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Abstract

Black holes create a vacuum matter charge to protect themselves from the quantum evaporation. A spherically symmetric black hole having
initially no matter charges radiates away about 10% of the initial mass and comes to a state in which the vacuum-induced charge equals the
remaining mass.
© 2006 Elsevier B.V. Open access under CC BY license.
In Refs. [1,2] a new approach is developed to the problem
of backreaction of the Hawking radiation. The present Letter is
a report on the completion of this work. For earlier studies and
the background material see the book [3].

The Hawking radiation is a semiclassical effect, and so is its
backreaction [1]. If the collapsing matter has macroscopic pa-
rameters, there is a region of the expectation-value spacetime
in which semiclassical theory is valid. This region is causally
complete [1] and covers the entire evolution of the black hole
from the macroscopic to the microscopic scale if the latter is
reached. The ultraviolet ignorance of semiclassical theory is ir-
relevant to this region. In Refs. [1,2] and the present Letter, the
collapsing matter is assumed spherically symmetric, uncharged,
and having a compact spatial support. Then its only relevant
parameter is its mass M which is also the ADM mass of the
expectation-value spacetime. The principal condition of valid-
ity of the approach is (μ/M) � 1 where μ is the Planckian
mass (1 in the absolute units). An observable that, in the units
of M , vanishes as (μ/M) → 0 is denoted as O. An inequality
of the form X > |O| assumes any O and signifies that X is a
macroscopic quantity.

The key result [1] is that, in the semiclassical region of the
expectation-value spacetime, the equations for the metric close
purely kinematically leaving the arbitrariness only in the data
functions. The data functions are two Bondi charges appearing
as coefficients in the expansion of the metric at the future null
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infinity I+:

(1)(∇r)2
∣∣
I+ = 1 − 2M(u)

r
+ Q2(u)

r2
+ O

(
1

r3

)
.

Here r is the luminosity parameter of the radial light, u is the
retarded time labelling the radial future light cones, the coeffi-
cient M(u) is the gravitational charge, and Q(u) is some matter
charge.

Any spherically symmetric metric is completely specified
by two local curvature invariants: (∇r)2 and �r where � is
the D’Alembert operator in the Lorentzian subspace. In the
semiclassical region, both invariants are expressed through the
Bondi charges. On the other hand, the Bondi charges can be
expressed through the metric in the semiclassical region by
calculating the vacuum radiation against its background. As a
result, the Bondi charges get expressed through themselves, i.e.,
one obtains closed equations for them and, thereby, for the met-
ric in the semiclassical region. The first stage of this program:
solving the kinematical equations for the metric in terms of the
Bondi charges is accomplished in Ref. [1]. The second stage:
calculation of the vacuum radiation against the thus obtained
gravitational background is accomplished in Ref. [2]. The pur-
pose of the present Letter is the solution of the final equations.

Two normalizations of the retarded time u figure in the prob-
lem: u+ and u−. The u+ is counted out by an observer at
infinity, and the u− is counted out by an early falling observer
[1]; du+/du− is the red-shift factor. The v below is the ad-
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vanced time labelling the radial past light cones and counted
out by an observer at infinity.

The self-consistent equations for the Bondi charges obtained
in Ref. [2] are of the form

(2)−dM
du+ = μ2

48π
κ2(1 + Γ ),

(3)
dQ2

du+ = μ2

24π
κ,

(4)κ = (
M2 − Q2)1/2[M+ (

M2 − Q2)1/2]−2
,

where Γ is expressed through M and Q2 [2]. Here and be-
low, the numerical factors are given for the vacuum of spin-0
particles. Only the quantum s-mode contributes to the flux of
Q2, and the fact that this flux is nonvanishing is another key
result [2]. The quantum modes with higher angular momenta
contribute only to the flux of M through the term Γ but Γ

is uniformly bounded and small: Γ � (27/160). The spec-
tral decomposition of the flux (2) is Planckian with the time-
dependent temperature [2]

(5)kT = μ2 κ(u)

2π
.

The data at I+, M and Q2, are related to the data at the
apparent horizon (AH) as [1]

(6)rAH =M+ (
M2 − Q2)1/2

, �r|AH = 2κ,

and the equation of the apparent horizon in the coordinates
(u, v), v = vAH(u), is given by the law [1]

(7)
d lnβ

du+ = κ

(
dvAH

du+ − 1

)
, β = −drAH

du+ .

The outgoing light rays u = const cross the AH twice, and there
is a point, (u0, v0), at which the AH is tangent to an outgoing
light ray [1]. Equivalently, the AH has two branches with the
origin at (u0, v0). The equations above pertain to the second
(later) branch, and their validity is limited to the range

(8)u+ > u+
0 + O(M)

in which a significant radiation occurs. In this range, the red-
shift factor is given by the expression [1]

(9)
du+

du− = 1

2β0
exp

( u+∫
u+

0

κ du+
)

, β0 = β|u=u0 .

Another and more important limitation on the validity of
the equations above stems from the fact that they were derived
under certain assumptions about the data functions [1]. These
assumptions, deliberately valid at the beginning of the radia-
tion process, could cease being valid at some late value of u,
and it was envisaged that the solution for the metric obtained in
Ref. [1] should then be cut off at this value of u. For later u, it
is no longer valid. Now, that the data functions are obtained, it
turns out that, of these assumptions, the crucial one is

(10)κ > |O|.
The equations above are easy to solve, and the result is this.
M(u) decreases monotonically, and Q2(u) increases monoton-
ically from the instant u0 at which their values (up to O) are

(11)u = u0: M0 = M, Q2
0 = 0

to an instant u1 at which M2 and Q2 become equal:

(12)u = u1: M2
1 = Q2

1.

Approximately,

(13)u+
1 − u+

0 = 96π
M3

μ2
,

and

(14)0.098 <
M −M1

M
< 0.112.

Here the lower bound accounts for the contribution of the s-
mode alone. Thus only about 10% of M is radiated away by
the instant u1. The temperature of radiation first grows but
only up to a maximum value which is slightly greater than
μ2/8πM , and next decreases down to zero. At u = u1, the red
shift reaches its maximum:

(15)
du+

du−

∣∣∣∣
1
= exp

(
24π

M2
1

μ2

)
≈ exp

(
19.4π

M2

μ2

)
.

Along the AH, r decreases monotonically from the value
2M0 to the value M1, and (r�r) decreases monotonically
from 1 to 0. Because of the limitations (8) and (10), Eq. (7)
can be used only outside the O(M) neighbourhoods of the end
points u+

0 and u+
1 . There, the equation of the apparent horizon

is

(16)
dvAH

du+ = 1 + |O|, u+
1 − O(M) > u+ > u+

0 + O(M).

In the neighbourhoods of the end points, only unessential de-
tails of the behaviour of the AH are unknown. At u = u0, the
AH is null and tangent to the outgoing light ray u = u0. At
u = u1, the AH is null and tangent to the incoming light ray
v = v1. Approximately,

(17)v1 − v0 = 96π
M3

μ2
.

The apparent horizon (the second branch) is shown in Fig. 1. At
u = u1, the assumption (10) breaks down, and the solution for
later u is presently unknown.

Thus the Hawking process liberates more than half of the
energy from the black hole. Only about 10% of it goes away in
the form of thermal radiation. If one forgets about the radiation
and just compares the initial state at u = u0 and the final state
at u = u1, then in the initial state all of the available energy is
in the black hole, and in the final state exactly one half. Most
of the liberated energy remains in the compact domain outside
the black hole in the form of the energy of a long-range field
whose source is the charge Q. The black hole manufactures
this charge from the vacuum to protect itself from the quantum
evaporation. It is unexpected that the vacuum stress tensor de-
velops a macroscopic value and even more surprising that this
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Fig. 1. The second branch of the apparent horizon in the coordinates u+, v.

is the stress tensor of a long-range field. One may conclude that
the massless quantum field assumed to be in the in-vacuum state
[2] develops a nonvanishing expectation value. However, from
the equations above, only the energy–momentum tensor of this
field is available.

The state reached by the instant u1 is not really final be-
cause the black hole does not stabilize in this state. This is
seen from the fact that, at u = u1, both u+ and du+/du−
have finite values. Only in the region of weak field [1] does
the expectation-value metric appear as the Reissner–Nordstrom
metric with slowly varying parameters. In the neighbourhood
and interior of the AH, it is different [1]. The M(u) and Q2(u)

come to the instant u1 with vanishing derivatives and can be
continued as constants but this is not true of rAH and �r|AH.
The rAH continues decreasing while �r|AH passes through zero
and becomes negative. Therefore, the AH continues through the
point (u1, v1) as shown in Fig. 1. At u = u1, the present solu-
tion ceases being valid but semiclassical theory does not. It is a
matter of generalizing the solution, to learn what next.

It will be emphasized that the term “black hole” is used here
for the interior of the apparent horizon rather than of the event
horizon. No event horizon has thus far been found in the solu-
tion. There is strictly speaking no black hole but at each instant
of evaporation there is an “instantaneous black hole” [1]. At
the beginning of the evaporation process, this is the “classical
black hole” that corresponds to the sector v0 < v < vcrit of the
AH in Fig. 1. The value vcrit sets the limit to the validity of the
correspondence principle [1]. In Ref. [1], it has been expressed
through the constant β0 that figures in Eq. (9) above. Now one
is able to calculate it:

(18)vcrit − v0 = 4M ln
M2

μ2
+ O(M).

Remarkably, one is able to calculate also the value of u+
0 :

(19)u+
0 − u+

early = 4M ln
M2

μ2
+ O(M),

(20)
du+

du−

∣∣∣∣
0
= const.

M2

μ2
.

Here uearly is any value of u at which the red shift is moderate:

(21)
du+

du−

∣∣∣∣
early

<
1

|O| .

Eq. (19) gives the time instant at which the “classical black
hole” forms, and Eq. (18) gives its life time. In the classi-
cal geometry, both are infinite. The expectation-value geometry
contains two characteristic time scales: the one in Eq. (19) and
the one in Eq. (13).
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