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Abstract

We prove that Stanley–Reisner rings having sufficiently large multiplicities are Cohen–Macaulay
using Alexander duality.
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1. Introduction

Throughout this paper, let S = k[X1, . . . ,Xn] be a homogeneous polynomial ring over
a field k with degXi = 1. For a simplicial complex Δ on vertex set [n] = {1, . . . , n} (note
that {i} ∈ Δ for all i), k[Δ] = S/IΔ is called the Stanley–Reisner ring of Δ, where IΔ

is an ideal generated by all square-free monomials Xi1 · · ·Xip such that {i1, . . . , ip} /∈ Δ.
The ring A = k[Δ] is a homogeneous reduced ring with the unique homogeneous maximal
ideal m = (X1, . . . ,Xn)k[Δ] and the Krull dimension d = dimΔ + 1. Let e(A) denote
the multiplicity e0(mAm,Am) of A, which is equal to the number of facets (i.e., maximal
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faces) F of Δ with dimF = d − 1. Also, we frequently call it the multiplicity of Δ. If all
facets of Δ have the same dimension, Δ is called pure. See [1,11] for more details.

Take a graded minimal free resolution of a homogeneous k-algebra A = S/I over S:

0 →
⊕
j∈Z

S(−j)βp,j (A)
ϕp−→ · · · ϕ2−→

⊕
j∈Z

S(−j)β1,j (A) ϕ1−→ S → A → 0.

Then the initial degree indegA (respectively the relation type rt(A)) of A is defined by
indegA = min{j ∈ Z: β1,j (A) �= 0} (respectively rt(A) = max{j ∈ Z: β1,j (A) �= 0}). Let
μ(I) denote the minimal number of generators of I , that is, μ(I) = ∑

β1,j (A). Note that
the initial degree and relation type are simply the smallest and biggest degrees of a minimal
set of generators of I , respectively. Also, regA = max{j − i ∈ Z: βi,j (A) �= 0} is called
the Castelnuovo–Mumford regularity of A. It is easy to see that regA � indegA − 1, and
A has (q-)linear resolution if equality holds (and q = indegA).

The main purpose of this paper is to prove the following theorems:

Theorem 2.1. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. Put
codimA = c. If e(A) �

(
n
c

) − c, then A is Cohen–Macaulay.

Theorem 3.1. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. Put
codimA = c. Suppose that Δ is pure (i.e., A is equidimensional). If e(A) �

(
n
c

) − 2c + 1,
then A is Cohen–Macaulay.

It is easy to prove the above theorems in the case of d = 2. In fact, when d = 2, A is
Cohen–Macaulay if and only if Δ is connected. A disconnected graph has at most

(
n−1

2

)
(= (

n
2

) − (n − 2) − 1) edges. This shows that Theorem 2.1 is true in this case. Similarly,

a disconnected graph without an isolated point has at most
(
n−2

2

) + 1(= (
n
2

) − 2(n − 2))

edges. Indeed, such a graph is contained in the disjoint union of an (n− i)-complete graph
and an i-complete graph for some 2 � i � n − 2. When i = 2, the number of edges of the
above union is maximal and just

(
n−2

2

) + 1. Thus we also get Theorem 3.1 in this case.
For Theorem 2.1, we give several proofs by different methods in Section 2. One of

powerful tools is the Alexander dual. As for Theorem 3.1, since it seems to be difficult
to prove it directly, we give a proof using the Alexander dual complex in Section 3. The
following Alexander dual versions of Theorems 2.1 and 3.1 have some interest in their own
right.

Theorem 2.8. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. Suppose
that indegA = d . If e(A) � d , then A has d-linear resolution. In particular, rt(A) = d .

Theorem 3.3. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. Suppose
that indegA = rt(A) = d . If e(A) � 2d − 1, then A has d-linear resolution. In particular,
a(A) < 0.

For a Stanley–Reisner ring A with indegA = dimA = d , it has d-linear resolution if
and only if a(R) < 0. Thus the assertion of Theorem 3.3 could be seen as an analogy of
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the following: Let R be a homogeneous integral domain over an algebraically closed field
of characteristic 0. If e(R) � 2 dimR − 1 and codimR � 2, then a(R) < 0.

In the last section, we will provide several examples related to the above results.

2. Complexes Δ with e(k[Δ]) ���
(n
c

) − c

In this section, we use the following notation. Let Δ be a simplicial complex on
V = [n], and let A = k[Δ] = S/IΔ be the Stanley–Reisner ring of Δ. Put d = dimA,
and c = codimA = n − d . Let

([n]
d

)
denote the family of all d-subsets of [n]. For a subset

W of V and a face G in Δ, we put

ΔW = {F ∈ Δ: F ⊆ W },
starΔ G = {F ∈ Δ: F ∪ G ∈ Δ},
linkΔ G = {F ∈ Δ: F ∪ G ∈ Δ, F ∩ G = ∅}.

The main purpose of this section is to prove the following theorem.

Theorem 2.1. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. If e(A) �(
n
c

) − c, then A is Cohen–Macaulay.

Let us begin the proof of this theorem with the following lemmas.

Lemma 2.2. If e(A) �
(
n
c

) − c, then indegA � d and Δ is pure.

Proof. Let Γ be the (d − 1)-skeleton of 2V . Every (d − 2)-face of Γ is contained at least
c + 1 facets of Γ . Consider Δ as a subcomplex of Γ . Then Δ is obtained from Γ by
removing at most c facets. Hence Δ contains all (d − 2)-faces of Γ , that is, indegA � d

and Δ is pure, as required. �
By the following two lemmas we may assume that indegA = d and c = codimA � 2 to

prove Theorem 2.1.

Lemma 2.3. Under the above notation, the following conditions are equivalent:

(1) indegA = d + 1.
(2) e(A) = (

n
d

)
.

(3) IΔ = (Xi1 · · ·Xid+1 : 1 � i1 < · · · < id+1 � n).
(4) A has (d + 1)-linear resolution.

When this is the case, A is Cohen–Macaulay with rt(A) = d + 1.

Proof. See, e.g., [12, Proposition 1.2]. �
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Lemma 2.4. Suppose n = d + 1. If e(A) � d , then A is a hypersurface.

Proof. Suppose that A is not a hypersurface. Then we can write

IΔ = Xi1 · · ·XipJ

for some monomial ideal J (�= S) with heightJ � 2 since height IΔ = 1. In particular, A is
not Cohen–Macaulay. Thus indegA � d by Lemma 2.3. Then e(A) = p � d − 1. This
contradicts the assumption. �

In what follows, we put Γi = linkΔ{i} for each i ∈ V . Also, using the following lemma
one can show that every Γi satisfies the assumption of the theorem if so does Δ with
dimk[Δ] � 3.

Lemma 2.5. Suppose that indegA = d and Δ is pure. Then

e(A) −
(

n

d

)
� e

(
k[Γi]

) −
(

n − 1

d − 1

)
.

Also, equality holds if and only if i ∈ F holds for all F ∈ ([n]
d

) \ Δ.

Proof. If we put Wi = {F ∈ ([n]
d

)
: i ∈ F /∈ Δ}, then

⋃n
j=1 Wj = ([n]

d

) \ Δ and Wi = {{i} ∪
G: G ∈ ([n]−{i}

d−1

) \ Γi}. Thus

(
n − 1

d − 1

)
− e

(
k[Γi]

)
�

(
n

d

)
− e(A),

and equality holds if and only if Wi = ([n]
d

)\Δ, that is, i ∈ F holds for all F ∈ ([n]
d

)\Δ. �
Proof of Theorem 2.1. We use induction on n � d and d � 2. By the observation in the
introduction, the case of d = 2 is true. Also, when n = d + 1, A is Cohen–Macaulay by
Lemma 2.4. We may assume that d � 3 and n � d +2. By Lemmas 2.2, 2.3 we may assume
that indegA = d and Δ is pure. In particular, dimk[Γi] = d − 1 for every i ∈ V . Thus Γi

is Cohen–Macaulay by Lemma 2.5 and the induction hypothesis on d .
Now suppose that e(k[Γi]) �

(
n−1
d−1

)
for all i ∈ V . Then

e(A) = 1

d

n∑
i=1

e
(
k[Γi]

)
� n

d

(
n − 1

d − 1

)
=

(
n

d

)
.

This implies that Δ is the (d − 1)-skeleton of 2V ; hence it is Cohen–Macaulay. Thus we
may assume that e(k[Γi]) �

(
n−1
d−1

) − 1 for some i ∈ V . Fix such i ∈ V . Then there exists a
(d − 1)-facet F of Δ such that i /∈ F . Hence dimk[ΔV \{i}] = d and
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e
(
k[ΔV \{i}]

) = e
(
k[Δ]) − e

(
k
[
starΔ{i}])

= e
(
k[Δ]) − e

(
k
[
linkΔ{i}])

=
(

n − 1

d

)
− (c − 1).

By the induction hypothesis on n, ΔV \{i} is Cohen–Macaulay. Take the Mayer–Vietoris
sequence with respect to Δ = ΔV \{i} ∪ starΔ{n} as follows:

H̃d−2(ΔV \{i}) ⊕ H̃d−2
(
starΔ{i}) → H̃d−2(Δ) → H̃d−3(Γi).

Note that both sides are zero since ΔV \{i}, Γi are Cohen–Macaulay and since
H̃j (starΔ{i}) = 0 for all j . Hence H̃d−2(Δ) = 0 and Δ is Cohen–Macaulay by Hochster’s
formula on Betti numbers. �

In the rest of this section we give another proof of Theorem 2.1 using Alexander dual
complex. Assume that c = codimA � 2. Let Δ∗ be the Alexander dual of Δ:

Δ∗ = {
F ∈ 2V : V \ F /∈ Δ

}
.

Then Δ∗ is a simplicial complex on the same vertex set V of Δ for which the following
properties are satisfied:

Proposition 2.6. Under the above notation, we have

(1) indegk[Δ∗] + dimk[Δ] = n.
(2) rt(k[Δ∗]) = bight IΔ, where

bight IΔ = max{heightp: p is a minimal prime divisor of IΔ}.

In particular, Δ is pure if and only if rt(k[Δ∗]) = indegk[Δ∗].
(3) β0,q∗(IΔ∗) = e(k[Δ]), where q∗ = indegk[Δ∗].
(4) (Δ∗)∗ = Δ.

Also, the following theorem is fundamental. See [3] for more details.

Theorem 2.7. (Eagon–Reiner [3]) k[Δ] is Cohen–Macaulay if and only if k[Δ∗] has linear
resolution.

We want to reduce Theorem 2.1 to its Alexander dual version. Let Δ∗ be the Alexander
dual of Δ. Then indegk[Δ∗] = n − dimk[Δ] = c and dimk[Δ∗] = n − indegk[Δ] = n −
d = c. Also, since indegk[Δ∗] = dimk[Δ∗] = c, we have

e
(
k[Δ∗]) =

(
n
)

− β0,c(IΔ∗) =
(

n
)

− e(A) � c.

c c
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Also, H̃c−1(Δ
∗) = 0 if and only if H̃d−2(Δ) = 0. Note that H̃c−1(Δ

∗) is the top reduced
homology of Δ∗, while H̃d−2(Δ) is an intermediate reduced homology of Δ. The top
homology is easier to treat than the intermediate one in most case. For example, the top
homology of Δ∗ vanishes if Δ∗ is homotopy equivalent to a lower-dimensional simplicial
complex. This is the reason why we consider Alexander dual version.

Theorem 2.8 (Alexander dual version of Theorem 2.1). Let A = k[Δ] be a Stanley–Reisner
ring of Krull dimension d � 2. Suppose that indegA = d . If e(A) � d , then A has d-linear
resolution. In particular, rt(A) = d .

Proof. It is enough to show that H̃d−1(Δ) = 0 whenever e(k[Δ]) � d . Assume that there
exists a complex Δ such that e(k[Δ]) � d , H̃d−1(Δ) �= 0 and dimΔ = d − 1. Take one
Δ whose multiplicity is minimal among the multiplicities of those complexes. Choose any
(d − 1)-facet F of Δ. Then F contains just d subfacets of Δ; say G1, . . . ,Gd . Then Gi

is not a free face (see [9]). That is, Gi is contained in at least two facets of Δ. Indeed, if
G = Gi is a free face of Δ, then the simplicial complex Δ′ := Δ \ {F, G} is homotopy
equivalent to Δ and thus H̃d−1(Δ

′) ∼= H̃d−1(Δ) �= 0. This contradicts the minimality of
e(k[Δ]) since e(k[Δ′]) < e(k[Δ]).

Thus for each i ∈ V there exists a (d − 1)-facet Fi of Δ such that Gi ⊆ Fi �= F . In
particular, F1, . . . ,Fd,F are (d + 1) distinct facets of Δ. This is a contradiction. �

Now we give a slight generalization of the theorem. A ring homomorphism A → B is
called pure if for every A-module M , M → M ⊗A B(m �→ m⊗1) is injective. Let A = S/I

be an arbitrary homogeneous reduced k-algebra over a field k of characteristic p > 0. The
ring A is called F -pure if the Frobenius map F :A → A(a �→ ap) is pure in the above
sense.

Proposition 2.9. Let A = S/I be a homogeneous F -pure k-algebra. Put dimA =
indegA = d � 2. If e(A) � d , then A has d-linear resolution. In particular, rt(A) = d

and a(A) < 0.

Proof. Put a(A) = sup{j ∈ Z: [Hd
m(A)]j �= 0}, the a-invariant of A. From the assumption

we obtain that

a(A) + d � e(A) − 1 � d − 1,

where the first inequality follows from e.g. [7, Lemma 3.1]. Hence a(A) < 0. On the other
hand, [Hi

m(A)]j = 0 for all i and j � 1 since A is F -pure. Then by [4], we have

regA = inf
{
m ∈ Z:

[
Hi

m(A)
]
j

= 0 for all i + j > m
}

� d − 1 = indegA − 1.

This means that A has d-linear resolution, as required. �
It is known that a Stanley–Reisner ring is F -pure over a field of characteristic p > 0.

If Δ has linear resolution over a positive characteristic field then so does it over a field of
characteristic zero. Thus the above proof gives a ring-theoretic proof of Theorem 2.8.
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Remark 2.10. After submitting the paper, Ngô Viêt Trung informed us about another proof
of Theorem 2.8: In fact, in order to prove the theorem, it is enough to show that regk[Δ] �
e(k[Δ]) − 1 in the case where Δ is pure. But it follows from [6, Theorem 3.1] or [8,
Theorem 1.1].

3. Complexes Δ with e(k[Δ]) ���
(n
c

) − 2c + 1

We use the same notation as in the previous section unless otherwise specified. The
main purpose of this section is to prove the following theorem.

Theorem 3.1. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. Put
c = codimA. Suppose that Δ is pure. If e(A) �

(
n
c

) − 2c + 1, then A is Cohen–Macaulay.

Now suppose that c = 1 (respectively indegA � d + 1). Then the assertion of Theo-
rem 3.1 follows from Lemma 2.4 (respectively Lemma 2.3). Thus we may assume that
c � 2 and q = indegA � d . The following lemma corresponds to Lemma 2.2.

Lemma 3.2. If e(k[Δ]) �
(
n
c

) − 2c + 1, then indegk[Δ] � d − 1, i.e.,

(1) indegk[Δ] = d or
(2) indegk[Δ] = d − 1.

Proof. Suppose that indegk[Δ] < d − 1. Take a squarefree monomial M ∈ IΔ with
degM = d − 2. Then there are

(
n−d+2

2

)
squarefree monomials in degree d in IΔ. Note(

n−d+2
2

) = (
c+2

2

)
� 2c. Hence

e
(
k[Δ]) �

(
n

c

)
− 2c.

This contradicts the assumption. �
By the same reason in the previous section, we take the Alexander dual. First, we con-

sider the Alexander dual version of Theorem 3.1 in the case of indegk[Δ] = d . Namely,
we will prove the following theorem.

Theorem 3.3 (Alexander dual version of Theorem 3.1, Case (1)). Let A = k[Δ] be a
Stanley–Reisner ring of Krull dimension d � 2. Suppose that indegA = rt(A) = d . If
e(A) � 2d − 1, then A has d-linear resolution. In particular, a(A) < 0.

The proof of the above theorem can be reduced to that of the following theorem, which
is a key result in this paper.

Theorem 3.4. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 2. Suppose
that rt(A) � d . If e(A) � 2d − 1, then regA � d − 1, equivalently, H̃d−1(Δ) = 0.
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Proof. Put e = e(A). Let Δ′ be the subcomplex that is spanned by all facets of dimension
d − 1. Replacing Δ with Δ′, we may assume that Δ is pure.

We use induction on d = dimA � 2. First suppose d = 2. The assumption shows that Δ

does not contain the boundary complex of a triangle. Hence H̃1(Δ) = 0 since e(A) � 3.
Next suppose that d � 3, and that the assertion holds for any complex the dimension

of which is less than d − 1. Assume that Δ is a (d − 1)-dimensional pure complex with
rt(k[Δ]) � d , e(k[Δ]) � 2d − 1 and H̃d−1(Δ) �= 0. Take one Δ whose multiplicity is min-
imal among the multiplicities of those complexes. Then Δ does not contain any free face
by a similar argument as in the proof of Theorem 2.8.

First consider the case of rt(A) = d . Take a generator Xi1 · · ·Xid of IΔ. For every
j = 1, . . . , d , each Gj = {i1, . . . , îj , . . . , id} is contained in at least two facets as men-
tioned above. Then e(A) � 2d since those facets are different from each other. This is a
contradiction.

Next we consider the case of rt(A) < d . Let V = [n] be the vertex set of Δ. Take the
Mayer–Vietoris sequence with respect to Δ = ΔV \{n} ∪ starΔ{n} as follows:

H̃d−1(ΔV \{n}) ⊕ H̃d−1
(
starΔ{n}) → H̃d−1(Δ) → H̃d−2

(
linkΔ{n}).

The minimality of e(k[Δ]) yields that H̃d−1(ΔV \{n}) = 0 since e(k[ΔV \{n}]) < e(k[Δ]).
Hence H̃d−1(Δ) ↪→ H̃d−2(linkΔ{n}). In particular, H̃d−2(linkΔ{n}) �= 0.

Set Δ′ = linkΔ{n}. Then Δ′ is a complex on V \ {n} such that dim k[Δ′] = d − 1 and
rt(k[Δ′]) � rt(k[Δ]) � d − 1. In order to apply the induction hypothesis to Δ′, we want to
see that e(k[Δ′]) � 2d −3. In order to do that, we consider e(k[ΔV \{n}]). As Δ �= starΔ{n},
one can take F = {i1, . . . , im,n} /∈ Δ for some m � d − 2 such that Xi1 · · ·XimXn is a
generator of IΔ. Then G := {i1, . . . , im} ∈ Δ, but it is not a facet of Δ. Thus it is contained
in at least two facets of Δ, each of which does not contain n. Hence e(k[ΔV \{n}]) � 2.
Thus we get

e
(
k[Δ′]) = e

(
k
[
starΔ{n}]) = e

(
k[Δ]) − e

(
k[ΔV \{n}]

)
� 2d − 3.

By induction hypothesis, we have H̃d−2(linkΔ{n}) = 0. This is a contradiction. �
Remark 3.5. Theorem 2.8 also follows from Theorem 3.4. In fact, one can easily see that
e(k[Δ]) � d + 1 whenever rt(k[Δ]) � d + 1.

Next, we prove the following proposition as the Alexander dual version of Theorem 3.1
in the case of indegk[Δ] = d − 1. Note that fi(Δ) denotes the number of i-faces of Δ.

Proposition 3.6 (Alexander dual version of Theorem 3.1, Case (2)). Let A = k[Δ] be a
Stanley–Reisner ring of Krull dimension d � 2. Suppose that indegA = rt(A) = d − 1. If
μ(IΔ) �

(
n

) − 2d + 2, then A has (d − 1)-linear resolution with e(A) = 1.

d−1
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Proof. First we show that e(A) = 1. Now suppose that e(A) � 2. Then there exist at least
two facets F1 and F2 with |F1| = |F2| = d . This implies that fd−2(Δ) � 2d − 1. However,
by the assumption, we have

fd−2(Δ) =
(

n

d − 1

)
− β0,d−1(IΔ) =

(
n

d − 1

)
− μ(IΔ) � 2d − 2.

This is a contradiction. Hence we get e(A) = 1.
In order to prove that A has (d − 1)-linear resolution, it is enough to show that

βi,j (A) = 0 for all i � c and j � i + d − 1 by [10, Theorem 5.2]. Also, it suffices to show
that H̃d−1(Δ) = H̃d−2(Δ) = H̃d−2(ΔW) = 0 for all subsets W ⊂ V with |W | = n − 1 by
virtue of Hochster’s formula on the Betti numbers:

βi,j (A) =
∑

W⊆V
|W |=j

dimk H̃j−i−1(ΔW ; k).

Claim 1. H̃d−1(Δ) = H̃d−2(Δ) = 0.

It is easy to check H̃d−1(Δ) = 0 using simplicial argument; see also Theorem 3.4. Now
let F = {1,2, . . . , d} be the unique facet with |F | = d . Consider a simplicial subcomplex
Δ′ := Δ \ {F,G} where G = {1,2, . . . , d − 1}. Then dimk[Δ′] = d − 1 and e(k[Δ′]) �
2d − 3 = 2(d − 1) − 1. Also, since rt(k[Δ′]) � rt(k[Δ]) � d − 1, applying Theorem 3.4 to
Δ′, we obtain that H̃d−2(Δ) ∼= H̃d−2(Δ

′) = 0, as required.

Claim 2. H̃d−2(ΔW) = 0 for all subsets W ⊂ V with |W | = n − 1.

Let W be a subset of V such that |W | = n − 1. Put V \ W = {v}. If v is not contained
in F , then H̃d−2(ΔW) = 0 by a similar argument as in the proof of the previous claim. So
we may assume that v ∈ F . Then dimk[ΔW ] = d − 1 and e(k[ΔW ]) � (d − 3) + 1 = d −
2 � 2(d −1)−1. Also, since rt(k[ΔW ]) � d −1, we have H̃d−2(ΔW) = 0 by Theorem 3.4
again.

Hence k[Δ] has (d − 1)-linear resolution, as required. �
Remark 3.7. The above proposition gives a little bit stronger result than the desired one.
Indeed, the Alexander dual version of the above proposition yields that if Δ is pure,
indegk[Δ] = d − 1, e(k[Δ]) �

(
n
c

) − 2c then k[Δ] is Cohen–Macaulay.

Example 3.8. Let ρ, d be an integers with 0 � ρ � d − 3. Let Δ be a simplicial complex

on V = [n] spanned by F = {1,2, . . . , d}, any distinct ρ elements from
( [n]
d−1

) \ ( [d]
d−1

)
and

all elements of
( [n]
d−2

)
. Then dimk[Δ] = d , indegk[Δ] = rt(k[Δ]) = d − 1. Also, we have

μ(IΔ) = β0,d−1(IΔ) =
(

n

d − 1

)
− ρ − d �

(
n

d − 1

)
− 2d + 3.

Hence Δ satisfies the assumption of the above proposition.
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On the other hand, we have no results for F -pure k-algebras corresponding to Theo-
rem 3.3. But we remark the following.

Remark 3.9. As mentioned in the introduction, if A is a homogeneous integral domain
over an algebraically closed field k of chark = 0 with codimA � 2 and e(A) � 2d − 1
then one has a(A) < 0. In fact, it is known that an inequality

a(A) + d �
⌈

e(A) − 1

codimA

⌉

holds; see, e.g., the remark after Theorem 3.2 in [7]. Moreover, Chikashi Miyazaki told us
that this inequality is also true in positive characteristic.

Question 3.10. Let A = k[A1] be a homogeneous F -pure, equidimensional k-algebra. Put
dimA = indegA = d � 2. If e(A) � 2d − 1, then does a(A) < 0 hold?

4. Buchsbaumness

A Stanley–Reisner ring A = k[Δ] is Buchsbaum if and only if Δ is pure and k[linkΔ{i}]
is Cohen–Macaulay for every i ∈ [n]. As an application of Theorem 3.1, we can provide
sufficient conditions for k[Δ] to be Buchsbaum.

Proposition 4.1. Let A = k[Δ] be a Stanley–Reisner ring of Krull dimension d � 3. Put
c = codimA. Suppose that Δ is pure, indegA = d and e(A) �

(
n
c

) − 2c. Then

(1) e(k[linkΔ{i}]) �
(
n−1

c

) − 2c for all i ∈ [n].
(2) If height[IΔ]dS � 2, then A is Buchsbaum.
(3) If rt(A) = d , then A is Buchsbaum.

Proof. (1) follows from Lemma 2.5. In order to prove (2) and (3), we may assume that
c � 2 and e(A) = (

n
c

) − 2c by virtue of Theorem 3.1.
(2) Suppose that height[IΔ]dS � 2. Then there is no element i ∈ [n] for which i ∈ F

holds for all F ∈ ([n]
d

) \ Δ. Thus the latter assertion of Lemma 2.5 yields that

(
n

d

)
− 2c = e(A) �

(
n

d

)
−

[(
n − 1

d − 1

)
− e

(
k[Γi]

)] − 1,

that is, e(k[Γi]) �
(
n−1
d−1

) − 2c + 1 for every i ∈ [n]. Also, we note that Γi is pure and
indegk[Γi] � dimk[Γi] = d − 1. Applying Theorem 3.1 to k[Γi], we obtain that k[Γi] is
Cohen–Macaulay. Therefore A is Buchsbaum since Δ is pure.

(3) Now suppose that A is not Buchsbaum. Then since height[IΔ]dS = 1, one can
take i ∈ [n] for which i ∈ F holds for all F ∈ ([n]

d

) \ Δ. We may assume i = n. Then

{1, . . . , ĵ , . . . , d + 1} ∈ Δ for all j ∈ [d + 1] because n − 1 � d + 1. This means that
X1 · · ·Xd+1 is a generator of IΔ; thus rt(A) = d + 1. �
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The next example shows that the assumptions “height[IΔ]dS � 2” or “rt(k[Δ]) = d”
are not superfluous when e(k[Δ]) = (

n
c

) − 2c.

Example 4.2. Let Δ be a simplicial complex on V = [5] which is spanned by

{1,2,3}, {1,4,5}, {2,3,4}, {2,3,5}, {2,4,5} and {3,4,5}.
Then Δ is pure, indegk[Δ] = dim k[Δ] = 3, rt(k[Δ]) = 4 and e(k[Δ]) = 6 = (

n
c

) − 2c.
Also, height[IΔ]3S = 1 since [IΔ]3 ⊆ X1S. However k[Δ] is not Buchsbaum since
linkΔ{1} is spanned by two edges {2,3}, {4,5} and thus is not connected.

5. Examples

Throughout this section, let c, d be given integers with c, d � 2. Set n = c + d .

Example 5.1. Put Fi,j = {1,2, . . . , î, . . . , d, j} for each i = 1, . . . , d; j = d +1, . . . , n. For
a given integer e with 1 � e � cd , we choose e faces (say, F1, . . . ,Fe) from {Fi,j : 1 � i �
d, d + 1 � j � n}, which is a set of the facets of the simplicial join of 2[d] \ {[d]} and c

points.
Let Δ be a simplicial complex spanned by F1, . . . ,Fe and all elements of

( [n]
d−1

)
.

Then k[Δ] is a d-dimensional Stanley–Reisner ring with indegk[Δ] = rt(k[Δ]) = d and
e(k[Δ]) = e.

In particular, when e � 2d − 1, k[Δ] has d-linear resolution by Theorem 3.3. Thus their
Alexander dual complexes provide examples satisfying the hypothesis of Theorem 3.1.

The following example shows that the assumption “e(A) � 2d − 1” is optimal in The-
orem 3.3.

Example 5.2. There exists a complex Δ on V = [n] for which k[Δ] does not have d-linear
resolution with dimk[Δ] = indegk[Δ] = rt(k[Δ]) = d and e(k[Δ]) = 2d .

In fact, let Δ0 be a complex on V0 = [d + 2] such that k[Δ0] is a complete intersection
defined by (X1 · · ·Xd,Xd+1Xd+2). Also, let Δ be a complex on V such that

IΔ = (X1 · · ·Xd)S + (Xi1 · · ·Xid−2Xd+1Xd+2: 1 � i1 < · · · < id−2 � d)S

+ (Xj1 · · ·Xjd
: 1 � j1 < · · · < jd � n, jd � d + 3)S.

Then H̃d−1(Δ) ∼= H̃d−1(Δ0) �= 0 since a(k[Δ0]) = 0. Hence k[Δ] does not have d-linear
resolution.

Remark 5.3. The case n = d + 2 in the above example is also obtained by considering the
case c = 2, e = 2d in Example 5.1.

The next example shows that the assumption “rt(A) = d” is not superfluous in Theo-
rem 3.3.
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Example 5.4. Suppose that d + 1 � e �
(
n
d

) − 1. Then there exists a simplicial complex
Δ on V = [n] such that dimk[Δ] = indegk[Δ] = d , rt(k[Δ]) = d + 1 and e(k[Δ]) = e. In
particular, k[Δ] does not have d-linear resolution.

In fact, put F = ([n]
d

) \ ([d+1]
d

)
. Let Δ0 be a simplicial complex on V such that

IΔ0 = (X1 · · ·XdXd+1)S + (
Xi1 · · ·Xid : {i1, . . . , id} ∈F

)
S.

Then dimk[Δ0] = indegk[Δ0] = d , rt(k[Δ0]) = d + 1, and e(k[Δ0]) = d + 1.
For a given integer e which satisfies the above condition, one obtains the required sim-

plicial complex by adding to Δ0 any (e − d − 1) distinct d-subsets of [n] which are not

contained in
([d+1]

d

)
.

Remark 5.5. Now let Δ be a simplicial complex on V = [n]. Set A = k[Δ]. Suppose
that dimA = indegA = d � 2. Then one can easily see that d � rt(A) � d + 1; rt(A) = d

(respectively d + 1) if 1 � e(A) � d (respectively e(A) = (
n
d

)
). So we put

f (n, d) = min

⎧⎨
⎩m ∈ Z:

rt k[Δ] = d + 1 for all (d − 1)-dimensional
complexes Δ on V with indegk[Δ] = d

and e(k[Δ]) � m

⎫⎬
⎭ .

Then f (n, d) � cd + 1 by Example 5.1. From the definition of f (n, d), one can easily see
that there exists a simplicial complex Δ on V which satisfies rt(k[Δ]) = d and e(k[Δ]) = e

for each e with d +1 � e � f (n, d)−1. On the other hand, according to Example 5.4, one
can also find a simplicial complex Δ which satisfies rt(k[Δ]) = d + 1 and e(k[Δ]) = e for
each e with d + 1 � e �

(
n
d

) − 1.
It seems to be difficult to determine f (n, d) in general. Let T (n,p, k) be the so-called

Turan number; see, e.g., [5]. Then we have

f (n, d) =
(

n

d

)
− T (n, d + 1, d).

In particular, we get

f (n,2) =
{

n2

4 + 1, if n is even and n � 4,

n2−1
4 + 1, if n is odd and n � 3,

(5.1)

by Turan’s theorem (e.g., [2, Theorem 7.1.1]). However, no formula is known for
T (n,4,3); see [5, pp. 1320].

In the rest of this section, we show that the purity of Δ is a very strong condition in
Theorem 3.3.

Proposition 5.6. For integers d � 3, c = n − d � 2, the following conditions are equiva-
lent:
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(1) There exists a (d − 1)-dimensional pure simplicial complex Δ on V = [n] such that
indegk[Δ] = d and e(k[Δ]) = e � 2d − 1.

(2) n = d + 2 and (d, e) is one of the following pairs:

(3,4), (3,5), (4,6), (4,7), (5,9).

Remark 5.7. Note that any 1-dimensional pure simplicial complex Δ with e(k[Δ]) � 3,
indegk[Δ] = 2 is isomorphic to one of the following complexes:

(i)

•

•
(ii)

•
•
• (iii)

•

•

•

•
(iv)

•

•

•

•
(v)

•
•
•

•

•
(vi)

•

•

•

•

•

•

In particular, when d = 2, there exists a (d − 1)-dimensional simplicial complex Δ in
which c � 2 and indegk[Δ] = d; see (v) or (vi).

To prove the proposition, we need the following lemma.

Lemma 5.8. Let A = k[Δ] be a d-dimensional Stanley–Reisner ring which is not a hyper-
surface. Suppose that Δ is pure and indegA = d � 3. Then there exists a vertex i ∈ [n]
such that e(k[ΔV \{i}]) � 2.

Proof. Note that n � d + 2 by the assumption. Put e = e(A). Suppose that
e(k[ΔV \{i}]) = 1 for all i. Then since there exist (e − 1) facets containing i for each
i ∈ [n], we have (d + 2)(e − 1) � n(e − 1) � de; hence e � d+2

2 .
On the other hand, by counting the number of subfacets (i.e., the maximal faces among

all faces except facets) of Δ we get

de �
(

n

d − 1

)

since indegA = d and Δ is pure. It follows from these inequalities that

d(d + 2)

2
� de �

(
n

d − 1

)
�

(
d + 2

d − 1

)
=

(
d + 2

3

)
.

Hence d � 2. This is a contradiction. �
Proof of Proposition 5.6. We first show (1) ⇒ (2). Let A = k[Δ] be a d-dimensional
Stanley–Reisner ring for which Δ is pure, indegA = d , and e = e(A) � 2d − 1. We may
assume that e(k[ΔV \{7}]) � 2 by Lemma 5.8. Since Δ is pure, any subfacet is contained in
some d-subset of Δ. By counting the number of subfacets that contain n, we obtain that(

n − 1
)

�
(
e − e

(
k[ΔV \{n}]

))
(d − 1) � (e − 2)(d − 1).
d − 2
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Now let us see that n = d + 2. Suppose that n � d + 3. Then we get

(
d + 2

4

)
�

(
n − 1

d − 2

)
� (e − 2)(d − 1) � (2d − 3)(d − 1)

by the assumption. This implies that d � 4.
Now consider the case of d = 4. Then n = d + 3 = 7, e = 2d − 1 = 7. Let {F1, . . . ,F7}

be the set of facets of Δ. Since e(k[ΔV \{7}]) = 2, we may assume that 7 ∈ F if and only
if 1 � i � 5. Note that Fi contains only one subfacet that does not contain 7 for each
1 � i � 5. On the other hand, one can find at most 4 × 2 subfacets as faces of F6 or F7.
Therefore the total number of subfacets that do not contain 7 is at most 13. However the
number of all subfacets which do not contain 7 is

(7−1
4−1

) = 20 since indegA = 4. This is a
contradiction.

By a similar observation as in the case of d = 4, one can also prove that the case of
d = 3 does not occur. Therefore we conclude that n = d + 2.

Under the assumption that n = d + 2, let us determine (d, e). Let Δ∗ be the Alexander
dual complex of Δ and put R = k[Δ∗]. Then R is a 2-dimensional Stanley–Reisner ring
with indegR = 2. Also, rt(R) = indegR = 2 since Δ is pure. Thus by virtue of Turan’s
theorem (see Eq. (5.1)), we have

(
d + 2

2

)
− e = e(R) � f (d + 2,2) − 1 =

⌊
(d + 2)2

4

⌋
,

where �a� denotes the maximum integer that does not exceed a. Namely, we have

2d − 1 � e �
⌊

(d + 1)2

4

⌋
.

It immediately follows from this that (d, e) is one of the pairs listed above.
Conversely, in order to prove (2) ⇒ (1), it is enough to find (n, e′)-graphs (i.e.,

1-dimensional simplicial complexes Γ on [n] with e′ edges) which does not contain any
triangle for each (n, e′) = (5,6), (5,5), (6,9), (6,8), (7,12). One can easily construct
those complexes using the following example. �
Example 5.9. Let d � 2 be a given integer, and put n = d + 2. Let T 2(n) be the so-called
Turan graph, that is, it is the unique complete bipartite graph on [n] whose partition sets
differ in size by at most 1:

T 2(n) =
{

Km,m (n = 2m),

Km,m+1 (n = 2m + 1),

where Kr,s denotes the complete bipartite graph which has two partition classes containing
exactly r vertices, s vertices, respectively.

If we can regard T 2(n) as a 1-dimensional simplicial complex Γn, then e′ := e(k[Γn]) =
�n2 �(= f (n,2) − 1) and rt(k[Γn]) = indegk[Γn] = 2.
4
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Let Δn be the Alexander dual complex of Γn. Then Δn is pure and k[Δ] is a d-dimen-

sional Stanley–Reisner ring with e(k[Δn]) = (
n
2

) − e′ = � (d+1)2

4 � and indegk[Δn] = d .

Using Proposition 5.6, one can determine non-Cohen–Macaulay Buchsbaum complexes
Δ with indegk[Δ] = dim k[Δ] = d and e(k[Δ]) � 2d − 1.

Corollary 5.10. Let A = k[Δ] be a d-dimensional Buchsbaum Stanley–Reisner ring which
is not a hypersurface. Suppose that indegA = d � 3 and e(A) � 2d − 1. Then d = 3 and
Δ is isomorphic to the simplicial complex spanned by {1,2,4}, {1,3,4}, {1,3,5}, {2,3,5}
and {2,4,5}.

Proof. Since A is Buchsbaum and indegA = d we have

e = e(A) � c + d

d

(
c + d − 2

d − 2

)

by [12, Proposition 2.1]. Also, n = d + 2 by Proposition 5.6 since Δ is pure. Thus

2d − 1 � e � d + 2

d

(
d

d − 2

)
= (d + 2)(d − 1)

2
.

This implies that d � 3, and thus d = 3, e = 5 and k[Δ] is not Cohen–Macaulay.
Now let Γ = Δ∗ be the Alexander dual complex of Δ. Then Γ is a 1-dimensional

connected simplicial complex which contains a cycle which is not a triangle. Thus Γ is
isomorphic to either one of the complexes Γ1 which is spanned by

{1,2}, {2,3}, {3,4}, {4,1}, {4,5}

or Γ2 which is spanned by

{1,2}, {2,3}, {3,4}, {4,5}, {5,1};

see below.

Γ1 =
• •

•• •1

2 3

4 5

Γ2 =
�

�
�

�
�
�

�
�
�

�
�

�

• •

•

•

•1

2 3

4

5

Since k[Γ ∗] is not Buchsbaum, Δ is isomorphic to Γ ∗, as required. �
1 2
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