Contents lists available at SciVerse ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Fuzzy real valued lacunary I-convergent sequences

Bipan Hazarika*

Department of Mathematics, Rajiv Gandhi University, Itanagar-791 112, Arunachal Pradesh, India

ARTICLE INFO

ABSTRACT

Article history: Received 20 June 2011 Received in revised form 10 September 2011 Accepted 19 September 2011

Keywords: Ideal I-convergent I-Cauchy Fuzzy number Lacunary sequence

1. Introduction

Ш

The works on I-convergence of real valued sequences was initially studied by Kostyrko et al. [1]. Later on, it was further studied by Šalàt et al. [2,3], Tripathy et al. [4] and many others.

Let S be a non-empty set. A non-empty family of sets $I \subseteq P(S)$ (power set of S) is called an *ideal* on S if (i) for each A, $B \in I$, we have $A \cup B \in I$; (ii) for each $A \in I$ and $B \subseteq A$, we have $B \in I$. Let S be a non-empty set. A family $F \subseteq P(S)$ (power set of S) is called a filter on S if (i) $\phi \notin F$; (ii) for each A, $B \in F$, we have $A \cap B \in F$; (iii) for each $A \in F$ and $B \supseteq A$, we have $B \in F$. An ideal I is called *non-trivial* if $I \neq \phi$ and $S \notin I$. It is clear that $I \subseteq P(S)$ is a non-trivial ideal if and only if the class $F = F(I) = \{S - A : A \in I\}$ is a filter on S. The filter F(I) is called the filter associated with the ideal I. A non-trivial ideal $I \subseteq P(S)$ is called an *admissible ideal* on S if and only if it contains all singletons, *i.e.*, if it contains $\{x\} : x \in S\}$. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $I \neq I$ containing I as a subset (for details see [1]).

The concept of fuzzy sets was initially introduced by Zadeh [5]. Later on, sequences of fuzzy real numbers have been discussed by Nanda [6], Nuray and Savas [7] and many others.

A lacunary sequence is an increasing integer sequence $\theta = (k_r)$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. The intervals are determined by θ and it will be defined by $J_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be defined by ϕ_r .

Freedman et al. [8] defined the space N_{θ} in the following way. For any lacunary sequence $\theta = (k_r)$,

$$N_{\theta} = \left\{ (x_k) : \lim_{r \to \infty} h_r^{-1} \sum_{k \in I_r} |x_k - L| = 0, \text{ for some } L \right\}$$

The space N_{θ} is a *BK* space with the norm

$$(x_k) \parallel_{\theta} = \sup_r h_r^{-1} \sum_{k \in I_r} |x_k|$$

 N_{θ}^{0} denotes the subset of these sequences in N_{θ} for which $\theta = 0$, $(N_{\theta}^{0}, \|\cdot\|_{\theta})$ is also a *BK* space.

Tel.: +91 3602278512; fax: +91 360 2277881. E-mail address: bh_rgu@yahoo.co.in.

In this article, we introduce the concept of lacunary *I*-convergent sequence of fuzzy real numbers and study some basic properties.

© 2011 Elsevier Ltd. All rights reserved.

^{0893-9659/\$ -} see front matter © 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.aml.2011.09.037

Lemma 1. Every solid space is monotone.

Lemma 2 (Kostyrko et al. [1, Lemma 5.1]). If $I \subset 2^N$ is a maximal ideal, then for each $A \subset N$ we have either $A \in I$ or $N - A \in I$.

2. Definitions and notations

A fuzzy real number X is a fuzzy set on R *i.e.* a mapping $X: R \to J$ (= [0, 1]) associating each real number t with its grade of membership X(t).

A fuzzy real number X is called *convex* if $X(t) \ge X(s) \land X(r) = \min(X(s), X(r))$, where s < t < r. If there exists $t_0 \in R$ such that $X(t_0) = 1$, then the fuzzy real number X is called *normal*.

The α -level set of a fuzzy real number $X, 0 < \alpha \le 1$ denoted by X^{α} is defined as $X^{\alpha} = \{t \in R : X(t) \ge \alpha\}$.

A fuzzy real number X is said to be *upper semi-continuous* if for each $\varepsilon > 0$, $X^{-1}([0, a + \varepsilon])$, for all $\overline{a} \in J$ is open in the usual topology of R. The set of all upper semi-continuous, normal, convex fuzzy number is denoted by R(J).

Let *D* denote the set of all closed and bounded intervals $X = [x_1, x_2]$ on the real line *R*. For $X = [x_1, x_2]$ and $Y = [y_1, y_2]$ in *D*, we define $X \le Y$ if and only if $x_1 \le y_1$ and $x_2 \le y_2$. Define a metric *d* on *D* by

$$d(X, Y) = \max\{|x_1 - y_1|, |x_2 - y_2|\}.$$

It is known that (D, d) is a complete metric space and " \leq " is a partial order on D.

The absolute value |X| of $X \in R(J)$ is defined as

$$|X|(t) = \begin{cases} \max\{X(t), X(-t)\}, & \text{if } t > 0; \\ 0, & \text{if } t < 0. \end{cases}$$

Let \overline{d} : $R(J) \times R(J) \rightarrow R$ be defined by

$$\bar{d}(X, Y) = \sup_{0 \le \alpha \le 1} d(X^{\alpha}, Y^{\alpha}).$$

Then \overline{d} defines a metric on R(J).

We define $X \leq Y$ if and only if $X^{\alpha} \leq Y^{\alpha}$, for all $\alpha \in J$. The additive identity and multiplicative identity in R(J) are denoted by $\overline{0}$ and $\overline{1}$, respectively.

A sequence (X_k) of fuzzy real numbers is said to be *convergent* to a fuzzy real number X_0 if for every $\varepsilon > 0$, there exists $n_0 \in N$ such that $\overline{d}(X_k, X_0) < \varepsilon$, for all $k \ge n_0$.

A sequence (X_k) of fuzzy real numbers is said to be *I*-convergent if there exists a fuzzy real number X_0 such that for each $\varepsilon > 0$, the set

$$\{k \in N : \overline{d}(X_k, X_0) \ge \varepsilon\} \in I.$$

We write *I*-lim $X_k = X_0$.

If $I = I_f$ (class of all finite subsets of N), then I_f - convergence coincides with the usual convergence.

Let E_F denote the sequence space of fuzzy numbers. Then E_F is said to be *solid* (or *normal*) if $(Y_k) \in E_F$, whenever $(X_k) \in E_F$ and $|Y_k| \leq |X_k|$, for all $k \in N$.

A sequence space E_F is said to be symmetric if $(X_k) \in E$ implies $(X_{\pi(k)}) \in E$, where π is a permutation of N.

A sequence space E_F is said to be *monotone* if it contains the canonical preimages of its step space.

Throughout the article, we assume that I is an admissible ideal of N.

3. Lacunary I-convergent sequence of fuzzy real numbers

Definition 1. Let $\theta = (k_r)$ be a lacunary sequence. Then a sequence (X_k) of fuzzy real numbers is said to be *lacunary l-convergent* if for every $\varepsilon > 0$ such that

$$\left\{r \in N : h_r^{-1} \sum_{k \in I_r} \bar{d}(X_k, X) \ge \varepsilon \right\} \in I.$$

We write $I_{\theta} - \lim X_k = X$.

Definition 2. Let $\theta = (k_r)$ be a lacunary sequence. Then a sequence (X_k) of fuzzy real numbers is said to be *lacunary I-null* if for every $\varepsilon > 0$ such that

$$\left\{r \in N : h_r^{-1} \sum_{k \in I_r} \bar{d}(X_k, \bar{0}) \ge \varepsilon\right\} \in I.$$

We write $I_{\theta} - \lim X_k = \bar{0}$.

Definition 3. Let $\theta = (k_r)$ be a lacunary sequence. Then a sequence (X_k) of fuzzy real numbers is said to be *lacunary I-Cauchy* if there exists a subsequence $(X_r^{/}(r))$ of (X_k) such that $k'(r) \in J_r$, for each r, $\lim_{r \to \infty} X_k^{/}(r) = X'$ and for every $\varepsilon > 0$ such that

$$\left\{r \in N : h_r^{-1} \sum_{k \in J_r} \bar{d}(X_k, X_{k'(r)}) \ge \varepsilon\right\} \in I.$$

Definition 4. A lacunary sequence $\theta' = (k'(r))$ is said to be a *lacunary refinement* of the lacunary sequence $\theta = (k_r)$ if $(k_r) \subset (k'(r))$.

Throughout w^F , ℓ_{∞}^F , c_{θ}^{IF} and $(c_0^{IF})_{\theta}$ denotes all, bounded, lacunary *I*-convergent, and lacunary *I*-null class of sequences of fuzzy real numbers, respectively.

Theorem 1. A sequence (X_k) of fuzzy real numbers is I_θ -convergent if and only if it is an I_θ -Cauchy sequence.

Proof. Let (X_k) be a sequence of fuzzy real numbers with $I_{\theta} - \lim X_k = X$. Write $H_{(i)} = \{r \in N : h_r^{-1} \sum_{k \in J_r} \overline{d}(X_k, X) < \frac{1}{i}\}$, for each $i \in N$. Hence for each i, $H_{(i)} \supseteq H_{(i+1)}$ and $\{r \in N : h_r^{-1} \sum_{k \in J_r} \overline{d}(X_k, X) < \frac{1}{i}\} \notin I$. We choose k_1 such that $r \ge k_1$, then $\{r \in N : h_r^{-1} \sum_{k_1 \in J_r} \overline{d}(X_{k_1}, X) < 1\} \notin I$. Next we choose $k_2 > k_1$ such that $r \ge k_2$, then $\{r \in N : h_r^{-1} \sum_{k_2 \in J_r} \overline{d}(X_{k_2}, X) < \frac{1}{2}\} \notin I$. For each r satisfying $k_1 \le r < k_2$, choose $k'(r) \in J_r$ such that

$$\left\{r \in N: h_r^{-1}\sum_{k'(r) \in J_r} \bar{d}(X_{k'(r)}, X) < 1\right\} \notin I.$$

In general, we choose $k_{p+1} > k_p$, such that $r > k_{p+1}$ then

$$\left\{r \in N: h_r^{-1}\sum_{k_{p+1} \in J_r} \bar{d}(X_{k_{p+1}}, X) < \frac{1}{p}\right\} \notin I.$$

Then for all *r* satisfying $k_p \leq r < k_{p+1}$, such that

$$\left\{r \in N : h_r^{-1} \sum_{k'(r) \in J_r} \bar{d}(X_{k'(r)}, X) < \frac{1}{p}\right\} \notin I.$$

Thus we get $k'(r) \in J_r$, for each r and $\lim_{r\to\infty} X_{k'(r)} = X$. Therefore, for every $\varepsilon > 0$, we have

$$\left\{ r \in N : h_r^{-1} \sum_{k,k' \in J_r} \bar{d}(X_k, X_{k'(r)}) \ge \varepsilon \right\} \subseteq \left\{ r \in N : h_r^{-1} \sum_{k \in J_r} \bar{d}(X_k, X) \ge \frac{\varepsilon}{2} \right\}$$
$$\cup \left\{ r \in N : h_r^{-1} \sum_{k'(r) \in J_r} \bar{d}(X_{k'(r)}, X) \ge \frac{\varepsilon}{2} \right\}$$

i.e. $\{r \in N : h_r^{-1} \sum_{k,k' \in J_r} \overline{d}(X_k, X_{k'(r)}) \ge \varepsilon\} \in I$. Then (X_k) is an I_{θ} -Cauchy sequence.

Conversely, suppose (X_k) is an I_{θ} -Cauchy sequence. Then for every $\varepsilon > 0$, we have

$$\left\{ r \in N : h_r^{-1} \sum_{k \in J_r} \bar{d}(X_k, X) \ge \varepsilon \right\} \subseteq \left\{ r \in N : h_r^{-1} \sum_{k, k' \in J_r} \bar{d}(X_k, X_{k'(r)}) \ge \frac{\varepsilon}{2} \right\}$$
$$\cup \left\{ r \in N : h_r^{-1} \sum_{k'(r) \in J_r} \bar{d}(X_{k'(r)}, X) \ge \frac{\varepsilon}{2} \right\}.$$

It follows that (X_k) is a I_θ -convergent sequence. \Box

Theorem 2. If θ' is a lacunary refinement of a lacunary sequence θ and $(X_k) \in c_{\theta'}^{IF}$, then $(X_k) \in c_{\theta'}^{IF}$.

Proof. Suppose that for each J_r of θ contains the points $(k_{r,t}^{/})_{t=1}^{\eta(r)}$ of θ' such that

$$k_{r-1} < k'_{r,1} < k'_{r,2} < \cdots < k'_{r,\eta(r)} = k_r$$
, where $J'_{r,t} = (k'_{r,t-1}, k'_{r,t}]$.

Since $k_r \subseteq (k'(r))$, so $r, \eta(r) \ge 1$.

Let $(J_j^*)_{j=1}^{\infty}$ be the sequence of intervals $(J_{r,t}^{/})$ ordered by increasing right end points. Since $(X_k) \in c_{\theta'}^{IF}$, then for each $\varepsilon > 0$,

$$\left\{ j \in N : (h_j^*)^{-1} \sum_{J_j^* \subset J_r} \bar{d}(X_k, X) \ge \varepsilon \right\} \in I$$

Also since $h_r = k_r - k_{r-1}$, so $h'_{r,t} = k'_{r,t} - k'_{r,t-1}$. For each $\varepsilon > 0$, we have

$$\left\{r \in N : h_r^{-1} \sum_{k \in J_r} \bar{d}(X_k, X) \ge \varepsilon\right\} \subseteq \left\{r \in N : h_r^{-1} \sum_{k \in J_r} \left\{j \in N : (h_j^*)^{-1} \sum_{\substack{J_j^* \subset J_r \\ K \in J_i^*}} \bar{d}(X_k, X)\right\} \ge \varepsilon\right\}.$$

Therefore $\{r \in N : h_r^{-1} \sum_{k \in J_r} \overline{d}(X_k, X) \ge \varepsilon\} \in I$. Hence $(X_k) \in c_{\theta}^{IF}$. \Box

Theorem 3. Let ψ be a set of all lacunary sequences.

- (a) If ψ is closed under arbitrary union, then $c_{\mu}^{IF} = \bigcap_{\theta \in \psi} c_{\theta}^{IF}$, where $\mu = \bigcup_{\theta \in \psi} \theta$;
- (b) If ψ is closed under arbitrary intersection, then $c_{\nu}^{IF} = \bigcup_{\theta \in \psi} c_{\theta}^{IF}$, where $\upsilon = \bigcap_{\theta \in \psi} \theta$;
- (c) If ψ is closed under union and intersection, then $c_{\mu}^{IF} \subseteq c_{\theta}^{IF} \subseteq c_{\nu}^{IF}$.

Proof. (a) By hypothesis, we have $\mu \in \psi$ which is a refinement of each $\theta \in \psi$. Then from Theorem 2, we have if $(X_k) \in c_{\mu}^{IF}$ implies that $(X_k) \in c_{\theta}^{IF}$.

Thus for each $\theta \in \psi$, we get $c_{\mu}^{lF} \subseteq c_{\theta}^{lF}$. The reverse inclusion is obvious.

Hence $c_{\mu}^{IF} = \bigcap_{\theta \in \psi} c_{\theta}^{IF}$. (b) By part (a) and Theorem 2, we have $c_{\nu}^{IF} = \bigcup_{\theta \in \psi} c_{\theta}^{IF}$.

(c) By part (a) and (b), we get $c_{\mu}^{IF} \subseteq c_{\theta}^{IF} \subseteq c_{\nu}^{IF}$.

Theorem 4. $c_{\theta}^{IF} \cap \ell_{\infty}^{F}$ is a closed subset of ℓ_{∞}^{F} .

Proof of the theorem is easy, so omitted.

Theorem 5. Let $\theta = (k_r)$ be a lacunary sequence. Then the spaces c_{θ}^{IF} and $(c_0^{IF})_{\theta}$ are normal and monotone, in general.

Proof. We shall give the proof of the theorem for $(c_0^{IF})_{\theta}$ only. Let $(X_k) \in (c_0^{IF})_{\theta}$ and (Y_k) be such that $\overline{d}(Y_k, \overline{0}) \leq \overline{d}(X_k, \overline{0})$, for all $k \in N$.

Then for a given $\varepsilon > 0$, we have

$$B = \left\{ r \in N : h_r^{-1} \sum_{k \in J_r} \bar{d}(X_k, \bar{0}) \ge \varepsilon \right\} \in I.$$

Again the set $D = \{r \in N : h_r^{-1} \sum_{k \in J_r} \bar{d}(Y_k, \bar{0}) \ge \varepsilon\} \subseteq B.$

Hence $D \in I$ and so $(Y_k) \in (c_0^{IF})_{\theta}$. Thus the space $(c_0^{IF})_{\theta}$ is normal. Also from Lemma 1, it follows that $(c_0^{IF})_{\theta}$ is monotone.

Theorem 6. Let $\theta = (k_r)$ be a lacunary sequence. Then the spaces $(c_0^{(\Gamma)})_{\theta}$ and $c_{\theta}^{(\Gamma)}$ are symmetric, in general.

Proof. We will give the proof for c_{θ}^{IF} only. Suppose *I* is not maximal and $I \neq I_f$. Let us consider a sequence $X = (X_k)$ of fuzzy real numbers defined by

$$X_k(t) = \begin{cases} 1+t-2k, & \text{if } t \in [2k-1, 2k]; \\ 1-t+2k, & \text{if } t \in [2k, 2k+1]; \\ 0, & \text{otherwise.} \end{cases}$$

for $k \in A \subset I$ an infinite set.

Then $(X_k) \in c_{\theta}^{IF}$. Let $K \subseteq N$ be such that $K \notin I$ and $N - K \notin I$ (the set K exists by Lemma 2, as I is not maximal). Consider a sequence $Y = (Y_k)$, a rearrangement of the sequence (X_k) defined as follows:

$$Y_k = \begin{cases} X_k, & \text{if } k \in K, \\ \overline{1}, & \text{otherwise.} \end{cases}$$

Then $(Y_k) \notin c_{\theta}^{IF}$. Therefore the space c_{θ}^{IF} is not symmetric. This completes the proof of the theorem. \Box

4. Conclusions

In this article, we have investigated the notion of lacunary convergence from *I*-convergence of sequences point of view. Still there are a lot to be investigated on sequence spaces applying the notion of *I*-convergence. The workers will apply the techniques used in this article for further investigations on *I*-convergence.

Acknowledgments

The author thanks the reviewers for the comments on the paper and several constructive comments that have improved the presentation of the results.

References

[1] P. Kostyrko, T. Šalàt, W. Wilczyński, I-convergence, Real. Anal. Exchange 26 (2) (2000–2001) 669–686.

[2] T. Šalàt, B.C. Tripathy, M. Ziman, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 (2004) 279–286.

[3] T. Šalàt, B.C. Tripathy, M. Ziman, On I-convergence field, Indian J. Pure Appl. Math. 17 (2005) 45–54.

[4] B.C. Tripathy, B. Hazarika, B. Choudhary, Lacunary I-convergent sequences, Kyungpook Math. J (in press).

[5] L.A. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353.

[6] S. Nanda, On sequences of fuzzy numbers, Fuzzy Sets Syst. 33 (1989) 123-126.

[7] F. Nuray, E. Savas, Statistical convergence of sequences of fuzzy real numbers, Math. Slovaca 45 (3) (1995) 269–273.

[8] A.R. Freedman, J.J. Sember, M. Raphael, Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (1978) 508-520.