
lable at ScienceDirect

European Journal of Medicinal Chemistry 95 (2015) 546e551
Contents lists avai
European Journal of Medicinal Chemistry

journal homepage: http: / /www.elsevier .com/locate/ejmech
Short communication
Towards small molecule inhibitors of mono-ADP-ribosyltransferases

Torun Ekblad a, 1, Anders E.G. Lindgren b, 1, C. David Andersson b, R�emi Caraballo b,
Ann-Gerd Thorsell a, Tobias Karlberg a, Sara Spjut b, Anna Linusson b, Herwig Schüler a, *,
Mikael Elofsson b, *

a Department of Medicinal Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
b Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
a r t i c l e i n f o

Article history:
Received 3 February 2015
Received in revised form
18 March 2015
Accepted 31 March 2015
Available online 1 April 2015

Keywords:
Mono-ADP-ribosyltransferase
mART
Poly(ADP-ribose) polymerase
Diphtheria toxin-like ADP-
ribosyltransferase
ARTD inhibitor
PARP inhibitor
* Corresponding authors.
E-mail addresses: herwig.schuler@ki.se (H. Schü

umu.se (M. Elofsson).
1 These authors contributed equally to this work.

http://dx.doi.org/10.1016/j.ejmech.2015.03.067
0223-5234/© 2015 The Authors. Published by Elsevie
a b s t r a c t

Protein ADP-ribosylation is a post-translational modification involved in DNA repair, protein degradation,
transcription regulation, and epigenetic events. Intracellular ADP-ribosylation is catalyzed predomi-
nantly by ADP-ribosyltransferases with diphtheria toxin homology (ARTDs). The most prominent
member of the ARTD family, poly(ADP-ribose) polymerase-1 (ARTD1/PARP1) has been a target for cancer
drug development for decades. Current PARP inhibitors are generally non-selective, and inhibit the
mono-ADP-ribosyltransferases with low potency. Here we describe the synthesis of acylated amino
benzamides and screening against the mono-ADP-ribosyltransferases ARTD7/PARP15, ARTD8/PARP14,
ARTD10/PARP10, and the poly-ADP-ribosyltransferase ARTD1/PARP1. The most potent compound inhibits
ARTD10 with sub-micromolar IC50.
© 2015 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Diphtheria toxin-like ADP-ribosyl transferases (ARTDs), better
known as poly(ADP-ribose) polymerases (PARPs), use nicotinamide
adenine dinucleotide (NADþ) as co-substrate to transfer ADP-ribose
to their target proteins [1,2]. PARPs catalyze the formation of linear
or branched poly(ADP-ribose) chains, dynamic structures that are
recognized by a number of reader domains and broken down by
poly(ADP-ribose) glycohydrolases [3]. A large subset of the PARP
family catalyzes mono-ADP-ribosylation but not chain elongation
[1,4,5] (Fig. 1A). Recently, functional information has been accu-
mulating on these mono-ADP-ribosyltransferases (mARTDs) [6,7].
Most of them combine an ADP-ribosyltransferase domain with
ADP-ribose binding macro domains or WWE-domains, CCCH-type
zinc finger domains, and other proteineprotein interaction mod-
ules. The macro domain containing ARTD7/PARP15, ARTD8/PARP14
and ARTD9/PARP9 are overexpressed in diffuse large B-cell
ler), mikael.elofsson@chem.

r Masson SAS. This is an open acce
lymphoma, and ARTD8 is implicated in the regulation of gene
transcription [8e10]. ARTD10 is a component in the NF-kB
signaling pathway by directly modifying NEMO [11]. Specific
mono-ADP-ribose reader and eraser domains are also beginning to
be recognized [3,12].

Numerous drug discovery programs have been dedicated to
PARP inhibitors [13,14]. The predominant therapeutic area is cancer,
where inhibition of ARTD1 is beneficial, in particular in combina-
tion with DNA damage repair deficiencies [15,16]. The majority of
current PARP inhibitors are nicotinamidemimics that display broad
inhibition of PARPs in vitro [17,18]. Less attention has been put on
identification of selective inhibitors of mARTDs. Recently Ven-
kannagri et al. screened a library consisting of 502 natural products
and identified several ARTD10/PARP10 inhibitors with varying po-
tencies [19]. The potential of these inhibitors remains to be estab-
lished since the compounds were not characterized by a full dose-
response analysis and profiling against other members of the
ARTD/PARP enzyme family. We have previously identified struc-
tural features in both enzymes and small molecule inhibitors that
might facilitate the development of selective PARP inhibitors [17].
Based on that analysis we have developed and presented virtual
screening procedures to identify compounds 1 and 2 as starting
points for development of potent and selective mARTD inhibitors
ss article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. A: Phylogenetic tree of the human PARP-family ADP-ribosyltransferases. Enzymatic activities are indicated by symbols (black circles, poly-ADP-ribosylation; grey circles,
mono-ADP-ribosylation; rings, likely mono-ADP-ribosylation; crosses, putative inactive enzymes), B: Structural modifications made in the current program to target ARTD7, -8, and
-10, on primary hit compound 1 (cf. Table 1): positions I (amide), II (benzene ring), III (alkene), and IV (terminal carboxylic acid).
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(Table 1) [20]. Here we describe a medicinal chemistry program
with the aim to develop potent inhibitors of ARTD7, -8, and -10.

2. Results and discussion

Compounds 1 and 2 (Table 1) were discovered in a virtual screen
and verified as binders to ARTD7 and -8 by isothermal titration
calorimetry and x-ray crystallography [20]. We have now devel-
oped robust enzymatic assays for these two enzymes as well as
ARTD10 and could establish that both compounds indeed inhibit
the enzymatic activity of all three enzymes (Table 1). We found that
1 and 2 are more potent as ARTD10 inhibitors, with IC50 values of
1.3 mMand 10.6 mM respectively. Based on these promising results a
set of analogues of 1 and 2 (Table 1) was designed to explore the
structure-activity relationship (SAR) for inhibition of ARTD7, -8 and
-10 in relation to ARTD1. The compounds can readily be synthesized
from commercially available building blocks as outlined in Scheme
1. Aminobenzamides are reacted with carboxylic anhydrides or
carboxylic acids to give target compounds, and for a subset the
resulting carboxylic acid is further functionalized to esters or am-
ides. Fig. 1B illustrates the moieties explored within the SAR series
and Table 1 presents enzymatic inhibition data against ARTD7, -8
and -10 as well as ARTD1.

Previous data and crystal structures (e.g. Ref. [17]) indicated that
the benzamide in position I was likely to be crucial for enzyme
inhibition, and many known PARP inhibitors contains a benzamide
functionality that mimics the nicotinamide in NADþ [21]. The
amide forms a bifurcated hydrogen bond interaction to a conserved
backbone glycine in the active site of the enzymes. Comparison of
existing crystal structures indicated that the volume that harbors
the amide is similar between ARTD1 and the mARTDs, but there are
significant local differences in amino acid composition. To address
selectivity between ARTD1 and the mARTDs, we decided to
investigate whether the amide position I (Fig. 1B) is equally
important for inhibition of ARTD7, -8 and -10. Moving the amide to
position 4 relative to the anilide (3) abolished inhibition, which
indicates that the amide in this position is crucial for inhibition of
both mono- and poly-ADP-ribosylation (Table 1). Functionalization
of the amide itself influenced the solubility dramatically, and
compounds 4e6 could not be analyzed in the enzymatic assay.
Subsequently, additional substituents were introduced on benzene
ring II (Fig. 1B, 7, 8, and 9) and also these modifications abolished
inhibition, indicating that the binding site accommodating the
benzene ring is restricted in size.

The role of the double bond in position III (Fig. 1B) was explored
by various modifications including saturation (10), addition of
methyl or methoxy groups (11, 12, 13 and 14), and ring formations
(15,16, and 17). The chiral compounds 13,15, and 26were prepared
and evaluated as racemates. Most of these compounds retained
activity with profiles similar to those for 1 and 2, with mM potency
against ARTD10, ARTD7, and ARTD1. However, ARTD8 appears to be
more resistant to inhibition. Saturation was well tolerated (10) and
some alterations, such as the specific methylation in 12, seem
favorable for ARTD7 inhibition. Certain ring formations with
retained cis configuration (15, 16, and 17) were relatively well
tolerated. The carbon chain in position III (Fig. 1B) was then
extended (18) and, compared to the shorter chain in 10, this slightly
decreased the inhibition of ARTD7 and -10. The importance of the
carboxylic acid (position IV, Fig. 1B) was explored by modifying it
into alkylated amides (19, 20, 21 and 22), a methyl ester (e.g., 23) or
ketones (24, 25 and 26). To our surprise the methyl amide, 19, with
cis configuration could not be isolated using the standard synthetic
procedure. Instead we attempted a solid-phase synthesis strategy
according to the 9-fluorenylmethoxycarbonyl (Fmoc) protocol [22]
as outlined in Scheme 2. Using this method, 19 was successfully
synthesized. While this synthesis consists of more steps its overall



Table 1
mARTD inhibitor structures and their inhibition of the catalytic activity of the full length enzymes ARTD1 and ARTD10, and the catalytic domains of ARTD7 and ARTD8,
expressed in IC50 and pIC50.

ID Compound ARTD10/PARP10 IC50 (mM)
(pIC50 ± SEMa)

ARTD8/PARP14 IC50 (mM)
(pIC50 ± SEMa)

ARTD7/PARP15 IC50 (mM)
(pIC50 ± SEMa)

ARTD1/PARP1 IC50 (mM)
(pIC50 ± SEMa)

1 1.3 (5.86 ± 0.10) >20 17.8 (4.75 ± 0.06) 3.6 (5.44 ± 0.18)

2 10.6 (4.97 ± 0.12) >20 15.8 (4.80 ± 0.09) 4.4 (5.35 ± 0.09)

3 n.i.b n.i.b n.i.b >20

4 n/ac n/ac n/ac n/ac

5 n/ac n/ac n/ac n/ac

6 n/ac n/ac n/ac n/ac

7 n.i.b n.i.b n.i.b >20

8 >20 n.i.b n.i.b >20

9 n.i.b n.i.b n.i.b >20

10 1.9 (5.72 ± 0.10) n.i.b 16.3 (4.79 ± 0.12) 0.7 (6.14 ± 0.22)

11d >20 >20 >20 8.9 (5.05 ± 0.14)

12e 14.0 (4.85 ± 0.12) >20 2.3 (5.63 ± 0.21) 2.4 (5.61 ± 0.18)

13 7.2 (5.14 ± 0.15) n.i.b n.i.b 7.3 (5.13 ± 0.15)

14 >20 >20 >20 9.4 (5.02 ± 0.17)
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Table 1 (continued )

ID Compound ARTD10/PARP10 IC50 (mM)
(pIC50 ± SEMa)

ARTD8/PARP14 IC50 (mM)
(pIC50 ± SEMa)

ARTD7/PARP15 IC50 (mM)
(pIC50 ± SEMa)

ARTD1/PARP1 IC50 (mM)
(pIC50 ± SEMa)

15 14.0 (4.85 ± 0.13) >20 >20 5.6 (5.25 ± 0.19)

16 2.9 (5.54 ± 0.15) >20 1.6 (5.79 ± 0.10) 0.2 (6.71 ± 0.14)

17 2,4 (5.62 ± 0.06) >20 11.0 (4.96 ± 0.08) 10.5 (4.98 ± 0.08)

18 7.4 (5.13 ± 0.21) >20 >20 3.7 (5.43 ± 0.15)

19 2.0 (5.70 ± 0.23) >20 >20 9.7 (5.01 ± 0.11)

20 2.1 (5.68 ± 0.10) 18.7 (4.73 ± 0.19) >20 0.4 (6.41 ± 0.13)

21 4.6 (5.34 ± 0.15) >20 16.9 (4.77 ± 0.13) 0.6 (6.23 ± 0.06)

22 >20 >20 >20 0.8 (6.07 ± 0.07)

23 0.8 (6.12 ± 0.11) 1.6 (5.78 ± 0.14) 1.7 (5.76 ± 0.05) 4.4 (5.36 ± 0.16)

24 1.9 (5.72 ± 0.09) >20 >20 1.1 (5.95 ± 0.06)

25 14.6 (4.84 ± 0.08) n.i.b n.i.b 1.1 (5.97 ± 0.07)

26 6.9 (5.16 ± 0.09) n.i.b 18.0 (4.75 ± 0.07) 0.7 (6.13 ± 0.10)

a SEM from representative dose-response experiments of two technical replicates.
b n.i., no inhibition at 200 mM.
c n/a, not applicable compound not soluble under assay conditions.
d 11 contained 5% of 12.
e 12 contained 24% of 11.
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Scheme 1. Synthetic pathway of a representative mARTD inhibitors.
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ease makes it suitable for parallel synthesis of this class of com-
pounds. After evaluation of enzyme inhibition it became clear that
the methyl ester and methyl amides all are potent inhibitors of
mARTDs (Table 1). The methyl ester (23) is the most potent com-
pound but it is undiscriminating with respect to the four enzymes,
with IC50 values around 1 mM for ARTD7, -8, and -10, and 4.4 mM for
ARTD1. In addition, the methyl ester is less attractive due to po-
tential ester hydrolysis in cellular systems, a reaction that would
produce parent compound 2. The methyl amides 19 and 20 proved
to be bioisosteric and the cis configuration in 19 provides selectivity
for ARTD10 over ARTD7 and 8, and to some extent over ARTD1.
Larger amides in compounds with cis configuration (21 and 22)
reduced potency against ARTD10, -8, and -7 and improved inhibi-
tion of ARTD1. The methyl ester 23 and the methyl amides 19 and
20 are as potent as the parent compounds 1 and 2; the presumed
anionic charge of the carboxylic acid is not crucial for inhibition;
and the additional hydrogen bond donor present in the amides has
limited effect on inhibition. The ketone-containing compounds 24,
25, and 26 inhibited ARTD10 and ARTD1 in particular. In general it
is clear that small structural modifications can be exploited to affect
both potency and selectivity.

The compounds presented here are attractive starting points for
a medicinal chemistry program targeting mARTDs due to their lead
like properties [23,24]. These generally include a smaller size, lower
hydrophobicity, and higher water solubility compared to phase
IeIII ARTD/PARP inhibitors such as Olaparib (Supplementary
Table S10). All presented compounds that display potencies
below 10 mM have molecular weights below 350, LogP values well
below 4, and the numbers of hydrogen bond donors and acceptors
are below 4 and 8, respectively. This together with synthetic
feasibility and ease of functionalization strongly favors this class of
compound for further development into selective mARTD
inhibitors.

3. Conclusions

We have developed and investigated a set of analogous
Scheme 2. Solid-phas
compounds and their inhibition of the catalytic activities of ARTD7,
-8 and -10 as well as the dominant clinical target ARTD1. Several
new compounds showed an improved potency for one or more
ARTDs compared to compounds 1 and 2. To conclude the SAR
analysis, placing the anilide moiety in para-position on the ben-
zamide, or alkylating the benzamide, both proved detrimental to
enzyme inhibition, suggesting that the interactions between the
compounds and the nicotinamide pocket is similar and crucial in
both mono- and poly-ARTDs. The carboxylic acid present in the
original hit molecules is not crucial the inhibition. The methyl ester
23 is best suited for targeted inhibition of ARTD7, -8 and -10 while
the methyl amide 19 is selective for ARTD10. These are the first
reported fully characterized compounds that inhibit the activity of
mARTD enzymes and we anticipate that their potencies and
selectivity over ARTD1 can be improved. Compound 19 in particular
shows promise as a selective ARDT10 inhibitor. The compound class
is attractive in terms of both physicochemical properties and syn-
thetic feasibility, which encourages optimization of compound
metabolic stability and ARTD isoform selectivity.

4. Experimental section

4.1. Chemistry

The majority of compounds included in this study were syn-
thesized starting from aminobenzamides and anhydrides (Scheme
1). These substrates were dissolved in THF and left to stir at room
temperature overnight. The precipitates were then collected and
dried in vacuo to give the desired products. Esterification could then
be accomplished by refluxing in methanol with catalytic H2SO4,
followed by purification by column chromatography on silica gel.
Unless otherwise noted, all compounds had a purity of >95%
determined from HPLC. Detailed synthetic procedures and com-
pound characterization are presented in the Supplementary Data.

Compound 19 was synthesized by solid-phase chemistry ac-
cording to the standard Fmoc protocol [22]. Fmoc deprotection of
the RINK-amide resinwas achieved through a two-cycles treatment
e synthesis of 19.
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with a 20% (v:v) piperidine solution in DMF. Subsequent amide
coupling with Fmoc protected 3-aminobenzoic acid (B) was
accomplished via DIC/HOAt activation. Intermediate C was conve-
niently converted to F using the same procedures and acid E during
the amide coupling step. 19 was then obtained by cleavage of the
resin with a 20% (v:v) TFA solution in DCM.

4.2. Recombinant protein production and purification

The cDNA fragments encoding human ARTD1 (full length),
ARTD7 (amino acids 459e656, encoding the catalytic domain),
ARTD8 (amino acids 1611e1801, encoding the catalytic and WWE
domains), and ARTD10 (full length) were inserted into pNIC-Bsa4
[25]. Protein expression in Escherichia coli strains BL21(DE3)
pRARE, and purification using immobilized metal affinity chroma-
tography followed by size exclusion chromatography (SEC) were
carried out as previously described [17] with minor modifications.

4.3. Enzymatic assay

Enzyme automodification was measured essentially as previ-
ously described [26]. Briefly, 50-ml aliquots of hexahistidine-tagged
enzymes (50e200 nM in 50mMHEPES pH 7.5, 100 mMNaCl, 4 mM
MgCl2, 0.2 mM TCEP) were immobilized on Ni2þ-chelating plates
(5-PRIME). Compounds were added from stock solutions in DMSO
followed by 15 min incubation at 20 �C. The final concentration of
DMSO was 1% in all reactions. ADP-ribosyltransferase reactions
were started by addition of NADþ (2% biotineNADþ; Trevigen) to a
concentration below the respective KM at 20 �C. After stopping the
reactions with 7 M guanidine hydrochloride and washing, assay
plates were incubated with streptavidin-conjugated horseradish
peroxidase (0.5 mg/ml; Jackson Immunoresearch) and chem-
iluminescence detection was carried out using SuperSignal West
Pico (Thermo Fisher Scientific) in a CLARIOstar microplate reader
(BMG Labtech). Dose-response experiments were carried out at ten
different concentrations in two technical replicate series and 1e4
biological replicates, and were evaluated by three-parameter
regression analysis and curve fitting with no further constraints
using GraphPad Prism. All reported IC50 values are best-fit values
for representative experiments and are given in mM and the -log
IC50 in molar concentration.
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