaffected in LRSAM1 null cells

(Figure 7D); analogous results were seen in LRSAM1 knockdown

HeLa cells (Figure S4D). We confirmed these results by western

blot (Figure 7E).

These results demonstrate that LRSAM1 is not required for

ubiquitination of the tested protein aggregates but plays a crucial

role against intracellular Salmonella. Currently recognized auto-

phagy defects in human diseases show cell-type specificity,

often exhibiting overt phenotypes only in neurons and other

highly secretory or active cells (Cadwell et al., 2008; Wong and

Cuervo, 2010). LRSAM1 may reflect this trend, with loss of

LRSAM1 function in autophagy, receptor endocytosis, and cell
Cell Host &
adhesion (Amit et al., 2004; Li et al., 2003) showing a combined

effect in neurons and leading to CMT neuropathy.

DISCUSSION

Autophagy represents a key barrier to intracellular bacterial

growth and is therefore likely to have been one of the evolu-

tionary drivers of specialized intracellular bacterial adaptations

such as actin-based motility (L. monocytogenes) or the vacuolar

lifestyle (S. Typhimurium). The major identified pathway through

which bacteria are selected for autophagy relies upon accumu-

lation of ubiquitin around target bacteria, binding of ubiquitin-

recognizing adaptor proteins, and finally, recruitment of the

autophagic machinery. Here we identify LRSAM1 as the E3

ubiquitin ligase responsible for antibacterial ubiquitin associa-

tion, the crucial first step in this cascade.

We show that LRSAM1 localizes to a variety of bacteria, both

Gram negative and positive, but does not localize to intracellular

bacteria capable of autophagy evasion. However, these same

autophagy-evading strains do trigger ubiquitination by LRSAM1

in vitro. This finding indicates that autophagy evasion relies on

manipulation of host cell components prior to LRSAM1 recogni-

tion and is not simply due to escape from autophagic capture. In

the case of L. monocytogenes, it is likely that reduced listerioly-

sin O expression in strain 15313 maintains vacuolar integrity and

thus shields these bacteria from LRSAM1 recognition (Meyer-

Morse et al., 2010). Wild-type S. flexneri escapes autophagy

via IcsB, preventing Atg5 binding to IcsA, but in the absence of

IcsB is vulnerable to autophagy (Ogawa et al., 2005). In the

absence of IcsB, LRSAM1 localizes to intracellular shigellae,

indicating that LRSAM1 plays a role in targeting these bacteria.

Autophagic recognition is a prerequisite for septin caging (Most-

owy et al., 2010), and LRSAM1 may be one of the mechanisms

that results in septin/autophagic capture of Shigella.

Using S. Typhimurium as a model, we find that LRSAM1

restricts cytoplasmic replication and is indispensable for ubiqui-

tin-mediated autophagy (Figures 1, 3, and 7). However, LRSAM1

is not involved in the DAG-driven autophagy pathway, nor in the

ubiquitination of protein aggregates, indicating that LRSAM1 it-

self is not simply a general selector of autophagic cargo.

Dissection of LRSAM1 domains showed that the LRR domain

was necessary and sufficient for localization to bacterial targets,

while the RING domain was required for ubiquitination. This

finding was supported by results from in vitro ubiquitination of

bacteria (Figure 6). These data also correlate with the recent

identification of a cohort of CMT patients carrying mutations

resulting in a frameshift within the RING domain of LRSAM1

(Weterman et al., 2012). Expression of proteins mimicking such

patient mutations had a dominant-negative effect on the ubiqui-

tination and degradation of TSG101, a known LRSAM1 target,

suggesting that this might act as a dominant pathogenic muta-

tion in CMT. The importance of the RING domain in LRSAM1

function in both antibacterial autophagy and neuronal develop-

ment and homeostasis underlines the importance of LRSAM1

as an E3 ligase in human health. It is possible that these functions

are linked, with LRSAM1 playing a role in neuronal autophagy

and cargo selection (Tang et al., 2011), but our data using model

protein aggregates suggest this is not an essential LRSAM1

function in epithelial cells.
Microbe 12, 778–790, December 13, 2012 ª2012 Elsevier Inc. 785
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Figure 6. LRSAM1-Dependent In Vitro Ubiquitination of Bacteria

(A) Coomassie staining of recombinant FLAG-LRSAM1 proteins following purification. Full-length proteins (black arrows) and a cleavage/degradation product

(gray arrow) are shown.

(B) Western blot of in vitro ubiquitination reactions. LRSAM1-driven ubiquitination of Salmonella requires UBE2D2 or UBE2D3, and ubiquitinated proteins are

largely confined to the bacterial fraction.

(C) LRSAM1-dependent in vitro ubiquitination is capable of targeting S. Typhimurium, S. flexneri, L. monocytogenes 15313, and AIEC.
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Figure 7. LRSAM1-Deficient Cells from CMT Patients Phenocopy LRSAM1 Knockdown

(A) Ubiquitination of SL1344 pDsRed2 in human lymphoblasts from LRSAM1-deficient or control donors. Endogenous ubiquitin (green) and SL1344 pDsred2 (red)

are shown with DNA (blue) following 1 hour of infection; scale bar = 5 mm.

(B) Quantification of bacterial ubiquitination at 60 min postinfection in LRSAM1-deficient and -replete lymphoblasts. Data represent means ± SEM, n = 150

infected cells per group.

(C) Viable intracellular Salmonella (strain NTCC12023) replicate in lymphoblasts derived from LRSAM1-deficient patients (gray), but not in cells from healthy

controls (black). Data represent means ± SEM, n = 6.

(D) Ubiquitination (green) of polyQ80-mCherry aggregates (red) is normal in LRSAM1-deficient human lymphoblasts. DNA, blue; scale bars = 5 mm.

(E) Western blot against ubiquitin and mCherry showing similar levels of ubiquitination in LRSAM-deficient and control lymphoblasts. See also Figure S4.
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Recently, Thurston et al. (2012) found that NDP52 was re-

cruited to damaged intracellular bacterial vacuoles via interac-

tion with galectin-8. We determined that LRSAM1 directly bound

NDP52 and mapped the interaction to the LRR domain of
(D) Following in vitro ubiquitination ofSalmonella, themajority of protein is located

of LRSAM1 (green signal, right panel) is located in the insoluble fraction. This LRS

signal, overlap shown as yellow) in a RING-dependent manner, indicating RING-

(E) Western blots of pellets and lysates from in vitro Salmonella ubiquitination reac

(left panel). However, LRSAM1 DLRR fails to completely localize to the insolub

supernatant (gray arrow).

(F) In vitro Salmonella ubiquitination reactions each performed with a unique

ubiquitination.

(G) Western blots of in vitro Salmonella ubiquitination reactions. Whole lysates of

of total ubiquitin signals shows RING-dependent LRSAM1 activity, but exten

ubiquitination.

(H)S. TyphimuriumSL1344 preincubatedwith LRSAM1 or HRD1were immobilized

components with incubation for 1 hr at 37�C. Subsequent IsoT treatment was us

ubiquitin. See also Figure S3.

Cell Host &
LRSAM1 and the coiled-coil region of NDP52. It is therefore

possible that LRSAM1 localization to bacteria might occur

subsequent to galectin-8/NDP52 association, with LRSAM1

recognition of NDP52 being the crucial step. We directly ruled
in the soluble lysate fraction (Coomassie stain, left panel). However, themajority

AM1 protein shows ubiquitin laddering and colocalizes with HA-ubiquitin (red

dependent autoubiquitination.

tions. In the absence of the LRR domain, LRSAM1 is capable of ubiquitination

le fraction of the bacterial pellet (right panel, black arrow), remaining in the

His-tagged ubiquitin mutant. Lysine-less ubiquitin (No K) represents mono-

bacteria incubated with LRSAM1, LRSAM1 mutants, or HRD1. Quantification

sive nonspecific activity occurs, leading to high levels of HRD1-mediated

on poly-L-lysine-coated coverslips, followed by addition of additional reaction

ed for 1 hr at room temperature. Following washing, bacteria were stained by
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out a role for NDP52 in LRSAM1 recruitment by knocking down

NDP52 and observing no difference in LRSAM1 localization to S.

Typhimurium. Finally, our in vitro data show that LRSAM1, E1,

and E2 complexes are capable of ubiquitinating bacteria in the

absence of all other cellular proteins, strongly indicating that

LRSAM1 is itself a bacteria-recognition molecule.

LRSAM1 underwent autoubiquitination in vitro (Figure 6C–6E).

Pursuing this finding, we found that the ubiquitin linkages

promoted by LRSAM1 were predominantly K6 and K27 based.

Interestingly, the linkages considered the most generally abun-

dant (K48 and K63) were among the weakest observed. This is

consistent with observations using linkage-specific biosensors

in infected cells where multiple ubiquitin linkages were observed

around Salmonella (van Wijk et al., 2012). Ubiquitin-binding

adaptor proteins may also bind differentially to subdomains

around the target bacterium (Cemma et al., 2011), indicative

that different ubiquitin linkages may underlie such patterns.

Both K63 and K27 linkages are generated by Parkin-mediated

ubiquitination of VDAC1 in mitophagy (Geisler et al., 2010).

These results suggest that the more unusual K6 and K27 link-

ages might favor autophagy, possibly through enhanced binding

of autophagy-related adaptor proteins.

In vitro ubiquitination reactions also showed that individual

bacteria localized with ubiquitin following incubation with full-

length LRSAM1, but not the DRING protein or the E3 ligase

HRD1. Under these conditions no SCV membrane or cellular

proteins are available, so ubiquitination associated with the

bacteria likely occurs on the bacterial surface or via ubiquitina-

tion of bound LRSAM1. Immunostaining of these reactions on

glass substrates appeared less efficient, with fewer bacteria

staining positive for ubiquitin than might be suggested by

western blotting. We can only speculate on the reasons for

this. This may represent assay-specific effects where surface-

immobilized bacteria are poorer substrates for the reaction.

Some of the signal observed by westerns may be weakly asso-

ciated with the bacterial surface and may be poorly soluble,

thus segregating with the bacterial pellet. It is also likely that

there are unidentified cellular factors that increase the efficiency

of LRSAM1 action against bacteria in infected cells and that are

absent in the minimal in vitro system. Our attempts to identify

LRSAM1-ubiquitinated bacterial proteins by mass spectroscopy

have been unsuccessful, but we have identified 27 lysines within

LRSAM1 showing evidence of ubiquitination (data not shown).

This large number (27 of 37 lysines, from 40% total peptide

coverage) precludes mutagenesis to eliminate autoubiquitina-

tion of LRSAM1. We are therefore unable to definitively state

the degree to which autoubiquitination and association of ubiq-

uitinated LRSAM1 contributes to the ubiquitin signal observed

around bacterial targets. However, given the broad recognition

profile of LRSAM1, it is tempting to speculate that bacterial

targets of the LRSAM1 LRR are highly conserved. It is most likely

that the LRSAM1 LRR recognizes a conserved signal associated

with diverse invasive bacteria and through autoubiquitination

generates a robust ubiquitin signal to recruit the autophagic

machinery. Such a recognition signal is likely to be bacteria

intrinsic, since in vitro experiments showed bacteria-associated

ubiquitination in the absence of other cellular factors such as

membranes, other PRRs, or galectins. Alternatively, it is possible

that LRSAM1, once localized, is highly promiscuous and that
788 Cell Host & Microbe 12, 778–790, December 13, 2012 ª2012 Els
bacterial target proteins are diverse andmodified nonselectively,

resulting in low individual abundance of a broad selection of

ubiquitinated bacterial components.

Autophagy is a crucial host defense against intracellular path-

ogens and restricts bacterial replication to specialized niches.

LRSAM1 is a unique E3 ubiquitin ligase, bearing both an LRR

and RING domain, which directly recognizes intracellular

bacteria, initiating the major ubiquitin-dependent antibacterial

autophagy cascade. LRSAM1 therefore represents a pattern

and cargo recognition protein that targets intracellular bacteria

for autophagic destruction, akin to the role of Parkin in mitoph-

agy (Geisler et al., 2010). Thus, we postulate a network of auto-

phagy-associated E3 ligases that perform cargo selection in

a cell- and target-specific fashion, allowing cells to respond to

diverse stresses via autophagy.

EXPERIMENTAL PROCEDURES

LRSAM1 Truncations and Rescue Modifications

LRSAM1 was cloned into pCMV with an N-terminal triple FLAG tag. Trunca-

tions and mutations were performed using a modified Phusion Site-Directed

Mutagenesis Kit (New England Biolabs, MA). Rescue of LRSAM1 expression

was ensured by three synonymous codon mutations in siRNA target sites.

All constructs were sequenced and checked for expression. See Supple-

mental Experimental Procedures for details.

RNA Interference and Expression Rescue of LRSAM1

HeLa cells were plated in 12-well plates containing 18 mm glass coverslips

at 1 3 105 cells per well. After 24 hr, 20 pmol modified RNA (Stealth RNAi,

Invitrogen, CA) and 250 ng of plasmid DNA (where appropriate) were trans-

fected using Lipofectamine 2000 (Invitrogen). See Supplemental Experimental

Procedures for details.

Coimmunoprecipitation

Lysates from cells coexpressing FLAG-Strep2-LRSAM1 or FLAG-Strep2

vector and HA-tagged autophagy proteins were incubated with streptavidin

beads for 3 hr and stringently washed. Beads were boiled in loading dye

and immunoprecipitated proteins were blotted using appropriate antibodies

and fluorescent secondary detection (Odyssey, LI-COR Biosciences).

Infection Assays

S. Typhimurium infections of HeLa cells and gentamycin protection assays

were performed as previously described (Huett et al., 2009). Infection of

lymphoblast cell lines was performed similarly, using an moi of 30–50 in 6-

well plates; after 30 min, antibiotic-free RPMI medium was supplemented to

a gentamycin concentration of 50 mg/ml, and cells were incubated for 2 hr

before fixation. For lymphoblast gentamycin protection assays, cells were

plated in 96-well U-bottom plates at 1 3 105 cells per well in antibiotic-free

RPMI medium and infected with Salmonella at an moi of 30�50. After

60 min wells were supplemented with gentamycin-containing RPMI (final

concentration 50 mg/ml), and cells were incubated further for indicated times.

Lymphoblast infections were performed under identical conditions using

SL1344 and NTCC12023 S. Typhimurium strains. For colocalization of GFP-

LC3, ubiquitin, and autophagy adaptors, we used the wild-type SL1344

pDsRed2 strain. For experiments requiring staining in the red channel, we

used bacteria without fluorescent tags, instead using Hoescht 33342 (Invitro-

gen) to stain for bacterial DNA.

Immunofluorescence Microscopy

Cells on coverslips were washed twice in PBS before being fixed in ice-cold

methanol for 3 min and rehydrated in PBS. Antibody staining was then

performed without further permeabilization. Exceptions were for ubiquitin

colocalization experiments; here ubiquitin was visualized following formalin

fixation and 0.5% saponin permeabilization (Birmingham et al., 2006).

Digitonin permeabilization of live cells for selective cytoplasmic staining
evier Inc.
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of SL1344 dsRed2 was performed as previously described (Malik-Kale

et al., 2012) followed by formalin fixation. Lymphoblast cell suspensions

were mixed and 1 3 105 cells spun onto slides using a CytoSpin 3 (Thermo

Scientific) and air-dried for 10 min. CytoSpin preparations were fixed with

4% formaldehyde, permeabilized, and stained for ubiquitin as described

above. For all samples DNA was stained with Hoechst 33342 (Invitrogen). A

100x lens (Zeiss Axioplan, Carl Zeiss MicroImaging, NY) was used for counting

under widefield fluorescence illumination. The total number of bacteria per cell

and the number of marker-positive bacteria were assessed in randomly

chosen fields with at least 25 cells counted for each condition. The number

of marker-positive bacteria was calculated as a percentage of total bacteria.

Otherwise, images were captured using a Nikon Spinning Disk Confocal

with a 100x TIRF lens and Hamamatsu EMCCD camera. We captured z stacks

(step size 0.1 mm) and performed deconvolution and 3D reconstructions as

previously described (Vyas et al., 2007). Intensity profiles were generated

using ImageJ.

Purification of LRSAM1

LRSAM1 was purified from FreeStyle 293-F cells (Invitrogen, CA). See Supple-

mental Experimental Procedures for details.

In Vitro Ubiquitination

Ubiquitination assays were conducted at room temperature or at 37�C for

60 min. The in vitro reaction included LRSAM1 (1 mM) or HRD1 (Lifesensors)

and E2 enzymes (100 nM; Lifesensors, PA), Salmonella (5 3 107 cells per

100 ml reaction), ubiquitination buffer (50 mM Tris [pH 7.5], 5 mM MgCl2,

2 mM DTT, 2 mM ATP), and HA- or His-tagged free ubiquitin (50 mM) (Boston

Biochem, MA). At the end of the reaction, intact Salmonella cells were centri-

fuged at 14,0003 g for 5min and washed once in PBS. Total cells and reaction

mix were analyzed by western blotting. Reactions were stopped by adding

EDTA (100 mM), and bacteria were washed two times with PBS. Cells were

resuspended in IsoT buffer (50 mM Tris [pH 7.5], 5 mM MgCl2, 2 mM DTT,

100 nM IsoT; LifeSensors). Cells were treated with IsoT for 60 min at 37�C,
washed three times, and lysed as above. In some experiments Salmonella

were subsequently lysed with BugBuster (Merck) plus 0.1 mg/ml lysozyme

and benzonase with freeze thaw. Soluble and insoluble fractions were

extracted by centrifugation at 14,000 3 g for 30 min and analyzed by western

blotting. Microscopy of bacteria from in vitro reactions was performed by

immobilization of bacteria onto poly-L-lysine coated coverslips after preincu-

bation with purified E3 ligases for 1 hr and subsequent washing with PBS

before overlaying of reaction mixtures minus the E3 ligases. After reactions

were completed, coverslips were washed in PBS before paraformaldehyde

fixation and staining as previously described.

Macrophage Infections

All studies involving animals were approved by the Subcommittee on

Research Animal Care, which serves as the Institutional Animal Care and

Use Committee as required by Public Health Service Policy on Humane

Care and Use of Laboratory Animals and the USDA Animal Welfare Regula-

tions. See Supplemental Experimental Procedures for details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental

Procedures, and one movie and can be found with this article online at http://

dx.doi.org/10.1016/j.chom.2012.10.019.
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