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Some results about the Markov chains associated to GPs and
general EAs
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Abstract

Geiringer’s theorem is a statement which tells us something about the limiting frequency of occurrence of a certain individual when
a classical genetic algorithm is executed in the absence of selection and mutation. Recently Poli, Stephens, Wright and Rowe extended
the original theorem of Geiringer to include the case of variable-length genetic algorithms and linear genetic programming. In the
current paper a rather powerful finite population version of Geiringer’s theorem which has been established recently by Mitavskiy is
used to derive a schema-based version of the theorem for nonlinear genetic programming with homologous crossover. The theorem
also applies in the presence of “node mutation”. The corresponding formula in case when “node mutation” is present has been
established.

The limitation of the finite population Geiringer result is that it applies only in the absence of selection. In the current paper
we also observe some general inequalities concerning the stationary distribution of the Markov chain associated to an evolutionary
algorithm in which selection is the last (output) stage of a cycle. Moreover we prove an “anti-communism” theorem which applies
to a wide class of EAs and says that for small enough mutation rate, the stationary distribution of the Markov chain modelling the
EA cannot be uniform.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Geiringer’s classical theorem (see [3]) is an important part of GA theory. It has been cited in a number of papers: see,
for instance, [7,8,12,13]. It deals with the limit of the sequence of population vectors obtained by repeatedly applying
the crossover operator C(p)k = ∑

i,jpipj r(i,j→k) where r(i,j→k) denotes the probability of obtaining the individual
k from the parents i and j after crossover. In other words, it speaks to the limit of repeated crossover in the case of
an infinite population. In [4], a new version of this result was proved for finite populations, addressing the limiting
distribution of the associated Markov chain, as follows. Let � = ∏n

i=1Ai denote the search space of a given genetic
algorithm (GA) (intuitively Ai is the set of alleles corresponding to the ith gene and n is the chromosome length). Fix a
population P consisting of m individuals with m being an even number. P can be thought of as an m by n matrix whose
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rows are the individuals of the population P. Write

P =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎞
⎟⎟⎟⎠ .

Notice that the elements of the ith column of P are members of Ai . Continuing with the notation used in [7], denote by
�(h, P, i) where h ∈ Ai the proportion of rows, say j, of P for which aji = h. In other words, let Rh = {j |1�j �m

and aji = h}. Now simply let �(h, P, i) = |Rh|
m

. The classical Geiringer theorem (see [3,7] for modern notation) says
that if one starts with a population P of individuals and runs a GA in the absence of selection and mutation (crossover
being the only operator involved) then, in the “long run”, the frequency of occurrence of the individual (h1, h2, . . . , hn)

before time t, call it �(h1, h2, . . . , hn, t), approaches independence:

lim
t→∞ �(h1, h2, . . . , hn, t) =

n∏
i=1

�(h, P, i).

Thereby, Geiringer’s theorem tells us something about the limiting frequency with which certain elements of the search
space are sampled in the long run, provided one uses crossover alone. In [7] this theorem has been generalized to
cover the cases of variable-length GAs and homologous linear genetic programming (GP) crossover. The limiting
distributions of the frequency of occurrence of individuals belonging to a certain schema under these algorithms have
been computed. The special conditions under which such a limiting distribution exists for linear GP under homologous
crossover have been established (see [7, Theorem 9 and Section 4.2.1]). In [4] a rather powerful extension of the finite
population version of Geiringer’s theorem has been established. In the current paper we shall use the recipe described
in [4] to derive a version of Geiringer’s theorem for nonlinear GP with homologous crossover (see Section 6 or [5] for
a detailed description of how nonlinear GP with homologous crossover works) which is based on Poli hyperschemata
(see Section 6 or [5]). The first step in this procedure is to describe the search space and the appropriate family of
reproduction transformations so that the resulting GP algorithm is bijective and self-transient in the sense of Definition
5.2 of [4]. Then the generalized Geiringer theorem ([4, Theorem 5.2]) as well as Corollaries 6.1 and 6.2 of [4] apply.
The necessary details are summarized in the next few sections. A schema based version of Geiringer’s theorem for
nonlinear GP applies even in the presence of “node-mutation” (see Section 9).

The finite population Geiringer theorem established in [4] may completely describe the stationary distribution of the
Markov chain associated to an evolutionary algorithm only in the absence of selection. In Section 10 we introduce a
pre-order relation on the states of a Markov chain associated to an evolutionary algorithm which is defined in terms
of selection alone, and establish some general inequalities about the stationary distribution of this Markov chain when
selection is the “last stage” in the cycle. In Section 12 we demonstrate that the stationary distribution of the Markov
chain associated to most evolutionary algorithms in the presence of selection can never be uniform when mutation rate
is small enough, even if the fitness function is constant.

The material in Sections 10, 11 and 12 is independent of the results in Sections 5–9. Thus, the reader has an option
of jumping to read Section 10 right after Section 4.

2. Notation

� is a finite set, called a search space.
f : � → (0, ∞) is a function, called a fitness function. The goal is to find a maximum of the function f.
Fq is a collection of q-ary operations on �. Intuitively Fq can be thought of as the collection of reproduction

operators: some q parents produce one offspring. In nature often q = 2, for every child has two parents, but in the
artificial setting there seems to be no special reason to assume that every child has no more than two parents. When
q = 1, the family F1 can be thought of as asexual reproductions or mutations. The following definitions will be used
in Section 3 to describe the general evolutionary search algorithm. This approach makes it easy to state the Geiringer
Theorem.
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Definition 1. A population P of size m is simply an element of �m. (Intuitively it is convenient to think of a population
as a “column vector”.)

Remark 2. There are 2 primary methods for representing populations: multi-sets and ordered multi-sets. Each has
advantages, depending upon the particular analytical goals. Lothar Schmitt has published a number of papers which
use the ordered multi-set representation to advantage (see, for instance, [10,11]). According to Definition 1, in the
current paper we continue the development of analysis based upon the presentation pioneered by Lothar Schmitt. The
following example illustrates an aspect of the representation which the reader would do well to keep in mind:

Example 3. Let � = {0, 1}3. Consider the populations⎛
⎝ 0 0 0

1 1 1
1 1 1

⎞
⎠ ,

⎛
⎝ 1 1 1

0 0 0
1 1 1

⎞
⎠ and

⎛
⎝ 1 1 1

1 1 1
0 0 0

⎞
⎠ .

According to Definition 1 (the ordered multi-set model which is exploited in the current paper) these are distinct
populations despite the fact that they represent the same population under the multi-set model.

An elementary step is a probabilistic rule which takes one population as an input and produces another population of
the same size as an output. For example, the following elementary step corresponds to the fitness-proportional selection
which has been studied in detail by Wright and Fisher (see [14,2]).

Definition 4. An elementary step of type 1 (alternatively, of type selection) takes a given population

P =

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠

with xi ∈ � as an input. The individuals of P are evaluated:⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠

→ f (x1)

→ f (x2)
...

...

→ f (xm).

A new population

P ′ =

⎛
⎜⎜⎜⎝

y1
y2
...

ym

⎞
⎟⎟⎟⎠

is obtained where yi’s are chosen independently m times form the individuals of P and yi = xj with probability
f (xj )

�m
l=1f (xl)

.

In other words, all of the individuals of P ′ are among those of P, and the expectation of the number of occurrences
of any individual of P in P ′ is proportional to the number of occurrences of that individual in P times the individual’s
fitness value. In particular, the fitter the individual is, the more copies of that individual are likely to be present in P ′.
On the other hand, the individuals having relatively small fitness value are not likely to enter into P ′ at all. This is
designed to imitate the natural survival of the fittest principle.

Population P ′ is the output of this elementary step.

In order to define an elementary step of type 2 (reproduction) in a general setting which uses the ordered multi-set
representation (see Remark 2 and Example 3) one needs to introduce the following definitions:



B. Mitavskiy, J. Rowe / Theoretical Computer Science 361 (2006) 72 –110 75

Definition 5. Fix an ordered k-tuple of integers q = (q1, q2, . . . , qk). Let K denote a partition of the set {1, 2, . . . , m}
for some m ∈ N. We say that partition K is q-fit if every element of K consists of exactly qi elements for some i. In
logical symbols this means that if K = {P1, P2, . . . , Pl} then K is q-fit if ∀1�j � l ∃1� i�k such that |Pj | = qi .
Denote by Em

q the family of all q-fit partitions of {1, 2, . . . , m} (i.e. Em
q = {K|K is a q-fit partition of {1, 2, . . . , m}}).

Definition 6. Let � be a set, Fq1 , Fq2 , . . . ,Fqk
be some fixed families of qj -ary operations on � (Fqj

is simply a
family of functions from �qj into �), and p1, p2, . . . , pk be probability distributions on (Fq1)

q1 , (Fq2)
q2 , . . . , (Fqk

)qk ,
respectively. Let q = (q1, q2, . . . , qk). Finally, let ℘m be a probability distribution on the collection Em

q of partitions of
{1, 2, . . . , m} (see Definition 5). We then say that the ordered 2(k+1)-tuple (�, Fq1 , Fq2 , . . . ,Fqk

, p1, p2, . . . , pk, ℘m)

is a reproduction k-tuple of arity (q1, q2, . . . , qk).

The following definition of reproduction covers both, crossover and mutation. Definition 8 (see also Remark 9) will
make it possible to combine different reproduction operators in a simple and natural way.

Definition 7. An elementary step of type 2 (alternatively, of type reproduction) associated to a given reproduction
k-tuple (�, Fq1 , Fq2 , . . . ,Fqk

, p1, p2, . . . , pk, ℘m) takes a given population

P =

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠

with xi ∈ � as an input.
The individuals of P are partitioned into pairwise disjoint tuples for mating according to the probability distribution

℘m. For instance, if the partition selected according to ℘m is K = {(i1
1 , i1

2 , . . . , i1
q1

), (i2
1 , i2

2 , . . . , i2
q2

), . . . , (i
j

1 , i
j

2 , . . . ,

i
j
qj

), . . .} the corresponding tuples are

Q1 =

⎛
⎜⎜⎜⎜⎝

xi1
1

xi1
2
...

xi1
q1

⎞
⎟⎟⎟⎟⎠Q2 =

⎛
⎜⎜⎜⎜⎝

xi2
1

xi2
2
...

xi2
q2

⎞
⎟⎟⎟⎟⎠ . . . Qj =

⎛
⎜⎜⎜⎜⎜⎝

x
i
j
1

x
i
j
2
...

x
i
j
qj

⎞
⎟⎟⎟⎟⎟⎠ . . . .

Having selected the partition, replace every one of the selected qj -tuples

Qj =

⎛
⎜⎜⎜⎜⎜⎝

x
i
j
1

x
i
j
2
...

x
i
j
qj

⎞
⎟⎟⎟⎟⎟⎠

with the qj -tuples

Q′ =

⎛
⎜⎜⎜⎜⎜⎝

T1(xi
j
1
, x

i
j
2
, . . . , x

i
j
qj

)

T2(xi
j
1
, x

i
j
2
, . . . , x

i
j
qj

)

...

Tqj
(x

i
j
1
, x

i
j
2
, . . . , x

i
j
qj

)

⎞
⎟⎟⎟⎟⎟⎠
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for a qj -tuple of transformations (T1, T2, . . . , Tqj
) ∈ (Fqj

)qj selected randomly according to the probability distribution
pj on (Fqj

)qj . This gives us a new population

P ′ =

⎛
⎜⎜⎜⎝

y1
y2
...

ym

⎞
⎟⎟⎟⎠

which serves as the output of this elementary step.

Notice that a single child does not have to be produced by exactly two parents. It is possible that a child has more
than two parents. Asexual reproduction (mutation) is also allowed.

Definition 8. A cycle is a finite sequence of elementary steps, say {sn}jn=1, which are either of type 1 or of type 2

and such that all of the steps in the sequence {sn}jn=1 have the same underlying search space and the same arity of
input/output.

Remark 9. Intuitively, these steps are linked together in such a way that the output of the step si is the input of the
step si+1. This is why all of the steps in the same cycle must have the same underlying search space and the same arity
of input/output (otherwise the input/output relationship does not make sense).

We are finally ready to describe a rather wide class of evolutionary heuristic search algorithms.

3. How does a heuristic search algorithm work?

A general evolutionary search algorithm works as follows: Fix a cycle, say C = {sn}jn=1 (see Definition 8). Now
start the algorithm with an initial population

P =

⎛
⎜⎜⎜⎝

x1
x2
...

xm

⎞
⎟⎟⎟⎠ .

The initial population P may be selected completely randomly, or it may also be predetermined depending on the
circumstances. The actual method of selecting the initial population P is irrelevant for the purposes of the current paper.
To run the algorithm with cycle C = {sn}, simply input P into s1, run s1, then input the output of s1 into s2 . . . input
the output of sj−1 into sj and produce the new output, say P ′. Now use P ′ as an initial population and run the cycle C
again. Continue this loop finitely many times depending on the circumstances.

Definition 10. A sub-algorithm of a given evolutionary search algorithm defined by a cycle C = {sn}jn=1 is simply an
evolutionary search algorithm defined by a subsequence {snq }lq=1 of the sequence C of elementary steps.

A recombination sub-algorithm is sub-algorithm defined by a sequence of elementary steps of type 2 (reproduction)
only.

4. The Markov chain associated to an evolutionary algorithm

In [13] it has been pointed out that heuristic search algorithms give rise to the following Markov process 1 (see also
[1], for instance): The state space of this Markov process is the set of all populations of a fixed size m. This set, in our
notation, is simply �m. The transition probability pxy is simply the probability that the population y ∈ �m is obtained
from the population x by going through the cycle once (where the notion of a cycle is described in Section 3: see

1 In the current paper the state space of this process is slightly modified for technical reasons which will be seen later.
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Definition 8 and Remark 9). The aim of the current paper is to establish a few rather general properties of this Markov
chain. In case when there are several algorithms present in our discussion we shall write {pA

xy}x,y∈�m to denote the

Markov transition matrix associated to the algorithm A while {pB
xy}x,y∈�m would denote the Markov transition matrix

associated to the algorithm B.

Definition 11. Fix an evolutionary search algorithm A. Denote by pn
x,y the probability that a population y is obtained

from the population x upon the completion of n complete cycles (in the sense of Definition 8 and Remark 9) of the
algorithm. We say that a population x leads to a population y under A if and only if pn

x,y > 0 for some n. We also write

x
A−→ y as a shorthand notation for x leads to y. (This terminology is adopted from [1].)

5. A special kind of reproduction steps and the extended Geiringer theorem

To understand the intuitive meaning of the definition below, see Sections 2 and 3.

Definition 12. Given a set � and a family of transformations Fq from �q into �, fix a q-tuple of transformations
(T1, T2, . . . , Tq) ∈ (Fq)q . Now consider the transformation 〈T1, T2, . . . , Tq〉 : �q → �q sending any given element⎛

⎜⎜⎜⎝
x1
x2
...

xq

⎞
⎟⎟⎟⎠ ∈ �q into

⎛
⎜⎜⎜⎝

T1(x1, x2, . . . , xq)

T2(x1, x2, . . . , xq)
...

Tq(x1, x2, . . . , xq)

⎞
⎟⎟⎟⎠ ∈ �q .

We say that the transformation 〈T1, T2, . . . , Tq〉 is the tupling of the ordered q-tuple (T1, T2, . . . , Tq).

Definition 13. Given an elementary step of type 2 (reproduction) associated to the reproduction k-tuple � = (�, Fq1 ,

Fq2 , . . . ,Fqk
, p1, p2, . . . , pk, ℘m), fix some index i with 1� i�k and denote by

G(�, qi) = {〈T1, T2, . . . , Tq〉 : �qi → �qi |Tj ∈ Fqi
, pi(T1, T2, . . . , Tqi

) > 0}
the family of all tuplings which have a positive probability of being selected.

Remark 14. The family of tupling transformations G(�, qi) described in Definition 13 represents the family of q
parents → q children crossover transformations while the family Fq represents the family of q parents → 1 child
crossovers. Depending on the circumstances it may be more convenient to specify the family of q parents → q children
crossover transformations directly rather than specifying the families Fq individually. We shall see an example of this
situation in Section 6. The family Fq of q parents → 1 child crossovers can then be recovered from the family of q
parents → q children crossover transformations by using coordinate projections.

As mentioned in Section 2, in nature often the arity of the reproduction transformations is 2 meaning that every child
has 2 parents.

It turns out that quite many evolutionary algorithms, including the classical GA and nonlinear (as well as linear) GP
are equipped with the reproduction steps having the following nice property which has been introduced and investigated
in [4].

Definition 15. A given elementary step of type 2 (reproduction) associated to the reproduction k-tuple (�, Fq1 , Fq2 ,

. . . , Fqk
, p1, p2, . . . , pk, ℘m) is said to be bijective (and self-transient) if it satisfies conditions 1 (and 2) stated below:

1. ∀1� i�k we have pi(T1, T2, . . . , Tqi
) > 0 
⇒ 〈T1, T2, . . . , Tqi

〉 (see Definition 12 for the meaning of 〈T1, T2, . . . ,

Tqi
〉) is a bijection (a one-to-one and onto map of �qi onto itself).

2. ∀1� i�k∃(T1, T2, . . . , Tqi
) ∈ (Fqi

)qi such that pi(T1, T2, . . . , Tqi
) > 0 and 〈T1, T2, . . . , Tqi

〉 = 1 where 1 :
�qi → �qi denotes the identity map (i.e. ∀x ∈ �qi we have 〈T1, T2, . . . , Tqi

〉(x) = x). We say that a recombination
sub-algorithm (see Definition 10) of a given evolutionary search algorithm is bijective (and self-transient) if every
given term of the subsequence, snk

by which the sub-algorithm is defined is bijective (and self-transient).
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Remark 16. Notice that conditions 1 and 2 of Definition 15 can be restated in terms of the family G(�, qi) as follows:
1. Every transformation in the family of tuplings, G(�, qi) is a bijection.
2. 1 ∈ G(�, qi) where 1 : �qi → �qi denotes the identity map.

In [4] the following nice facts have been established:

Proposition 17. Let A denote a bijective and self-transient algorithm (see Definition 15). Then
A−→ is an equivalence

relation.

Proposition 17 motivates the following definition:

Definition 18. Given a bijective and self-transient algorithm A and a population P ∈ �m, denote by [P ]A the

equivalence class of the population P under the equivalence relation
A−→.

To alleviate the level of abstraction we illustrate Proposition 17 and Definition 18 with a couple of examples.

Example 19. Consider a binary GA over the search space � = {0, 1}n under the action of crossover alone. Let
the population size be some even number m. Consider the following family of masked crossover transformations:
F = {FM |M ⊆ {1, 2, . . . , n}} where each FM is a binary operation (i.e. a function from �2 into �) defined as follows:
For every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) ∈ �n, FM(a, b) = x = (x1, x2, . . . , xn) ∈ �n where

xi =
{

ai if i ∈ M,

bi otherwise.

Let A denote the evolutionary algorithm determined by a single elementary step of type 2 (crossover) which is associated
to the reproduction m

2 -tuple

� = (�, F, F, . . . ,F, p1, p2, . . . , pm
2
, ℘m)

(see Definitions 6 and 7) where the probability distributions pi have the property that pi(FM, FK) 
= 0 only if K = Mc

(here Mc denotes the complement of M in {1, 2, . . . , n}). This assumption on the distributions pi ensures that the
elementary step of crossover associated to the reproduction m

2 -tuple � is bijective. Depending on the further properties

of the distributions pi and the distribution ℘m, different types of equivalence relations
A−→ would be induced. Typically,

in case of a classical GA crossover, the distributions pi are all identical (i.e. p1 = p2 = · · · = pm
2

= p) where p

is the uniform distribution on {1, 2, . . . , n} and the distribution ℘m is uniform over all partitions of {1, 2, . . . , n} into

2-element subsets. In such a case the equivalence relation
A−→ is determined by the numbers of 0’s in the columns (or,

equivalently, by the numbers of 1’s in the columns). The reason this is so is that a population Q can be reached from
a population P in by performing a sequence of crossover elementary steps only if it has the same amount of “genetic
material” in every column since alleles are neither lost nor created during homologous crossover. Using the fact that
every permutation can be obtained by performing enough transpositions, one can show the converse of this fact. This
fact is a particular case of Lemma 47 of [4]. For instance, if n = 5 and m = 4 we have⎛

⎜⎜⎝
0 1 0 1 1
0 1 0 1 0
1 0 1 0 1
0 0 1 0 1

⎞
⎟⎟⎠ A−→

⎛
⎜⎜⎝

0 1 0 0 1
1 0 1 0 1
0 0 0 1 0
0 1 1 1 1

⎞
⎟⎟⎠ .

Indeed, the number of 0’s in both populations in the first column is 3, in the 2nd, 3rd and 4th columns is 2 and in the
last column is 1. Thus the equivalence class corresponding to a given population P can be described by an ordered
n-tuple [c]P = (c1, c2, . . . , cn) of numbers between 0 and m where ci is the number of 0s in the ith column of P. For
example, if P is either one of the equivalent populations above then [c]P = (3, 2, 2, 2, 1). 2

2 One point crossover under reasonable assumptions will produce the same equivalence relation.
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Example 20. Continuing with Example 19, consider the following family of mutation transformations M = {Tu|u ∈
�} where each transformation Tu is defined as follows: Denote by +2 the addition modulo 2 (0 +2 0 = 0, 1 +2 0 =
1, 0 +2 1 = 1, 1 +2 1 = 0). We then define Tu to be the function from � into itself which sends every a =
(a1, a2, . . . , an) to Tu(a) = a�u where � is componentwise addition modulo 2, i.e. given x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) ∈ �n, the � operation is defined as follows: x�y = z where z = (z1, z2, . . . , zn) with
zi = xi +2 yi . Notice first that every transformation Tu is bijective (in fact Tu ◦ Tu = 1 where 1 is the identity map
on �). Since every mutation transformation Tu is uniquely determined by the element u ∈ �, defining a probability
distribution on the family M amounts to defining a probability distribution on � = {0, 1}n. To achieve a situation
equivalent to the classical case where every bit is mutated independently with a small probability � > 0 and remains
unchanged with probability 1 − �, we choose 1 with probability � and 0 with probability 1 − � independently n times.
Given a population of size m we let mutation be the elementary step associated to the reproduction m-tuple

�mutation = (�, M, M, . . . ,M, p, p, . . . , p, ℘m),

where p is the probability distribution on M described above and ℘m is the unique trivial probability distribution on
the one-element set (since there is exactly one way to partition a given set into singleton subsets). Now let B denote the
algorithm determined by the elementary step of crossover as described in Example 19 followed by the elementary step
of mutation as described above. Then the algorithm B is ergodic in the sense of Definition 58 of [4] which means that

the equivalence relation
B−→ is trivial, i.e. there is only one equivalence class or, in other words, for any two populations

P and Q we have P
B−→ Q. Indeed, thanks to the availability of mutation, any given population can be reached from

any other given population in a single step with a small but a positive probability which means that any two given

populations are equivalent under
B−→.

The main result of [4] is the following fact:

Theorem 21. Let A denote a bijective and self-transient algorithm. Then the Markov chain initiated at some population
P ∈ �m is irreducible and its unique stationary distribution is the uniform distribution (on [P ]A).

The classical versions of Geiringer theorem, such as the ones established in [3] and in [7] are stated in terms of
the “limiting frequency of occurrence” of a certain element of the search space. The following definitions, which also
appear in [4], make these notions precise in the finite population setting:

Definition 22. We define the characteristic function X : �m × P(�) → N ∪ {0} as follows: X (P, S) = the number
of individuals of P which are the elements of S. (Recall that P ∈ �m is a population consisting of m individuals and
S ∈ P(�) simply means that S ⊆ �.)

Example 23. For instance, suppose � = {0, 1}n,

P =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0
0 1 0 1 0
1 0 1 0 1
0 0 1 0 1
0 1 0 1 0
1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

and S ⊆ � = {0, 1}n is determined by the Holland schema (∗, 1, ∗, 1, ∗). Then X (P, S) = 3 because exactly three
rows of P, the 1st, the 2nd, and the 5th are in S.

Definition 24. Fix an evolutionary algorithm A and an initial population P ∈ �m. Let P(t) denote the population
obtained upon the completion of t reproduction steps of the algorithm A in the absence of selection and mutation. For
instance, P(0) = P . Denote by �(S, P, t) the proportion of individuals from the set S which occur before time t. That is,

�(S, P, t) =
∑t

s=1X (P (s),S)

tm
. (Notice that tm is simply the total number of individuals encountered before time t. The
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same individual may be repeated more than once and the multiplicity contributes to �.) Denote by X (�, S) : �m → N

the restriction of the function X when the set S is fixed (the notation suggests that one plugs a population P into the
box).

Intuitively, �(S, P, t) is the frequency of encountering the individuals in S before time t when we run the algorithm
starting with the initial population P.

6. Nonlinear genetic programming (GP) with homologous crossover

In GP, the search space, �, consists of the parse trees which usually represent various computer programs.

Example 25. A typical parse tree representing the program (+(sin(x), ∗(x, y))) is drawn below:

Since computers have only a finite amount of memory, it is reasonable to assume that there are finitely many basic
operations which can be used to construct programs and that every program tree has depth less than or equal to some
integer L. Under these assumptions � is a finite set. We may then define the search space as follows:

Definition 26. Fix a signature � = (�0, �1, �2, . . . ,�N) where �i’s are finite sets. 3 We assume that �0 
= ∅ and
|�j | 
= 1∀j . 4 The search space � consists of all parse trees having depth at most L. Interior nodes having i children
are labelled by the elements of �i . The leaf nodes are labelled by the elements of �0.

In order to study the appropriate family of reproduction (crossover) transformations with the aim of applying the
generalized Geiringer theorem, it is most convenient to exploit Poli hyperschemata ([5] for a more detailed description).

Definition 27. A Poli hyperschema is a rooted parse tree which may have two additional labels for the nodes, namely #
and = signs (it is assumed, of course, that neither one of these denotes an operation). The = sign may label any interior
node v of the tree. Since v does occur in the tree, we must have |�i | > 0. The # sign can only label a leaf node. A given
Poli hyperschema represents the set of all programs whose parse tree can be obtained by replacing the = signs with
any operation of the appropriate arities and attaching any program trees in place of the # signs. Different occurrences
of # or = may be replaced differently. We shall denote by St the set of programs represented by a hyperschema t.

Consider, for instance, the hyperschema t defined as (+(= (#, x), ∗(sin(y), #)) which is pictured below:

3 Intuitively �i is the set consisting of i-ary operations and �0 consists of the input variables. Formally this does not have to be the case though.
4 The assumption that |�j | 
= 1∀j does not cause any problems since we are free to select any elements from the search space that we want.

On the other hand, this assumption helps us to avoid unnecessary complications when dealing with the poset of Poli hyperschemata later.
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A couple of programs fitting the hyperschema t are shown below:

In order to model the family of reproduction (crossover) transformation in a way which makes it obvious that GP is a
bijective and self-transient algorithm, we shall introduce a partial order on the set of all Poli hyperschema so that every
two elements have the least upper bound. The notion of the least upper bound will be also used to define the common
region (see [6] for an alternative description of the notion of a common region).

Definition 28. Denote by O the set of all basic operations which can be used to construct the programs (i.e. O =
�1∪, . . . ,∪�N ) and by V the set of all variables (i.e. V = �0). Put the following partial order, �, on the set O ∪ V ∪
{=, #}:
1. ∀a, b ∈ O ∪ V we have a � b ⇐⇒ a = b.
2. ∀a ∈ O we have a � =.
3. ∀a ∈ O ∪ V we have a � #.
4. = � =, # � # and = � #.
We shall also write a � b to mean b � a.

It is easy to see that � is, indeed a partial order. Moreover, every collection of elements of O ∪ V ∪ {=, #} has the
least upper bound under � . We are now ready to define the partial order relation on the set of all Poli hyperschemata:

Definition 29. Let t1 and t2 denote two Poli hyperschemata. We say that t1 � t2 if and only if the following two
conditions are satisfied:
1. The tree corresponding to t1 when all of the labels are deleted is a subtree of the tree corresponding to t2 with all of

the labels deleted.
2. Every one of the labels (which represents an operation or a variable) of t1 is� the label of the node in the corresponding

position of t2.

Example 30. For instance, the hyperschema t1 = (+(= (#, x)), ∗(sin(y), #))� t2 = (+(+(∗(sin(x), y), x)),

∗(sin(y), = (#))). Indeed, the parse trees of t1 and t2 appear on the picture below:

When all the labels in the dashed subtree of the parse tree of t2 are deleted one gets the tree isomorphic to that obtained
from t1 by deleting all the labels. Thus condition 1 of Definition 29 is satisfied. To see that condition 2 is fulfilled as
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well, we notice that the labels of t1 are � to the corresponding labels of the dashed subtree of t2: Indeed, we have
+ �+, = �+, ∗ � ∗, # � ∗, x � x, sin � sin, # � = and y � y.

Again it is easy to check that � is, indeed, a partial order relation on the collection of Poli hyperschemata. Proposition
31, tells us even more:

Proposition 31. Any given collection of Poli hyperschemata has the least upper bound under � .

Proof. Denote by S a given collection of Poli hyperschemata. We provide an algorithm to construct the least upper
bound of S as follows: Copies of all the trees in S are recursively jointly traversed starting from the root nodes to
identify the parts with the same shape, i.e. the same arity in the nodes visited. Recursion is stopped as soon as an arity
mismatch between corresponding nodes in some two trees from S is present. All the nodes and links encountered are
stored. This way we obtain a tree. It remains to stick in the labels. Each one of the interior nodes is labelled by the least
upper bound of the corresponding labels of the trees in S. The label of a leaf node is a variable, say x, if all the labels of
the corresponding nodes of the trees in S are x (which implies that they are leaf nodes themselves). In all other cases
the label of the leaf node is the # sign. It is not hard to see that this produces the least upper bound of the collection S
of parse trees. �

It was pointed out before, that programs themselves are Poli hyperschemata. The following fact is almost immediate
from the explicit construction of the least upper bound carried out in the proof of Proposition 31:

Proposition 32. A given Poli hyperschema t is the least upper bound of the set St of programs determined by t.

From Proposition 32 it follows easily that � is order isomorphic to the collection of subsets determined by the Poli
hyperschemata:

Proposition 33. Let t and s denote Poli hyperschemata. Denote by St and Ss the subsets of the search space determined
by the hyperschemata t and s, respectively. Then t �s ⇐⇒ St ⊇ Ss .

There is another type of schemata which is useful to introduce in order to define the family of reproduction (crossover)
transformations:

Definition 34. A shape schema is just a rooted ordered tree. If t̃ is a given shape schema then St̃ is just the set of all
programs whose underlying tree when all the labels are deleted is precisely t̃ . Given a Poli hyperschema s, we shall
denote by s̃ the underlying shape schema of s, i.e. the tree obtained by deleting all the labels in s.

The notion of a common region which is equivalent to the one defined below also appears in [6]:

Definition 35. Given two Poli hyperschemata t and s we define their common region to be the underlying shape schema
of the least upper bound of t and s.

Definition 36. Fix a shape schema t̃ . We shall say that the set Ct̃ = {(a, b)|a, b are program trees and t̃ is the common
region of a and b} is a component corresponding to the shape t̃ .

Notice that sets determined by the shape schemata partition the search space:

Remark 37. Notice that �2 = ⋃
t̃ is a shape Ct̃ . Moreover, Ct̃ ∩ Cs̃ = ∅ for t 
= s. (This is so because least upper

bounds in a poset are uniquely determined and so the function sending (a, b) → sup(a, b) → the underlying shape
of sup(a, b) is well defined. But then the sets Ct̃ are simply the pre-images under this function of the individual shape
schemata and, hence, form a partition of �2.)

We now proceed to define the family of reproduction transformations. Our goal is to introduce a family of functions
on �2 in such a way that each one of them is easily seen to be bijective (see Theorem 21, Definitions 13, 15 and Remark
16). The idea is to define these transformations on each of the components first:



B. Mitavskiy, J. Rowe / Theoretical Computer Science 361 (2006) 72 –110 83

Definition 38. Fix a shape schema t̃ . Fix a node, v of t̃ . A one-point partial homologous crossover transformation
Tv : Ct̃ → Ct̃ is defined as follows: For given (a, b) ∈ Ct̃ let Tv(a, b) = (c, d) where c and d are obtained from the
program trees of a and b as follows: First identify the node v in the parse trees of a and b, respectively. Now obtain the
pair (c, d) by swapping the subtrees of a and b rooted at v. (This procedure is described in detail in [6] and it is also
illustrated in the example below). Let Gt̃ = {Tv|v is a node of t̃} denote the family of all partial homologous one-point
crossover transformations associated to the shape t̃ .

The following example illustrates the concepts in Definitions 34, 35 and 38:

Example 39. In the upper left part of the picture parse trees of the two sample programs a and b are shown. Then on
the upper right one can see the least upper bound of a and b. On the lower right the underlying tree of the least upper
bound of a and b is drawn. According to Definition 35, this tree is precisely the common region of the programs a and
b. The isomorphic subtrees inside both, a and b, are emphasized inside the dashed areas:

A node v is selected inside the common region. The pair of children (c, d) = Tv(a, b) appears on the lower left of the
picture above. The subtrees rooted at v which are swapped during crossover are emphasized inside the dashed area.

Remark 40. One does need to show that for (a, b) ∈ Ct̃ we have Tv(a, b) ∈ Ct̃ . A rigorous argument can be given
as follows: Clearly Tv : Ct̃ → ⋃

t̃ is a shape Ct̃ is a well-defined map. Moreover, since v is a node of the least upper

bound of a and b and the pair (c, d) is obtained simply by swapping the corresponding subtrees rooted at v, we get
s = sup{c, d}� sup{a, b}. Now consider the transformation Fv : Cs̃ → ⋃

t̃ is a shape Ct̃ and notice that, by definition,
we have Fv(c, d) = (a, b). But then, according to the reasoning above, we have sup{c, d}� sup{a, b}. Thereby, we
get sup{c, d}� sup{a, b}� sup{c, d} 
⇒ sup{c, d} = sup{a, b} 
⇒ t̃ = s̃. This shows that Tv does, indeed, map into
Cṽ . Moreover, in the process, we have also observed a couple of very important facts:
1. Tv ◦ Tv = 1Ct̃

where 1Ct̃
denotes the identity map on Ct̃ . This shows, in particular, that Tv is a bijection.

2. Tv preserves the least upper bounds: sup{a, b} = sup Tv(a, b).

We are finally ready to define the family of reproduction transformations on the search space � of all programs:

Definition 41. For every shape schema t̃ fix a node vt̃ of t̃ . Define a one point crossover transformation
T{vt̃ }t̃ is a shape schema

: �2 → �2 to be the set-theoretic union of all partial crossover transformations of the form Tvt̃
. More

explicitly, this means that whenever a given pair (a, b) ∈ �2 we must have (a, b) ∈ Cs̃ for a unique shape schema
s̃ (since, according to Remark 37, �2 is a disjoint union of components corresponding to various shapes). But then
T{vt̃ }t̃ is a shape schema

(a, b) = Tvs̃
(a, b). Denote by G the family of all crossover transformations together with the identity

map on �2. For simplicity of notation we shall denote the transformations in G by plain English letters: T, F etc.,
keeping in mind that every such transformation is determined by making choices of partial crossover transformations
on every one of the components.
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Remark 42. Thanks to Remark 40, every one of the crossover transformations in the family G is bijective (since it is
a union of bijections on the pieces of a partition). It follows now that the generalized Geiringer theorem (Theorem 21)
applies to the case of homologous GP.

Remark 43. It is also possible to model uniform GP crossover (this type of crossover is examined in detail in [6]) in
the analogous manner. All of the results established in the current paper apply to this case without any modification.

7. The statement of the schema-based version of Geiringer’s theorem for non-linear GP under homologous
crossover

As mentioned before, the schema-based version of Geiringer’s theorem for non-linear GP is stated in terms of Poli
hyperschemata.

Definition 44. A Poli hyperschema of order i is a Poli hyperschema which has exactly i nodes whose label is not a #
or an = sign.

A configuration schema is a 0-order Poli hyperschema (i.e. a hyperschema which has only the equal signs in the
interior nodes and # signs in the leaf nodes.)

An operation schema is a Poli hyperschema of order 1 (i.e. a hyperschema which has exactly one node whose label
is not a # or an = sign).

Fix an individual (a parse tree) u ∈ �. Let v denote any node of u. Let B(v) denote the branch of the shape schema
of u from the root down to the node v. Let B+(v) = B(v) ∪ {w|w is a child of some node z of B with z 
= v}. Now
define cs(v) to be the configuration schema whose underlying shape schema is B+(v). Let o denote an operation or a
variable (an element of �i for some i between 0 and N). Now obtain the operation schema oso from cs(v) by attaching
the node labelled by o in place of the # sign at the node corresponding to v of cs(v). Unless v is the leaf node of u, all
the children of this new node are the leaf nodes of oso labelled by the # sign. When o is the operation (or the variable)
labelling the node v of u, we shall write os(v) instead of oso.

Notice that if v is a root node then cs(v) is just the schema which determines the entire search space, i.e. the parse
tree consisting of a single node labelled by the # sign. Example 45 illustrates Definition 44.

Example 45. Below we list all of the configuration schemata and operation schemata for the individual of
Example 25:
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Recall from Definition 22 that X (P, S) denotes the number of individuals in the population P which are the elements
of S ⊆ �. The following definition makes it more convenient to state the schema-based version of Geiringer’s theorem:

Definition 46. Given a Poli hyperschema H, we shall write |H(P )| in place of X (P, SH ) (see Definition 27) to denote
the number of individuals (counting repetitions) in the population P fitting the hyperschema H.

We can now finally state the Geiringer’s theorem for nonlinear GP under homologous crossover:

Theorem 47. Fix an initial population P ∈ �m and an individual u ∈ �. Suppose every pair of individuals has a
positive probability to be paired up for crossover and every transformation in G has a positive probability of being
chosen. 5 Then the limiting frequency of occurrence of a given individual u,

lim
t→∞ �(u, P , t) = ∏

v is a node of u

|os(v)(P )|
|cs(v)(P )| .

Example 48. To illustrate how Theorem 47 can be applied in practice, suppose we are interested in computing the
frequency of encountering the individual u from Examples 25 and 45 when the initial population of 6 individuals
pictured below is chosen:

The number of individuals in P fitting the operation schema os(v1) is 2 (these are x1 and x5) while every individual
fits the configuration schema cs(v1). Therefore, |os(v1)(P )|

|cs(v1)(P )| = 2
6 = 1

3 . Four individuals, namely x1, x3, x4 and x5 fit
cs(v2) = cs(v3), among these only two individuals, namely x3 and x5, fit os(v2) and two individuals, x4 and x5 fit
os(v3) so that |os(v2)(P )|

|cs(v2)(P )| = |os(v3)(P )|
|cs(v3)(P )| = 2

4 = 1
2 . Individuals x3, x4 and x5 fit the configuration schema cs(v4) while

only x4 fits the operation schema os(v4) so that |os(v4)(P )|
|cs(v4)(P )| = 1

3 . x1, x3, x4 and x5 fit cs(v5) = cs(v6). Among these

only x3 and x4 fit os(v5) while only x4 fits os(v6) so that |os(v5)(P )|
|cs(v5)(P )| = 2

4 = 1
2 and |os(v6)(P )|

|cs(v6)(P )| = 1
4 . Thereby, according

to Theorem 47, we obtain

lim
t→∞ �(u, P , t) =

6∏
i=1

|os(vi)(P )|
|cs(vi)(P )| = 1

3
· 1

2
· 1

2
· 1

3
· 1

2
· 1

4
= 1

288
.

5 These conditions can be slightly relaxed, but we try to present the main idea only.
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Roughly speaking, this means that if we run GP starting with the population P pictured above, in the absence of mutation
and selection (crossover being the only step) for an infinitely long time, the individual u will be encountered on average
1 out of 288 times.

Example 49. Notice that linear GP (or, equivalently, variable length GA) as described in [7] is a special case of
nonlinear GP when ∀i > 1 �i = ∅ and �0 and �1 
= ∅. Indeed, the elements of such a search space are parse trees such
that every interior node has exactly one child and the depth of the tree is bounded by some integer N. One can think of
such a tree as a sequence of labels (a1, a2, . . . , an), the first label affiliated with the root node, second label with the
child of the root node and so on. The label an is affiliated with the leaf node. This gives us a one-to-one correspondence,
call it � between the search space for nonlinear GP in our specific case when ∀i > 1 �i = ∅ while �0 and �1 
= ∅
and the search space for linear GP which preserves crossover. The following types of schemata have been introduced
in [7]:

Definition 50. The schema H = (∗i−1, hi, #) represents the subset SH = {x = (x1, x2, . . . , xl)|l > i and xi = hi}.
In words, SH is simply the set of all individuals whose length is at least i + 1 and whose ith allele is hi .

Definition 51. The schema H = (∗i , #) represents the subset

SH = {x = (x1, x2, . . . , xl)|l > i}.

In words, SH is simply the subset of all individuals whose length is at least i + 1.

Definition 52. The schema H = (∗i−1, hi) represents the subset

SH = {x = (x1, x2, . . . , xi)|xi = hi}

of the search space which is simply the set of all individuals of length exactly equal to i whose ith (last) allele is hi .

The reader may check that under the correspondence � the configuration schemata correspond to the schemata
Hi = (∗i , #) for i�1, operation schemata correspond to the schemata of the form H = (∗i−1, hi, #) and of the form
H = (∗i−1, hi) for i > 1. Finally, the hyperschema t(1,1) corresponds to the schema H = (h1, #). Fix a population
P ∈ �m. Recall that we denote by |H | the number of individuals in P which fit the schema H counting repetitions.
Also recall from Definition 24 that �(SH , P, 1) = |H |

m
denotes the fraction of the number of individuals of P which

fit the schema H. To abbreviate the notation we shall write �(H, P, 1) instead of �(SH , P, 1). Fix an individual
u = (h1, h2, . . . , hn) ∈ �. Theorem 47 tells us that

lim
t→∞ �(u, P , t) = |(h1, #)|

m
·
(

n−2∏
i=1

|(∗i , hi+1, #)|
|(∗i , #)|

)
· |(∗n−1, hn)|

|(∗n−1, #)|

= |(h1, #)|
m

·
⎛
⎝n−2∏

i=1

|(∗i ,hi+1, #)|
m

|(∗i ,#)|
m

⎞
⎠ ·

|(∗n−1,hn)|
m

|(∗n−1, #)|
m

= �(h1, #) ·
(

n−2∏
i=1

�(∗i , hi+1, #)

�(∗i , #)

)
· �(∗n−1, hn)

�(∗n−1, #)

= �(∗n−1, hn) ·
∏0

i=n−2�(∗i , hi+1, #)∏1
i=n−1�(∗i , #)

= �(∗n−1, hn) ·
i=1∏

i=n−1

�(∗i−1, hi, #)

�(∗i , #)

which is precisely the formula obtained in [7].
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8. How do we obtain Theorem 47 from Theorem 21?

The following couple of corollaries from [4] are useful in obtaining the schema-based versions of Geiringer theorem
for various evolutionary algorithms. Throughout, we shall denote by �[P ]A the uniform probability distribution on the
set [P ]A (see Definition 18).

Corollary 53. Fix a bijective and self-transient algorithm A and an initial population P ∈ �m. Fix a set S of individuals
in � (S ⊆ �). Then limt→∞ �(S, P, t) = 1

m
E�[P ]A (X (�, S)) (here E�[P ]A (f ) denotes the expectation of the random

variable f with respect to the uniform distribution on the set [P ]A). 6

To state the next corollary which brings us one step closer to deriving results similar in flavor to Geiringer’s original
theorem we need one more, purely formal, assumption about the algorithm:

Definition 54. We say that a given algorithm A is regular if the following is true: for every population P = (x1, x2, . . . ,

xm) ∈ �m and for every permutation � ∈ Sm, the population obtained by permuting the elements of P by �, namely
�(P ) = (x�(1), x�(2), . . . , x�(m)) ∈ [P ]A. In words this says that the equivalence classes [P ]A are permutation
invariant.

Remark 55. Definition 54 is only needed because our description of an evolutionary search algorithm uses the ordered
multi-set model. This makes the generalized Geiringer theorem (Theorem 21) look nice (the stationary distribution
is uniform on [P ]A). A disadvantage of the multi-set model is that it allows algorithms which are not regular. If we
were to use the model of [13] where the order of elements in a population is not taken into account (a reasonable
assumption since most evolutionary algorithms used in practice are, indeed, regular) then the generalized Geiringer
theorem would have to be modified accordingly since the stationary distribution of the corresponding Markov process
would be different from uniform (it is not difficult to compute it though since the corresponding Markov chain is just
a “projection” of the one used in the current paper).

Corollary 56. Fix a regular bijective and self-transient algorithm A and an initial population P ∈ �m. Denote by
�[P ]A the uniform probability distribution on [P ]A (see Definition 18). Fix a set S of individuals in � (S ⊆ �). Then
we have limt→∞ �(S, P, t) = �[P ]A(VS) where

VS = {P |P ∈ [P ]A and the 1st individual of P is an element of S}.

Corollaries 53 and 56 are proved in Section 6 of [4]. When deriving schema-based versions of Geiringer theorem
for a specific algorithm the following strategy may be implemented: Continuing with the notation in Corollaries 53
and 56, suppose we are given a nested sequence of subsets of the search space: S1 ⊇ S2 ⊇ · · · ⊇ Sn. According to
Corollary 56,

lim
t→∞ �(Sn, P, t) = �[P ]A(VSn) = |VSn |

|[P ]A| = |VSn |
|VSn−1 |

· |VSn−1 |
|[P ]A| = |VSn |

|VSn−1 |
· |VSn−1 |
|VSn−2 |

· . . . · |VS2 |
|VS1 |

· |VS1 |
|[P ]A|

= �[P ]A(VS1) ·
n−2∏
j=0

|VSn−j
|

|VSn−j−1 |
= 1

m
E�[P ]A (X (�, S)) ·

n−2∏
j=0

|VSn−j
|

|VSn−j−1 |
.

Notice that
|VSj

|
|VSj−1 | is just the proportion of populations in [P ]A whose first individual is a member of Sj inside the set

of populations in [P ]A whose first individual is a member of Sj−1.

Corollary 57. Fix a regular, bijective and self-transient algorithm A and an initial population P ∈ �m. Fix a
nested sequence of subsets S1 ⊇ S2 ⊇ · · · ⊇ Sn of individuals in � (S1 ⊆ �). Then limt→∞ �(Sn, P, t) =
1
m

E�[P ]A (X (�, S)) ·∏n−2
j=0

|VSn−j
|

|VSn−j−1 | where, as before, VS denotes the set of all populations whose first individual is a

member of S for a given subset S ⊆ �.

6 Throughout the paper, whenever a limit is involved, the equality is meant to hold for almost every infinite sequence of trials.
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Denote by A a given GP algorithm. Fix an individual u ∈ �. In order to apply Corollary 57, we may choose a
descending chain of Poli hyperschemata t1 � t2 � · · · � tn = u. Fix an initial population P. To avoid putting many
subscripts, we shall write Vt instead of VSt for the set of all populations in [P ]A (see Definition 11) whose first
individual is a member of St (the set of individuals determined by the hyperschema t). In order to construct the desired
sequence of nested hyperschemata, we assign the following numerical labelling to the nodes of the parse tree of u: The
nodes are labelled by the pairs of integer coordinates. The first coordinate shows the depth of the tree and the second
coordinate shows how far to the right a given node at the depth specified by the first coordinate is located. Notice, for
instance, that the root node is labelled by the coordinates (1, 1). We also introduce the following lexicographic linear
ordering on the set of coordinate pairs:

Definition 58. (a, b)�(c, d) if and only if either a�c or (a = c and b�d).

It is well known and easy to verify that this defines a linear ordering.

Definition 59. Given a pair of coordinates (i, j), denote by ↑ (i, j) the immediate successor of (i, j) under the
lexicographic ordering defined above. Explicitly,

↑ (i, j) =
{

(i + 1, 1) if (i, j) labels the rightmost node of u at depth i,

(i, j + 1) otherwise.

We obtain the desired nested sequence of hyperschemata for the given individual u recursively in the following
manner:

Definition 60. Define t(1,1) to be the hyperschema whose root node has the same label (operation) and arity as that of
the root node of u. All children of the root node are the leaf nodes labelled by the # sign. Once the hyperschema t(i,j)

has been constructed, we obtain the hyperschema t↑(i,j) by attaching the node of u with coordinate ↑ (i, j) in place of
the # sign at coordinate ↑ (i, j) to the parse tree of t(i,j). Unless this node, call it v, is a leaf node of u, all children of
this new node are the leaf nodes of t↑(i,j) labelled by the # sign.

We illustrate the construction with an explicit example:

Example 61. Below, the nested sequence t(1,1) � t(2,1) � t(2,2) � t(3,1), � t(3,2) � t(3,3) corresponding to the program of
Example 25 is drawn explicitly:

The formula for the limiting frequency of occurrence of a given program u in Corollary 57 involves the ratios of the

form
Vt↑(i,j)

Vt(i,j)

. It turns out that these ratios can be expressed nicely in terms of the presence of certain configuration and

operation schemata in the initial population P:
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Definition 62. Given a program tree u and the corresponding nested sequence t(1,1) � t(2,1) � · · · � t(i,j) � t↑(i,j),

� · · · � t(l,k) = u of hyperschemata as in Definition 60, for every (i, j) 
= (l, k), denote by cs(i,j) (os(i,j)) the
configuration schema cs(v) (operation schema os(v)) where v is the node of u with coordinate ↑ (i, j).

Example 63. Continuing with Examples 25 and 45 notice that for the individual in these examples we have cs(1,1) =
cs(2,1) = cs(v2) = cs(v3) while os(1,1) = os(v2) and os(2,1) = os(v3) (see Example 45), cs(2,2) = cs(v4) while
os(2,2) = os(v4) and cs(3,1) = cs(3,2) = cs(v5) = cs(v6) while os(3,1) = os(v5) and os(3,2) = os(v6).

The following “orbit description” lemma is the reason for introducing configuration and operation schemata: We
prove the lemma under the following special assumption:

Definition 64. We say that a population P is special with respect to the individual u if for every node v of u and
for every operation (or variable) o we have |oso(P )|�1 where oso is obtained from cs(v) by means of attaching the
operation o at the leaf node of cs(v) corresponding to v as described in Definition 44.

Definition 64 basically requires that no 2 operations (or variables) occurring in P at the specified location are the
same. It turns out that the orbit description lemma stated below is a lot more convenient to prove under this special
assumption. The general case will then follow by introducing enough extra labels for the operations and variables
involved and then deleting the extra labels.

Lemma 65. Fix an initial population P and a program u ∈ �. Assume that the population P is special with re-
spect to the individual u. Suppose every pair of individuals has a positive probability to be paired up for crossover
and every transformation in G has a positive probability of being chosen. 7 Consider the sequences of hyperschemata
t(1,1) � t(2,1) � · · · � t(i,j) � t↑(i,j), � · · · � t(l,k) = u, {cs(i,j)|(i, j) is a coordinate of u, (i, j) is not the maximal
coordinate} and {os(i,j)|(i, j) is a coordinate of u, (i, j) is not the maximal coordinate} corresponding to the indi-
vidual u. For a given hyperschema t, denote by |t (P )| the number of individuals in P which fit the hyperschema t
counting repetitions. Suppose ∀ non-maximal pairs of coordinates (i, j) we have |os(i,j)(P )| 
= 0 and |t(1,1)(P )| 
= 0.

Then it is true that ∀(i, j)
|Vt↑(i,j)

|
|Vt(i,j)

| = 1
|cs(i,j)(P )| .

Proof. The key idea is to observe the following fact:

Claim. Fix a coordinate (i, j). Fix any two operation schemata os1 and os2 which are obtained from cs(i,j) by
attaching either a variable or an operation at the node (i, j). Suppose ∃ individuals in P fitting both, os1 and os2. Then
|Vt(i,j)

∩ Vos1 | = |Vt(i,j)
∩ Vos2 |.

Proof. Consider the map F : [P ]A → [P ]A defined as follows: Given a population, say Q ∈ [P ]A, notice that ∃ an
individual, say x1, in Q fitting the operation schema os1 (due to the way crossover is defined, the number of individuals
fitting the operation schema os1(Q) is the same in every population Q ∈ [P ]A). Moreover, such an individual is unique
since we assumed that all operations appearing in the individuals of P are distinct. Likewise, ∃ unique individual in Q,
say x2 fitting the operation schema os2. Pair up individuals x1 and x2 and pair up the rest of the individuals arbitrarily
for crossover. Select the crossover transformation Tv where v is the node with coordinate (i, j) for the pair (x1, x2)

and choose the identity transformation for the rest of the pairs. Now let F(Q) be the population obtained upon the
completion of the reproduction step described above (notice that F(Q) ∈ [P ]A by definition of [P ]A). Notice also that
F is its own inverse (i.e. F ◦ F = 1[P ]A ). This tells us, in particular, that F is bijective. Moreover, it is clear from the
definitions that F(Vt(i,j)

∩ Vos1) ⊆ Vt(i,j)
∩ Vos2 and, likewise, F(Vt(i,j)

∩ Vos2) ⊆ Vt(i,j)
∩ Vos1 . The desired conclusion

follows at once. �

Now observe that t↑(i,j) = t(i,j) ∩ os(i,j) so that Vt↑(i,j)
= Vt(i,j)

∩ Vos(i,j)
and t(i,j) = ⋃

o is an operation or a variable
(t(i,j) ∩oso) where oso is obtained from cs(i,j) by attaching the operation (or variable) o at the node ↑ (i, j). Therefore,

7 These conditions can be slightly relaxed, but we try to present the main idea only.
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we also have Vt(i,j)
= ⋃

o is an operation or a variable, (Vt(i,j)
∩ Voso ). Since operations cannot appear or disappear from a

population during crossover, Voso 
= ∅ 
⇒ ∃ an individual in P fitting the operation schema oso. Thus the only sets of
the form Vt(i,j)

∩ Voso which may possibly contribute to the union above are these for which ∃ an individual in P fitting
the operation schema oso. According to the claim above, all such sets contribute exactly the same amount. Moreover, by

assumption os(i,j)(P ) 
= ∅, and so we have |Vt(i,j)
| = n·|Vt(i,j)

∩Vos(i,j)
| = n·|Vt(i,j)∩os(i,j)

| = n·|Vt↑(i,j)
| 
⇒ |Vt↑(i,j)

|
|Vt(i,j)

| =
1
n

where n is the number of operation schemata of the form oso which are obtained from cs(i,j) by attaching a variable or
an operation at the node with coordinate (i, j) and for which ∃ an individual in P fitting the operation schema oso and the
last implication holds under the condition that |Vt(i,j)

| 
= 0. This condition is, indeed satisfied. (Suppose not. Let (a, b)

denote the smallest coordinate such that |Vt(a,b)
| = 0. Notice that (a, b) 
= (1, 1) since |Vt(1,1)

| 
= 0. (By assumption ∃
an individual, say x, in P fitting the hyperschema t(1,1). Even if x is not the first individual of P, by performing crossover
of x with the first individual of P at the root node one gets a population Q ∈ Vt(1,1)

.) But then (a, b) =↑ (i, j) for
some coordinate (i, j) and according to the equation above we have |Vt(i,j)

| = n · |Vt↑(i,j)
| = n · |Vt(a,b)

| = 0 which

contradicts the minimality of the coordinate (a, b). So we conclude that |Vt(i,j)
| 
= 0.) Thereby we have

|Vt↑(i,j)
|

|Vt(i,j)
| = 1

n
.

But cs(i,j) = ⋃
o is an operation or a variable oso 
⇒ cs(i,j)(P ) = ⋃

o is an operation or a variable oso(P ). Since we assumed

that all of the operations and variables are distinct, ∃ at most one individual in P fitting the operation schema oso and
it now follows that |cs(i,j)(P )| = the number of operation schemata of the form oso such that oso(P ) 
= ∅ which is

precisely the number n. We finally obtain
|Vt↑(i,j)

|
|Vt(i,j)

| = 1
|cs(i,j)| which is precisely the conclusion of the lemma. �

Remark 66. Given an individual u and a population P consisting of m individuals, observe that the number of indi-
viduals fitting the hyperschema t(1,1) is the same in every population from [P ]A, i.e. ∀Q ∈ [P ]A we have |t(1,1)(Q)| =
|t(1,1)(P )| = 1. It follows immediately now that 1

m
E�[P ]A (X (�, St(1,1)

)) = 1
m

.

We now combine Corollary 57, Remark 66 and Lemma 65 to obtain the following special case of Geiringer theorem
for nonlinear GP under homologous crossover in case when all of the operations appearing in the individuals of the
initial population P are distinct:

lim
t→∞ �(u, P , t) = 1

m
· ∏
(i,j) is not the maximal coordinate of u

1

|cs(i,j)(P )| = ∏
v is a node of u

1

|cs(v)(P )|

(recall that when v is the root node of u, cs(v) determines the entire search space, and so 1
|cs(v)(P )| = 1

m
). To obtain

the general case, suppose we are given an initial population P. For every node v of u consider the set of operations
O(v) = {o||oso(P )|�1 where oso is obtained from cs(v) as in Definition 44}. Moreover, for every operation (or
variable) o ∈ O(v) let xo

1, xo
2, . . . , xo

|oso(P )| denote an enumeration of the individuals in P fitting the operation schema
oso(P ). Relabel the operation o occurring in the node v of xo

i by the formally different operation (o, i) (i.e. by the
ordered pair (o, i) whose first element is the operation o itself and the second element is the index telling us in which
individual of P the operation o labels the node v). After all of the relabelling is complete we obtain a new population
P ′ which is special with respect to the individual u in the sense of Definition 64. Formally speaking, we expand our
signature � = (�1, �2, . . . ,�N) as in Definition 26 by adding the operations (variables) (o, i) into �j where j is the
arity of the operation o. This gives us a new signature �∗ = (�∗

1, �
∗
2, . . . ,�

∗
N) where

�∗
j =

{
o|o ∈ �j and o /∈ ⋃

v is a node of u
O(v)

}
∪ {(o, i)|o ∈ O(v) for some v and 1� i� |oso(P )|}.

Denote by �∗ the search space induced by the signature �∗. The natural projection maps pj : �∗
j → �j sending 0 → o

when o /∈ ⋃v is a node of uO(v) and (o, i) → o when o ∈ O(v) for some node v of u, induce the natural “deletion of
the extra labels” projection of the search spaces � : �∗ → � where the individual �(w) ∈ � is obtained from the
individual w ∈ �∗ by replacing the label of every node w of w with pj (w) where j is the arity of the node w. It is easily
seen that the natural projection � commutes with the crossover transformations in the sense that for any individuals
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x, y ∈ �∗ and for any crossover transformationT ∈ G (see Definition 41) we have�(T (x, y)) = T (�(x), �(y)). 8 Notice
also that the population P can be obtained from the population P ′ by applying the natural projection � to every indi-
vidual of P ′. Therefore, running the algorithm with the initial population P is the same thing as running the algorithm
with the initial population P ′ and reading the output by applying the natural projection �. The special case does apply
to the population P ′, as mentioned above, and so we have

lim
t→∞ �(u, P , t) = ∑

w∈�−1(u)

lim
t→∞ �(w, P , t) = ∑

w∈�−1(u)

∏
v is a node of w

1

|cs(v)(P )| .

Notice that w ∈ �−1(u) precisely when the underlying shape schema of w is the same as that of u, call this shape
schema tu, and the label of every node v of w is (o, i) where o is the label of the node v of u. According to the way the
population P ′ was introduced, there are precisely |os(v)(P )| such labels (see also Definition 44). We can then identify

the preimage �−1(u) with the set
∏K

j=1{i|1� i� |os(vj )|} of ordered K-tuples of integers where K is the number of
nodes in the parse tree of u and v1, v2, . . . , vK is any fixed enumeration of the nodes of u, in the following manner:
The identification map ™ : ∏K

j=1{i|1� i� |os(vj )(P )|} → �−1(u) sends a given ordered K-tuple (i1, i2, . . . , iK) into
the tree w = ™((i1, i2, . . . , iK)) whose underlying shape schema is tu and the label of a node vj of w is (oj , ij ) where
oj is the label of the node vj in the parse tree of u. We finally obtain:

lim
t→∞ �(u, P , t) = ∑

w∈�−1(u)

∏
v is a node of w

1

|cs(v)(P )|
= ∑

(i1,i2,...,iK )∈
∏K

j=1{i|1� i � |os(vj )|}

∏
v is a node of u

1

|cs(v)(P )|

=
|os(v1)(P )|∑

i1=1

|os(v2)(P )|∑
i2=1

. . .
|os(vK)(P )|∑

iK=1

∏
v is a node of u

1

|cs(v)(P )|

=
K∏

j=1

|os(vj )(P )|∑
ij =1

1

|cs(vj )(P )| = ∏
v is a node of u

|os(v)(P )|
|cs(v)(P )|

which is precisely the assertion of Theorem 47.

9. What does Theorem 21 tell us in the presence of mutation for nonlinear GP?

In general, mutation is an elementary step of type 2 (see Definition 7) which is determined by the reproduction
1-tuple of the form (�, M, p, ℘m) where M is a family of functions on �. Notice that the set of partitions of the set
of m elements into one-element subsets consists of exactly one element—the partition into the singletons. This forces
℘m to be the trivial probability distribution. We shall, therefore, omit it from writing:

Definition 67. A mutation 1-tuple is a reproduction 1-tuple (�, M, p) where M consists of functions on � and
1� ∈ M. (Here 1� : � → � denotes the identity map.)

An ergodic mutation 1-tuple is a mutation 1-tuple (�, M, p) such that ∀x, and y ∈ �∃M ∈ M with M(x) = y

and p(M) > 0.

The following fact is a rather simple consequence of Theorem 21 (see Corollaries 7.1 and 7.2 of [4]):

Corollary 68. Let A denote a bijective and self-transient algorithm which involves an elementary step determined by
an ergodic mutation. Then the Markov chain associated to the algorithm A is irreducible and the unique stationary
distribution of this Markov chain is uniform. In particular, the limiting frequency of occurrence of any given individual
x is limt→∞ �({x}, P , t) = 1

|�| (see Definition 24 for the meaning of �({x}, P , t)).

8 Of course, formally speaking, the two transformations T involved in the equation above are distinct, as they have different domains (�∗ and �,
respectively), but they are determined by the same set of shape schemata and the same choice of nodes for crossover so we denote them by the same
symbol.
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When dealing with nonlinear GP, depending on the circumstances, one may want to consider different types of
mutation. Below we define one such possible mutation:

Definition 69. Let � denote the search space for nonlinear GP over the signature � = (�0, �1, �2, . . . ,�N) where
�i’s are finite sets (see Definition 26). Consider a configuration schema t and a node v of t. Let i denote the arity of
the node v and let � denote a permutation of �i . We define a node mutation transformation Mt,v,� : � → � to be
the function which sends a given program tree u which fits the schema t to the program Mt,v,�(u) obtained from u by
replacing the label a ∈ �i of the node v of u with �(a) whenever u fits the configuration schema t (if u does not fit the
schema t then Mt,v,�(u) = u). We define the family of node mutations

Mnode = {Mt,v,� : � → �|� ∈ S�i
where t is a configuration schema and i is the arity of the node v of t}.

As usual SX denotes the set of all permutations of the set X. Denote by �NodeMut = (�, Mnode, p) the corresponding
mutation 1-tuple.

Although node mutation described in Definition 69 is not ergodic in the sense of Definition 67, it defines a bijective
elementary step (see Definition 15). Indeed, it is easy to see that the transformation Mt,v,�−1 is a 2-sided inverse
of the transformation Mt,v,�. Thereby Theorem 21 applies to nonlinear GP with homologous crossover and node
mutation. It is also possible to derive a formula for the limiting frequency of occurrence of a given individual u, namely
limt→∞ �(u, P , t) much in the same way as in Theorem 47. In order to state the corresponding result for nonlinear
GP with homologous crossover and node mutation, it is convenient to introduce the following definitions first:

Definition 70. Fix an individual u ∈ �. Let v denote a node of u and consider the configuration schema cs(↑ v, i)

obtained from the configuration schema cs(v) by attaching a node of degree i together with it’s i children in place
of the # sign at the node corresponding to v of cs(v). The newly attached nodes are then labelled by the = and #
signs, respectively. If the newly attached node is of arity 0 then it is a leaf node labelled by the = sign. 9 Furthermore,
write cs(↑ v, u) in place of cs(↑ v, i) when i is the arity of the node v in u. Also denote by os(v, o) the operation
schema obtained from the configuration schema cs(v) by attaching a node labelled by the operation o together with its
appropriate number of children in place of the # sign. The children of the newly attached node (if there are any) are
labelled by the # signs.

Definition 71. Given a mutation 1-tuple (�, M, p), a configuration schema t (see Definition 44), and a node v of t
having arity i, denote by G(t, v) the group generated by all the permutations � ∈ �i such that p(Ms,v,�) > 0 for some
configuration schema s such that the common region of s and t contains the node v. Fix an operation a ∈ �i . Let

O(t, v, a) = {o ∈ �i |∃g ∈ G(t, v) with g · a = o}
denote the orbit of the operation a under the action of the group G(t, v).

Suppose we are given a population P of size m consisting of program trees from �. Recall from Definition 46 that
we denote by |H(P )| the number of individuals in the population P fitting the schema H.

Theorem 72. Let A denote an algorithm determined by 2 elementary steps of type 2 one of which is determined
by the node mutation (see Definition 69) and the other one by a homologous GP crossover. Suppose every one of
the transformations in the family G of GP homologous crossovers has a positive probability of being chosen. 10 Fix
an individual (a program tree) u ∈ � and an initial population P. Let o(u, v) denote the operation labelling the
node v of the program tree u. Denote by û the configuration schema obtained from the shape schema, ũ, of u (see
Definition 34) by labelling all the interior nodes of u with the = signs and all the leaf nodes with the # signs.
Suppose that the probability distribution on the collection of node mutations is such that whenever v is a node of u we

9 Formally speaking, according to Definition 44, cs(↑ v, i) is not always a Poli hyperschema since it may contain a leaf node labelled by the =
sign. However, such a schema also defines a subset of the search space � in much the same way as Poli hyperschemata. The only difference is that
a leaf node labelled by the = sign can be replaced by a variable only. One cannot attach a non-trivial program tree to it.

10 Again we remark that this condition can be slightly relaxed but it does not introduce any new ideas of interest.
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have p(Ms,v,�) > 0 
⇒ s = cs(v) where as before cs(v) is the configuration schema of u corresponding to the node
v. 11 Then we have

lim
t→∞ �(u, P , t) = ∏

v is a node of u

∑
o∈O(û,v,o(u,v))|os(v, o)(P )|∑N

i=0
∑

o∈�i
|os(v, o)(P )| · |O(û, v, o)| .

Proof. The proof of Theorem 72 is very similar to the proof of Theorem 47 and contains essentially no new ideas. We
leave most of the details for the interested reader as an exercise and provide only the rough outline: Just like Theorem 47,
Theorem 75 follows from Corollary 57 by considering the nested sequence of hyperschemata t(1,1) � t(2,1) � · · · � t(i,j)

� t↑(i,j) � · · · � t(l,k) = u corresponding to the program u (see Definition 60). First, we consider a special case when
every set �i consists of ordered pairs (l, o) where l is an integer, and mutation is allowed to modify only the operation
o and is not allowed to change the integer l. We then prove Theorem 72 in the special case when all the labels contained
in the initial population P have distinct first coordinates. The general case then follows by introducing the extra integer
labels for the first coordinate, applying the special case and then “erasing the integer part from the labels” in exactly
the same way as it was done in the proof of Theorem 47. The main difference lies in the claim proved inside Lemma
65. The corresponding claim for the proof of Theorem 72 then says the following:

Lemma 73. Fix a node v with coordinate (i, j). Fix any two operation schemata os(a) and os(b) which are obtained
from cs(i,j) by attaching either a variable or an operation at the node with coordinate (i, j). Suppose ∃ individuals
in P fitting both, os(c) and os(d) where a ∈ O(cs(i, j), v, c) and b ∈ O(cs(i, j), v, d). Then |Vt(i,j)

∩ Vos(a)| =
|Vt(i,j)

∩ Vos(b)|.

Just like the claim inside of the Lemma 65, Lemma 73 is proved by constructing an explicit bijection between the
sets Vt(i,j)

∩ Vos(a) and Vt(i,j)
∩ Vos(b), The only difference is that these bijections make use of mutations as well as

crossover. �

It may be worth mentioning that Theorem 47 is a special case of Theorem 72. Indeed, if the only mutation trans-
formations chosen with positive probability are these which assign positive probability only to the mutations defined
by the identity permutations, then every orbit O(û, v, o) consists of exactly one element so that ∀t and v we have

|O(û, v, o)| = 1. To compress the language, we shall use
⊎

to denote the union of disjoint sets. We then have⊎
o∈O(û,v,o(u,v))os(v, o)(P ) = os(v)(P ) since o(u, v) is the only operation inside of O(û, v, o(u, v)) so that os(v)(P )

is the only contributor to the disjoint union above. Moreover, we also have cs(v) = ⊎N
i=0

⊎
o∈�i

os(v, o) so that we
obtain

N∑
i=0

∑
o∈�i

|os(v, o)(P )| · |O(û, v, o)| =
N∑

i=0

∑
o∈�i

|os(v, o)(P )| · 1 = |cs(v)(P )|.

The formula in Theorem 72 now simplifies to the one in Theorem 47.

Example 74. Continuing with Example 48, suppose the signature � is defined as follows: � = (�0, �1, �2) where
�0 = {x, y, z, w}, �1 = {sin, cos, tan, cot, ln} and �2 = {+, −, ∗, �} where � is a binary operation symbol different
from +, ∗ and −. (Of course, the semantics of the binary operation � is irrelevant to the content of this example, but if

the reader feels more comfortable with a concrete interpretation, they may assume, for instance, that x�y = ∫ y

x
e	2

d	.)
Now suppose the individual u is the program (+(ln(x), �(x, y)) pictured below (with nodes being enumerated just
like in Example 45) (it has the same shape schema as the individual in that example):

11 Notice that this implies that O(û, v, o(u, v))=O(cs(v), v, o(u, v)).
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Notice that this individual has exactly the same set of configuration schemata as the corresponding set of configuration
schemata in Example 45 (the reader may see these configuration schemata pictured in that example). Suppose that the
following mutation transformations are the only ones chosen with positive probability:

Mcs(v1),v1,(+,−), Mcs(v1),v1,(∗,�), Mcs(v2),v2,(ln,sin,cos)(tan,cot),

Mcs(v2),v2,(tan,cot)(sin,cos), Mcs(v2),v2,(ln,sin), Mcs(v3),v3,(+,�,∗),

Mcs(v3),v3,(−,∗), Mcs(v4),v4,(x,w)(y,z), Mcs(v4),v4,(+,∗)(−,�), Mcs(v5),v5,(x,y,z),

Mcs(v5),v5,(+,−,∗,�), Mcs(v6),v6,(x,w)(y,z) and Mcs(v6),v6,(x,w), Mcs(v6),v6,(sin,cos,tan,cot), Mcs(v6),v6,(+,−).

Here we represent permutations in terms of their “disjoint cycle decompositions”: for example, (ln, sin, cos)(tan, cot)
represents the permutation on �1 which sends ln into sin, sin into cos and cos back into ln. Likewise, it sends tan
into cot and cot back into tan. If a cycle has length one (i.e. the element appearing in the cycle is a fixed point of
the corresponding permutation) we omit that cycle from writing. For example, � and ∗ are the fixed points of the
permutation (+, −). The corresponding permutation groups are:

G(cs(v1), v1) = 〈(+, −), (∗, �)〉,
G(cs(v2), v2) = 〈(ln, sin, cos)(tan, cot), (tan, cot)(sin, cos), (ln, sin)〉,
G(cs(v3), v3) = 〈(+, �, ∗), (−, ∗)〉,
G(cs(v4), v4) = 〈(x, w)(y, z), (+, ∗)(−, �)〉,
G(cs(v5), v5) = 〈(x, y, z), (+, −, ∗, �)〉 and

G(cs(v6), v6) = 〈(x, w)(y, z), (x, w)(sin, cos, tan, cot), (+, −)〉.
The cycle decomposition makes it easy to compute the corresponding orbits:

O(cs(v1), v1, +) = {+, −}, O(cs(v2), v2, ln) = {ln, sin, cos},
O(cs(v3), v3, �) = {+, −, ∗, �}, O(cs(v4), v4, x) = {x, w},
O(cs(v5), v5, x) = {x, y, z} and O(cs(v6), v6, y) = {y, z}.

Now suppose the initial population is the same as in Example 48. In order to apply Theorem 72, for every node v of u
we need to compute the number |os(v, o)(P )|. Recall that the schema os(v, o) is obtained from the schema os(v) by
attaching the operation o at the node v and labelling its children nodes by the # signs. For the population P in Example
48 it was already computed that |os(v1, +)| = |os(v1)| = 2. There are exactly two individuals (namely x3 and x4)
fitting the schema os(v1, ∗) and so |os(v1, ∗)| = 2. Exactly one individual, namely x2, and one individual, namely x6,
fit the schemata os(v1, sin) and os(v2, cos), respectively, and so |os(v1, sin)| = |os(v1, cos)| = 1. For all the other
operations o ∈ (�0 ∪�1 ∪�2)−{+, ∗, sin, cos} there are no individuals in P fitting the schema os(v1, o) and so we have
|os(v1, o)| = 0. There are no individuals in P fitting the schema os(v2, ln) = os(v2) for the individual u of the current
example, and no individuals fitting the schemata of the form os(v2, o) where o /∈ {∗, sin, cos} so that for such o we
have |os(v2, o)(P )| = 0. Moreover, there is exactly one individual, namely x1 fitting the schema os(v2, ∗) and exactly
one, namely x4 fitting the schema os(v2, cos) so that |os(v2, ∗)(P )| = |os(v2, cos)(P )| = 1; exactly two individuals,
namely x3 and x5 fit the schema os(v2, sin) so that |os(v2, sin)(P )| = 2. Continuing in this manner with the rest of the
nodes of u we obtain |os(v3, o)(P )| = 0 for o /∈ {+, ∗}; x1 and x3 fit os(v3, +) while x4 and x5 fit os(v3, +) and so
|os(v3, +)(P )| = |os(v3, ∗)(P )| = 2. |os(v4, o)(P )| = 0 for o /∈ {x, y, +}; x3 is the only individual fitting the schema
os(v4, y), x4 is the only individual fitting the schema os(v4, x) and x5 is the only individual fitting the schema os(v4, +)

and so we have |os(v4, x)(P )| = |os(v4, y)(P )| = |os(v4, +)(P )| = 1. |os(v5, o)(P )| = 0 for o /∈ {∗, x, y}; x1 is the
only individual fitting the schema os(v5, ∗) and x5 is the only individual fitting the schema os(v5, y) while the individuals
x3 and x4 are the only two which fit the schema os(v5, x) so that we have |os(v5, ∗)(P )| = |os(v5, y)(P )| = 1 and
|os(v5, x)(P )| = 2. |os(v6, o)(P )| = 0 for o /∈ {sin, x, y}; moreover, x1 is the only individual fitting the schema
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os(v6, sin) and x4 is the only individual fitting the schema os(v6, y) while the individuals x3 and x5 are the only two
which fit the schema os(v6, x) so that we have |os(v6, sin)(P )| = |os(v6, y)(P )| = 1 and |os(v6, x)(P )| = 2.

Finally for every node v and for every operation o ∈ �0 ∪ �1 ∪ �2 such that |os(v, o)(P )| 
= 0 we need to compute
|O(û, v, o)|. For the node v1 these are O(û, v1, +) = O(cs(v1), v1, +) = {+, −} so that |O(cs(v1), v1, +)| = 2, and,
likewise, from the description of the groups G(cs(vi), vi) given above, it is easy to compute that O(cs(v1), v1, ∗) =
{∗, �}, O(cs(v1), v1, sin) = {sin} and O(cs(v1), v1, cos) = {cos} so that

|O(cs(v1), v1, sin)| = |O(cs(v1), v1, cos)| = 1.

O(cs(v2), v2, ∗) = {∗}, O(cs(v2), v2, sin) = O(cs(v2), v2, cos) = {ln, sin, cos} and so

|O(cs(v2), v2, sin)| = |O(cs(v2), v2, cos)| = 3.

O(cs(v3), v3, ∗) = O(cs(v3), v3, +) = �2 so that |O(cs(v3), v3, ∗)| = |O(cs(v3), v3, +)| = 4.

O(cs(v4), v4, x) = {x, w} and O(cs(v4), v4, y) = {y, z} so that |O(cs(v4), v4, x)| = |O(cs(v4), v4, y)| = 2.

O(cs(v4), v4, +) = {+, ∗} so that |O(cs(v4), v4, +)| = 2; O(cs(v5), v5, ∗) = �2, O(cs(v5), v5, x) = O(cs(v5),

v5, y) = {x, y, z} and so |O(cs(v5), v5, x)| = |O(cs(v5), v5, y)| = 3.

O(cs(v6), v6, sin) = {sin, cos, tan, cot}, O(cs(v6), v6, x) = {x, w} and, finally, O(cs(v6), v6, y) = {y, z} so that

|O(cs(v6), v6, x)| = |O(cs(v6), v6, y)| = 2.

Now we are ready to compute the ratios of the form

∑
o∈O(û,vj ,o(u,vj ))|os(vj ,o)(P )|∑N

i=0
∑

o∈�i
|os(vj ,o)(P )|·|O(û,vj ,o)|

. From the data computed above

we have ∑
o∈O(û,v1,o(u,v1))

|os(v1, o)(P )| = |os(v1, +)(P )| + |os(v1, −)(P )| = 2 + 0 = 2

(x1 and x5 are the only two individuals in P which fit the schema os(v1, +) while no individual in P fits os(v1, −));
N∑

i=0

∑
o∈�i

|os(v1, o)(P )| · |O(û, v1, o)| = |os(v1, +)(P )| · |O(û, v1, +)(P )| + |os(v1, sin)(P )| · |O(û, v1, sin)(P )|
+ |os(v1, ∗)(P )| · |O(û, v1, ∗)(P )| + |os(v1, cos)(P )| · |O(û, v1, cos)(P )|

= 2 · 2 + 1 · 1 + 2 · 2 + 1 · 1 = 10

and so ∑
o∈O(û,v1,o(u,v1))

|os(v1, o)(P )|∑N
i=0
∑

o∈�i
|os(v1, o)(P )| · |O(û, v1, o)| = 2

10
= 1

5
.

Continuing in this manner, we obtain∑
o∈O(û,v2,o(u,v2))

|os(v2, o)(P )| = |os(v2, ln)(P )| + |os(v2, sin)(P )| + |os(v2, cos)(P )| = 0 + 2 + 1 = 3

and
N∑

i=0

∑
o∈�i

|os(v2, o)(P )| · |O(û, v2, o)| = |os(v2, ∗)(P )|·|O(û, v2, ∗)(P )| + |os(v2, sin)(P )|·|O(û, v2, sin)(P )|
+ |os(v2, cos)(P )| · |O(û, v2, cos)(P )| = 1 · 1 + 2 · 3 + 1 · 3 = 10

so that ∑
o∈O(û,v2,o(u,v2))

|os(v2, o)(P )|∑N
i=0
∑

o∈�i
|os(v2, o)(P )| · |O(û, v2, o)| = 3

10
,

∑
o∈O(û,v3,o(u,v3))

|os(v3, o)(P )| = |os(v3, �)(P )| + |os(v3, +)(P )| + |os(v3, −)(P )| + |os(v3, ∗)(P )|
= 0 + 2 + 0 + 2 = 4
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and
N∑

i=0

∑
o∈�i

|os(v3, o)(P )| · |O(û, v3, o)| = |os(v3, +)(P )| · |O(û, v3, +)(P )| + |os(v3, ∗)(P )| · |O(û, v3, ∗)(P )|
= 2 · 4 + 2 · 4 = 16

and so ∑
o∈O(û,v3,o(u,v3))

|os(v3, o)(P )|∑N
i=0
∑

o∈�i
|os(v3, o)(P )| · |O(û, v3, o)| = 4

16
= 1

4
,

∑
o∈O(û,v4,o(u,v4))

|os(v4, o)(P )| = |os(v4, x)(P )| + |os(v4, w)(P )| = 1 + 0 = 1

and
N∑

i=0

∑
o∈�i

|os(v4, o)(P )| · |O(û, v4, o)| = |os(v4, y)(P )| · |O(û, v4, y)| + |os(v4, x)(P )| · |O(û, v4, x)|
+ |os(v4, +)(P )| · |O(û, v4, +)| = 1 · 2 + 1 · 2 + 1 · 2 = 6

and so ∑
o∈O(û,v4,o(u,v4))

|os(v4, o)(P )|∑N
i=0
∑

o∈�i
|os(v4, o)(P )| · |O(û, v4, o)| = 1

6
,

∑
o∈O(û,v5,o(u,v5))

|os(v5, o)(P )| = |os(v5, x)(P )| + |os(v5, y)(P )| + |os(v5, z)(P )| = 2 + 1 + 0 = 3

and
N∑

i=0

∑
o∈�i

|os(v5, o)(P )| · |O(û, v5, o)| = |os(v5, ∗)(P )| · |O(û, v5, ∗)| + |os(v5, x)(P )| · |O(û, v5, x)|
+ |os(v5, y)(P )| · |O(û, v5, y)| = 1 · 4 + 2 · 3 + 1 · 3 = 13

and so ∑
o∈O(û,v5,o(u,v5))

|os(v5, o)(P )|∑N
i=0
∑

o∈�i
|os(v5, o)(P )| · |O(û, v5, o)| = 3

13
.

Finally, ∑
o∈O(û,v6,o(u,v6))

|os(v6, o)(P )| = |os(v6, y)(P )| + |os(v6, z)(P )| = 1 + 0 = 1

and
N∑

i=0

∑
o∈�i

|os(v6, o)(P )| · |O(û, v6, o)| = |os(v6, sin)(P )| · |O(û, v6, sin)| + |os(v6, x)(P )| · |O(û, v6, x)|
+ |os(v6, y)(P )| · |O(û, v6, y)| = 1 · 4 + 2 · 2 + 1 · 2 = 10

so that ∑
o∈O(û,v6,o(u,v6))

|os(v6, o)(P )|∑N
i=0
∑

o∈�i
|os(v6, o)(P )| · |O(û, v6, o)| = 1

10
.

Now we finally compute the product of these ratios and obtain:

lim
t→∞ �(u, P , t) =

6∏
i=1

∑
o∈O(û,vi ,o(u,vi ))

|os(vi, o)(P )|∑N
i=0
∑

o∈�i
|os(vi, o)(P )| · |O(û, vi, o)| = 1

5
· 3

10
· 1

4
· 1

6
· 3

13
· 1

10
= 3

52000
.



B. Mitavskiy, J. Rowe / Theoretical Computer Science 361 (2006) 72 –110 97

At the opposite extreme is the case when every mutation transformation in the family Mnode has a positive probability
of being chosen. In this case O(û, v, o(u, v)) = �i where i is the arity of the operation o. In particular, for every operation
o we have o ∈ O(û, v, o(u, v)) if and only if o ∈ �i . But then we have

⊎
o∈O(û,v,o(u,v))

os(v, o) = cs(↑ v, u)

and so

∑
o∈O(û,v,o(u,v))

|os(v, o)(P )| = |cs(↑ v, u)(P )|.

We also have
⊎

o∈�i
os(v, o) = cs(↑ v, i) so that

∑
o∈�i

|os(v, o)(P )| · |O(û, v, o)| = |�i | · ∑
o∈�i

|os(v, o)(P )| = |cs(↑ v, i)(P )| · |�i |.

Combining these equations with Theorem 72 we obtain:

Corollary 75. Let A denote an algorithm determined by 2 elementary steps of type 2 one of which is determined by
the node mutation (see Definition 69) and the other one by a homologous GP crossover. Suppose every one of the
transformations in the family G of GP homologous crossovers has a positive probability of being chosen. Suppose
also that for every node v of u of arity i and for every permutation � of �i we have p(Mû,v,�) = p(Mcs(v),v,�) > 0.
Fix an individual (a program tree) u ∈ � and an initial population P. Then we have

lim
t→∞ �(u, P , t) = ∏

v is a node of u

|cs(↑ v, u)(P )|∑N
i=0|cs(↑ v, i)(P )| · |�i |

.

Example 76. Suppose the signature � = (�0, �1, �2), the initial population P and the individual u are exactly as in
Example 74. Now suppose, (unlike in Example 74, that for every permutation � of �i we have p(Mû,v,�) > 0. Now
Corollary 75 applies and we can compute the frequency of occurrence of the individual u according to the formula
given there. To apply this formula we need to compute the numbers |cs(↑ vj , i)(P )| where 1�j �6 and 0� i�2 (the
numbers |cs(↑ v, u)(P )| are among these). The configuration schemata cs(vi) for the individual u are exactly the same
as these for the individual of Example 45 (since these two individuals have the same underlying shape schema) and they
are pictured in that example. Below we display only these schemata |cs(↑ vj , i)(P )| for which |cs(↑ vj , i)(P )| 
= 0.
According to Definition 70 they are obtained from the corresponding schemata cs(vi) by attaching a node which has i
children (if i = 0 it has no children) in place of the # sign at the node vi (which means that the # sign can be replaced
with an arbitrary variable but not with an operation symbol):



98 B. Mitavskiy, J. Rowe / Theoretical Computer Science 361 (2006) 72 –110

There are exactly two individuals, namely x2 and x6 in P fitting the schema cs(↑ v1, 1) so that |cs(↑ v1, 1)(P )| = 2;
x1, x3, x4 and x5 are the only individuals in P which fit the schema cs(↑ v1, 2) = cs(↑ v1, u) so that |cs(↑ v1, 2)(P )| =
|cs(↑ v1, u)(P )| = 4; x3, x4 and x5 are the only individuals in P which fit the schema cs(↑ v2, 1) = cs(↑ v2, u)

so that |cs(↑ v2, 1)(P )| = |cs(↑ v2, u)(P )| = 3; x1 is the only individual fitting the schema cs(↑ v2, 2) so that
|cs(↑ v2, 2)(P )| = 1; x1, x3, x4 and x5 are the only individuals in P which fit the schema cs(↑ v3, 2) = cs(↑ v3, u)

so that |cs(↑ v3, 2)(P )| = |cs(↑ v3, u)(P )| = 4; x3 and x4 are the only individuals in P which fit the schema
cs(↑ v4, 0) = cs(↑ v4, u) so that |cs(↑ v4, 0)(P )| = |cs(↑ v4, u)(P )| = 2; x5 is the only individual fitting the
schema cs(↑ v4, 2) and so |cs(↑ v4, 2)(P )| = 1; x3, x4 and x5 are the only individuals in P fitting the schemata
cs(↑ v5, 0) = cs(↑ v5, u) and/or cs(↑ v6, 0) = cs(↑ v6, u) and so we have |cs(↑ v5, 0)| = |cs(↑ v5, u)| = |cs(↑
v6, 0)| = |cs(↑ v6, u)| = 3 and x1 is the only individual fitting the either and both schemata cs(↑ v5, 2) and/or
cs(↑ v6, 1) so that |cs(↑ v5, 2)| = |cs(↑ v6, 1)| = 1. From the definition of the signature � = (�0, �1, �2) in
Example 74 we see that |�0| = 4, |�1| = 5 and |�2| = 4. We are now ready to compute the ratios:

|cs(↑ v1, u)(P )|∑3
i=0|cs(↑ v1, i)(P )| · |�i |

= |cs(↑ v1, u)(P )|
|cs(↑ v1, 2)(P )| · |�2| + |cs(↑ v1, 1)(P )| · |�1| = 4

4 · 4 + 2 · 5
= 2

13
,

|cs(↑ v2, u)(P )|∑3
i=0|cs(↑ v2, i)(P )| · |�i |

= |cs(↑ v2, u)(P )|
|cs(↑ v2, 2)(P )| · |�2| + |cs(↑ v2, 1)(P )| · |�1| = 3

1 · 4 + 3 · 5
= 3

19
,

|cs(↑ v3, u)(P )|∑3
i=0|cs(↑ v3, i)(P )| · |�i |

= |cs(↑ v3, u)(P )|
|cs(↑ v3, 2)(P )| · |�2| = 4

4 · 4
= 1

4
,

|cs(↑ v4, u)(P )|∑3
i=0|cs(↑ v4, i)(P )| · |�i |

= |cs(↑ v4, u)(P )|
|cs(↑ v4, 0)(P )| · |�0| + |cs(↑ v4, 2)(P )| · |�2| = 2

2 · 4 + 1 · 4
= 1

6
,

|cs(↑ v5, u)(P )|∑3
i=0|cs(↑ v5, i)(P )| · |�i |

= |cs(↑ v5, u)(P )|
|cs(↑ v5, 0)(P )| · |�0| + |cs(↑ v5, 2)(P )| · |�2| = 3

3 · 4 + 1 · 4
= 3

16
,

|cs(↑ v6, u)(P )|∑3
i=0|cs(↑ v6, i)(P )| · |�i |

= |cs(↑ v6, u)(P )|
|cs(↑ v6, 0)(P )| · |�0| + |cs(↑ v6, 1)(P )| · |�1| = 3

3 · 4 + 1 · 5
= 3

17
.

And now Corollary 75 tells us that

lim
t→∞ �(u, P , t) =

6∏
i=1

|cs(↑ vi, u)(P )|∑3
j=0|cs(↑ vi, j)(P )| · |�j |

= 2

13
· 3

19
· 1

4
· 1

6
· 3

16
· 3

17
= 9

268736
.

It is possible to introduce mutation operators for nonlinear GP which are ergodic in the sense of Definition 67, but
the easiest thing to do is probably just to define the family Merg to be the family of all permutations of the search
space �. The probability distribution p must then be concentrated on any subset of M which satisfies the ergodicity
requirement of Definition 67. This would ensure that Corollary 68 applies.
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10. What can be said in the presence of selection in the general case?

Theorem 21 established in [4] which allows us to deduce results such as Theorems 47 and 72, applies only in the
absence of selection. The theme of the remainder of the current paper is to establish a few basic properties of the
Markov chains associated to evolutionary algorithms in the presence of fitness-proportional selection (as described in
Definition 4). Throughout the rest of the paper we shall break up our algorithm, call it A into sub-algorithms and then
consider their composition. This idea will be made clear below:

Proposition 77. Denote by A an evolutionary algorithm determined by the cycle (s1, s2, . . . , sn). Fix i with 1 < i < n

and let B and C denote the sub-algorithms determined by the cycles (s1, s2, . . . , si) and (si+1, s2, . . . , sn), respectively.
Recall from Section 5 that {pA

xy}x,y∈�m , {pB
xy}x,y∈�m and {pC

xy}x,y∈�m denote the Markov transition matrices associated
to the algorithms A, B and C, respectively. Then we have

{pA
xy}x,y∈�m = {pC

xy}x,y∈�m · {pB
xy}x,y∈�m,

where · denotes the usual matrix multiplication.

Proof. Denote by 
 a probability distribution on �m. Completing a cycle of the algorithm A amounts to completing a
cycle of B and then completing a cycle of C. The next generation probability distribution upon the completion of the
cycle of B with the input distribution 
 is {pB

xy}x,y∈�m · 
. Likewise the next generation distribution obtained upon the

completion of a cycle of the algorithm C with the input distribution {pB
xy}x,y∈�m · 
 is just

{pC
xy}x,y∈�m · ({pB

xy}x,y∈�m · 
) = ({pC
xy}x,y∈�m · {pB

xy}x,y∈�m) · 


which means that {pA
xy}x,y∈�m = {pC

xy}x,y∈�m · {pB
xy}x,y∈�m since the equation above holds for an arbitrary input

distribution 
. �

We now proceed to study the effects of selection alone. First of all it is convenient to observe the following general
fact:

Definition 78. Let {pxy}x,y∈X denote a Markov transition matrix on a finite set X . Fix x ∈ X . We define the transition
support of x to be the set S(x) = {z|pzx > 0} of all states z from which it is possible to get to x.

Definition 79. Let {pxy}x,y∈X denote a Markov transition matrix on a finite set X . Fix x and y ∈ X . We say that
y � x if S(y) ⊇ S(x) and ∀z ∈ S(y) we have pzy �pzx. Moreover, if either S(y)�S(x) or pzy � pzx for some z ∈ S(x)

we write y � x.

Proposition 80 provides the reason for Definitions 78 and 79:

Proposition 80. Let {pxy}x,y∈X denote a Markov transition matrix on a finite set X . Fix u and v ∈ X with u � v
and an input probability distribution 
 on X . Denote by � the output distribution (� = {pxy}x,y∈X · 
). Then we have
�(u)��(v). Moreover, if u � v and 
(x) > 0 for every x ∈ X then �(u) � �(v).

Proof. This is a straightforward verification of the definitions:

�(u) = ∑
z∈X


(z)pzu = ∑
z∈S(u)


(z)pzu � ∑
z∈S(v)


(z)pzv = ∑
z∈X


(z)pzv = �(v),

where

�=
{

� if u � v,

� if u � v.
�

The following mild technical condition on a Markov transition matrix (which is easily satisfiable by most transition
matrices modelling crossover and mutation) will extend Proposition 80.
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Definition 81. We call a Markov transition matrix {qxy}x,y∈X non-annihilating if ∀y ∈ X ∃x ∈ X such that qxy > 0.

The main reason for introducing Definition 81 is the following fact:

Proposition 82. A given Markov transition matrix {qxy}x,y∈X is non-annihilating if and only if for every input proba-
bility distribution 
 on X with 
(x) > 0 for every x ∈ X , the output distribution � = {qxy}x,y∈X · 
 also satisfies the
property that �(x) > 0 for every x ∈ X .

Proof. Given an input distribution 
 with 
(x) > 0 for every x ∈ X and any state y ∈ X , we have �(y) = ∑
x∈X 
(x) ·

qxy > 0 if and only if 
(z) ·qzy > 0 for some z ∈ X if and only if qzy > 0 for some z ∈ X (since 
(z) > 0 automatically
by assumption) if and only if the transition matrix {qxy}x,y∈X is non-annihilating. �

Before proceeding any further it is worthwhile to mention that a product of non-annihilating transition matrices is
non-annihilating:

Corollary 83. Given non-annihilating Markov transition matrices {qxy}x,y∈X and {mxy}x,y∈X , the matrix
{rxy}x,y∈X = {mxy}x,y∈X · {qxy}x,y∈X is non-annihilating as well.

Proof. Given an input distribution 
 with 
(x) > 0, since {qxy}x,y∈X is non-annihilating, the “intermediate” output
distribution � = {qxy}x,y∈X (
) also has the property that �(x) > 0 for all x ∈ X . Now we have

� = {rxy}x,y∈X · 
 = {mxy}x,y∈X · ({qxy}x,y∈X · 
)) = {mxy}x,y∈X · �

also has the property that �(x) > 0 for all x ∈ X since it is an output of � under the non-annihilating transition matrix
{mxy}x,y∈X . By Proposition 82, the transition matrix {rxy}x,y∈X is non-annihilating as well. �

Though quite elementary, Proposition 80 readily implies subtle and rather general inequalities about the stationary
distributions of the Markov chains for which the last elementary step is selection:

Corollary 84. Let {qxy}x,y∈X and {pxy}x,y∈X denote Markov transition matrices on a finite set X . Fix u and v ∈ X
with u � v where the � and � relations are meant with respect to the matrix {pxy}x,y∈X and an input probability
distribution 
 on X . Denote by � the output distribution of the composed matrix {pxy}x,y∈X · {qxy} (� = {pxy}x,y∈X ·
{qxy}x,y∈X ·
). Then we have �(u)��(v). Suppose, in addition, the matrix {qxy}x,y∈X is non-annihilating. Now, if u � v,
and

(x) > 0 for every x ∈ X then �(u)��(v).

Proof. Since

{pxy}x,y∈X · {qxy}x,y∈X · 
 = {pxy}x,y∈X · ({qxy}x,y∈X · 
) = {pxy}x,y∈X · �,

where � = {qxy}x,y∈X · 
, the desired conclusions follow by applying Proposition 80 to the matrix {pxy}x,y∈X and the
input distribution �. For the second conclusion we use the assumption that {qxy}x,y∈X is non-annihilating to deduce
that �(x) > 0 for every x. �

As an almost immediate consequence we deduce the following fact:

Corollary 85. Let {qxy}x,y∈X , {mxy}x,y∈X and {pxy}x,y∈X denote Markov transition matrices on a finite set X . Suppose
that the matrices {qxy}x,y∈X and {pxy}x,y∈X are non-annihilating while the matrix {mxy}x,y∈X has the property that
∀x, y ∈ X mxy > 0. Fix u and v ∈ X with u � v where the � and � relations are meant with respect to the matrix
{pxy}x,y∈X . Then the Markov chain determined by either one of the composed matrices {pxy}x,y∈X · {mxy}x,y∈X ·
{qxy}x,y∈X or {pxy}x,y∈X · {qxy}x,y∈X · {mxy}x,y∈X is irreducible. Let � denote the unique stationary distribution of
the composed chain. Then we have �(u)��(v). Suppose, in addition, the matrix {qxy}x,y∈X is non-annihilating. Now,
if u � v, and 
(x) > 0 for every x ∈ X then �(u)��(v).
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Proof. The irreducibility of the composed chain is left as an exercise for the reader. As a hint, the reader may notice that
from the assumptions that {mxy}x,y∈X has all positive entries while {pxy}x,y∈X and {qxy}x,y∈X are non-annihilating,
it follows that every one of the composed matrices has all positive entries and, hence, determines an irreducible
Markov chain. The second conclusion follows from the fact that {pxy}x,y∈X is the leftmost matrix in the composition
by applying Corollary 84 to the matrix {pxy}x,y∈X · {axy}x,y∈X where {axy}x,y∈X = {mxy}x,y∈X · {qxy}x,y∈X or
{axy}x,y∈X = {qxy}x,y∈X · {mxy}x,y∈X with � being the input distribution which is then also the output distribution by
stationarity. The condition of Corollary 84 is satisfied thanks to Corollary 83. �

When applying Corollary 85 we have in mind that {qxy}x,y∈X is the Markov transition matrix corresponding to
recombination (i.e. a sub-algorithm determined by a single elementary step of type 2: see Definitions 10 and 7),
{pxy}x,y∈X is the Markov transition matrix corresponding to selection (i.e. a sub-algorithm determined by a single
elementary step of type 1: see Definition 4) and {mxy}x,y∈X is the Markov transition matrix corresponding to mutation.
In order to apply Proposition 80 to the case of fitness-proportional selection we need to determine the relation � and
� for this special case. Although this task is not difficult, it requires a careful “bookkeeping” analysis. This will be
the subject of the next section. We end the current section with an immediate consequence (basically a restatement) of
Corollary 85 12 :

Corollary 86. Suppose we are given an evolutionary algorithm A determined by the elementary steps s1, s2 and s3
where s1 are and s2 are any elementary step (usually one of them is selection and the other is mutation) which define
non-annihilating Markov transition matrices and such that one of these matrices has all positive entries, while s3 is the
elementary step of type 1, i.e. selection. As before, let {pxy}x,y∈X denote the Markov transition matrix determined by
the elementary step s3 and � and � are the defined with respect to the transition matrix {pxy}x,y∈X . Then the Markov
chain determined by the algorithm A with state space X = �m is irreducible and its unique stationary distribution �
satisfies �(x)��(y) and �(x) > �(y) whenever x � y and x � y, respectively.

11. What are the relations � and � for the case of fitness-proportional selection?

This section is devoted to classifying the relations � and � for the case of fitness-proportional selection. Although
this task is not difficult, it requires a careful step-by-step analysis. The reader who is interested only in the net results
can read only Definitions 87 and 89, Example 90, Theorem 96 followed by Examples 97, 98, 99 and 100 and Theorem
101 which is illustrated by Example 102. It is recommended (but not essential for understanding) that the reader does
not omit the discussion between Example 100 and Theorem 101. We also strongly recommend that the reader makes
him/herself familiar with Lemma 88 since this fact is rather simple and reveals a very important step in the classification
process.

Definition 87. Fix a population x = (x1, x2, . . . , xm) ∈ �m and denote by I (x) = {x|x = xi for some i with 1� i�m}
the set of all individuals in the population x.

Lemma 88. Given populations x and y, we have S(x) ⊇ S(x) if and only if I (x) ⊆ I (y). In particular, a necessary
condition for x � y is that I (x) ⊆ I (y). Moreover, if I (x) � I (y) then x � y.

Proof. Since individuals can only disappear (and new individuals cannot appear) upon the completion of the elementary
step of fitness-proportional selection (see Definition 4) it follows immediately that for any populations z and w we
have pz,w�0 if and only if I (z) ⊇ I (w). In other words S(w) = {z|I (z) ⊇ I (w)}. It follows immediately now that
if I (y) ⊇ I (x) then S(x) ⊇ S(y). On the other hand, if S(x) ⊇ S(y), then, since y ∈ S(y) ⊆ S(x) we also have
I (y) ⊇ I (x) according to the characterization given above. We deduce now that I (y) ⊇ I (x) if and only if S(x) ⊇ S(y).
In particular, it follows immediately from the previous statement that I (y) � I (x) if and only if S(x)�S(y). All of the
remaining conclusions follow immediately from Definition 79. �

12 It is worth mentioning that fitness-proportional selection is not the only possible type of selection. Other elementary steps of type 1 include, for
instance, tournament selection and rank selection.
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Definition 89. Given a population x = (x1, x2, . . . , xm) and an individual x ∈ I (x), denote by n(x, x) = |{i|x = xi}|
the number of times x occurs in the population x.

Example 90. Suppose

x = (a, a, a, b, c, a, b, b, b) and y = (b, c, c, c, a, b, b, d, b).

Then I (x) = {a, b, c} and I (y) = {a, b, c, d}. We also have

n(x, a) = n(x, b) = 4 and n(x, c) = 1.

Likewise,

n(y, a) = 1, n(x, b) = 4, n(x, c) = 3 and n(x, d) = 1.

According to Definition 4, when performing fitness-proportional selection, the individuals are chosen independently
with probability proportional to their fitness. Thus, if z = (z1, z2, . . . , zm) and x = (x1, x2, . . . , xm) is obtained from
z by performing fitness-proportional selection, then the probability that xi = z for a given z ∈ I (z) is n(z,z)·f (z)∑m

i=1f (zi )
. Thus

pz,x = ∏m
j=1

n(z,xj )·f (xj )∑m
i=1f (zi )

. Moreover, every x ∈ I (x) occurs in the above product n(z, xj ) times while every z ∈ I (z)

occurs n(z, z) times in the denominator sum of each of the multiples and so we deduce the following:

Proposition 91. Given populations x = (x1, x2, . . . , xm) and z = (z1, z2, . . . , zm) we have

pzx =

⎧⎪⎨
⎪⎩
(

1∑
z∈I (z)n(z, z) · f (z)

)m ∏
x∈I (x)

(n(z, x))n(x,x) · (f (x))n(x,x) if I (x) ⊆ I (z),

0 otherwise.

In particular, pzx does not depend on the way the individuals in z and in x are ordered, but only depends on the sets
I (x) and I (x) and the numbers n(x, x) for x ∈ I (x) and n(z, z) for z ∈ I (z). In other words, if 
 and � demote
arbitrary permutations of the set {1, 2, . . . , m}, If x
 = (x
(1), x
(2), . . . , x
(m)) and z� = (z�(1), z�(2), . . . , z�(m)) then
pz
x� = pzx.

In order to continue the investigation of the � relation for the case of fitness-proportional selection, it is convenient
to introduce the following notions:

Definition 92. Given populations x and y of size m let

I (y|x) = {y|y ∈ I (y), n(y, y) > n(x, y)}
(if y /∈ I (x) then n(x, y) = 0). Moreover, for y ∈ I (y|x) let �(y|x, y) = n(y, y) − n(x, y)}.

Example 93. Continuing with Example 90, we have n(x, x) > n(y, x) if and only if x = a and so I (x|y) = {a}.
Likewise, n(y, y) < n(y, y) if and only if y = c or y = d (since d /∈ I (x) according to Definition 92 we have n(x, d) =
0 < 1 = n(x, d)) and so I (y|x) = {c, d}. Moreover, we also have �(x|y, a) = 4 − 1 = 3, �(y|x, c) = 3 − 1 = 2 and
�(y|x, d) = 1 − 0 = 1.

The sets I (y|x) play a crucial role in discovering a sufficient and necessary condition for a population x � y in view
of the fact below:

Lemma 94. Given populations z, y and x with I (z) ⊇ I (y) ⊇ I (x), have the following:∑
x∈I (x|y)

�(x|y, x) = ∑
y∈I (y|x)

�(y|x, y),
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pzx

pzy
=
∏

x∈I (x|y)(n(z, x))�(x|y,x) · (f (x))�(x|y,x)∏
y∈I (y|x)(n(z, y))�(y|x,y) · (f (y))�(y|x,y)

.

Proof. Given populations z, y and x, from Definition 92 it follows that for every x ∈ I (x) we have

n(x, x) =
{

min(n(x, x), n(y, x)) if x /∈ I (x|y),

min(n(x, x), n(y, x)) + �(x|y, x) if x ∈ I (x|y).

Likewise, for every y ∈ I (y) we have

n(y, y) =
⎧⎨
⎩

min(n(x, y), n(y, y)) if y /∈ I (y|x) and y ∈ I (x),

min(n(x, x), n(y, x)) + �(y|x, x) if y ∈ I (y|x) and y ∈ I (x),

�(y|x, x) if y ∈ I (y|x) and y /∈ I (x).

Since there are totally m elements in every population we must have∑
y∈I (y)

n(y, y) = ∑
x∈I (y)

n(x, x) = m.

Rearranging the terms in both sides of the last equation according to the observations made above, we obtain∑
x∈I (x)

min(n(x, x), n(y, x)) + ∑
x∈I (x|y)

�(x|y, x) = ∑
y∈I (x)

min(n(x, y), n(y, y)) + ∑
y∈I (y|x)

�(y|x, y)

and the first desired equation follows by subtracting
∑

x∈I (x) min(n(x, x), n(y, x)) from both sides. The second equation
follows by rearranging the multiples in the formula of Proposition 91 according to the equation above and letting

k(z) = ( 1∑
z∈I (z)n(z,z)·f (z)

)m so that we can write

pzx = k(z) · ∏
x∈I (x)

(n(z, x))min(n(x,x),n(y,x)) · (f (x))min(n(x,x),n(y,x)))
∏

x∈I (x|y)

(n(z, x))�(x|y,x) · (f (x))�(x|y,x))

and, likewise,

pzy = k(z) · ∏
y∈I (x)

(n(z, y))min(n(x,y),n(y,y)) · (f (y))min(n(x,y),n(y,y)))
∏

y∈I (y|x)

(n(z, y))�(y|x,y) · (f (y))�(y|x,y)).

Now the common factor

k(z) · ∏
x∈I (x)

(n(z, x))min(n(x,x),n(y,x)) · (f (x))min(n(x,x),n(y,x)))

on the top and the bottom of the ratio pzx
pzy

is canceled out and we obtain the desired formula. �

In fact, according to Lemma 88, we have x � y 
⇒ I (y) ⊇ I (x). Moreover, since new individuals cannot appear
as a result of selection, whenever z ∈ S(y) (see Definition 78 for the meaning of S(y)) we must have I (z) ⊇ I (y).
Therefore, x � y if and only if I (y) ⊇ I (x)) and ∀z such that I (z) ⊇ I (y) we have pzx �pzy. The condition pzx �pzy
can be restated equivalently as pzx

pzy
�1. But, thanks to Lemma 94, we have

pzx

pzy
=

∏
x∈I (x|y)(n(z, x))�(x|y,x) · (f (x))�(x|y,x)∏
y∈I (y|x)(n(z, y))�(y|x,y) · (f (y))�(y|x,y)

=
∏

x∈I (x|y)(n(z, x))�(x|y,x)∏
y∈I (y|x)(n(z, y))�(y|x,y)

·
∏

x∈I (x|y)(f (x))�(x|y,x)∏
y∈I (y|x)(f (y))�(y|x,y)

�1

⇐⇒
∏

x∈I (x|y)(n(z, x))�(x|y,x)∏
y∈I (y|x)(n(z, y))�(y|x,y)

�
∏

y∈I (y|x)(f (y))�(y|x,y)∏
y∈I (x|y)(f (x))�(x|y,x)

.

Observing that∏
y∈I (y|x)(f (y))�(y|x,y)∏
y∈I (x|y)(f (x))�(x|y,x)

does not depend on z at all we deduce the following:
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Lemma 95. Given populations x and y of size m, we have x � y if and only if I (y) ⊇ I (x) and

min
I (z)⊇I (x)

∏
x∈I (x|y)(n(z, x))�(x|y,x)∏
y∈I (y|x)(n(z, y))�(y|x,y)

�
∏

y∈I (y|x)(f (y))�(y|x,y)∏
y∈I (x|y)(f (x))�(x|y,x)

.

Thanks to Lemma 95, the rest of our analysis boils down to constructing a population z which minimizes the
ratio over z with I (z) ⊇ I (y). In view of Proposition 91, without loss of generality, we can assume that the first
|I (y)| individuals of z enumerate the elements of I (y), i.e. z = {y1, y2, . . . , y|I (y)|, z1, z2, . . . , zm−|I (y)|}. Our goal
is then to select z1, z2, . . . , zm−|I (y)| in a way which minimizes this ratio. First, it is worth pointing out, that unless
y = x
 for some permutation 
 of {1, 2, . . . , m} in the sense described in Proposition 91 (in which case we trivially
have x � y thanks to Proposition 91), we can assume that I (y|x) 
= ∅. (Indeed, according to Lemma 94, we have∑

x∈I (x|y)�(x|y, x) = ∑
y∈I (y|x)�(y|x, y). If I (y|x) 
= ∅ then

∑
x∈I (x|y)�(x|y, x) = ∑

y∈I (y|x)�(y|x, y) = 0 which

forces I (x|y) = ∅. But then for every y ∈ I (y) we have y /∈ I (y|x) 
⇒ I (y) ⊆ I (x) and n(y, y)�n(x, y) and,
since I (x|y) = ∅, also n(y, y)�n(x, y). Summarizing, we obtain n(y, y) = n(x, y) ∀y ∈ I (y) = I (y) which means
that y = x
.) Next, we observe that ∀i we have zi ∈ I (y|x). (If not, then for some i we have zi /∈ I (y|x). In such a
case, since replacing zi with an element of I (y|x) 
= ∅ will increase the denominator and either decrease (in case if
zi ∈ I (x|y)) or not influence the numerator in any way (since it is clear from Definition 92 that I (y|x) ∩ I (x|y) = ∅)
of the ratio on the L.H.S. of the inequality of Lemma 95. This in turn would only decrease this ratio so that z cannot
minimize it.) Since zis are chosen from the set I (y|x), and I (y|x) ∩ I (x|y) = ∅, for every x ∈ I (x|y) x 
= zi for
1� i�m − |I (y)| and x = yj for a unique j with 1�j � |I (y)| (since I (y) ⊇ I (x) and y1, y2, . . . , y|I (y)| enumerate
the elements of I (y)) we have n(z, x) = 1 for every x ∈ I (x|y). But then the numerator of the ratios on the L.H.S. of
Lemma 95,

∏
x∈I (x|y)(n(z, x))�(x|y,x) = 1 and the L.H.S. of the inequality in Lemma 94 simplifies to

min
z∈Q

1∏
y∈I (y|x)(n(z, y))�(y|x,y)

,

where Q = {z|z = (y1, y2, . . . , y|I (y)|, z1, z2, . . . , zm−|I (y)|), y1, y2, . . . , y|I (y)| enumerate I (y) and zi ∈ I (y|x)}.
Moreover, notice that zis can be chosen arbitrarily from the set I (y|x) while for every y ∈ I (y|x) there exists exactly
one 1�j � |I (y)| with y = yj . We then have n(z, y) = 1 + |{i|1� i�m − |I (y)|, zi = y}| and

∑
y∈I (y|x)n(z, y) =

|I (y|x)| + m − |I (y)|. On the other hand, given a finite sequence of natural numbers {ny}y∈I (y|x) satisfying the
constraint

∑
y∈I (y|x)ny = |I (y|x)| + m − |I (y)|, we can construct z = {y1, y2, . . . , y|I (y)|, z1, z2, . . . , zm−|I (y)|} with

n(z, y) = ny by picking exactly ny − 1 zis equaling to y for every y ∈ I (y|x). All of this is summarized in the main
theorem below:

Theorem 96. Given populations x and y of size m, we have x � y with respect to fitness-proportional selection as
described in Definition 4, if and only if I (y) ⊇ I (x) and

max
{ny }y∈I (y|x)∈Q(y|x)

∏
y∈I (y|x)

(ny)
�(y|x,y) �

∏
x∈I (x|y)(f (x))�(x|y,x)∏
y∈I (y|x)(f (y))�(y|x,y)

,

where

Q(y|x) =
{

{ny}y∈I (y|x)|∀y ∈ I (y|x)ny ∈ N,
∑

y∈I (y|x)

ny = |I (y|x)| + m − |I (y)|
}

.

Below we illustrate Theorem 96 with a few simple examples:

Example 97. Continuing with Examples 90 and 93, notice that we do have I (y)�I (x) and |I (y|x)| + m − |I (y)| =
2 + 9 − 4 = 7. so according to Theorem 96 we have x � y if and only if

f (a)3

f (c)2 · f (d)
� max

nc+nd=7,nc �1 and nd �1
n2

c · nd.
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There are six possible pairs (nc, nd) over which we want to maximize the product n2
c ·nd . These are (1, 6), (2, 5), (3, 4),

(4, 3), (5, 2) and (6, 1). Moreover, by symmetry, since the power of the coefficient nc in the product is bigger than that
of nd we only have to cheque 3 of these pairs: (4, 3), (5, 2) and (6, 1). The corresponding products are 42 · 3 = 48,

52 ·2 = 50 and 62 ·1 = 36. Then biggest one among these is 50 and so we deduce that x � y if and only if f (a)3

f (c)2·f (d)
�50.

Example 98. Suppose y = {y1, y2, . . . , ym} with yi 
= yj for i 
= j (i.e. y is a population consisting of distinct
individuals). Now let x = {x1, x2, . . . , xm} with I (y) ⊇ I (x). Notice that in this example I (y|x) = I (y) − I (x)

while I (x|y) = {x| there is more than one i s.t. x = xi}. Moreover, ∀x ∈ I (x|y) we have �(x|y, x) = n(x, x) − 1
(since n(y, x) = 1) and ∀y ∈ I (y|x) we have n(y, y) = 1 so that 0 < �(y|x, y)�n(y, y) and we have �(y|x, y) =
1. Finally, observe that the set Q(y|x) = {{1, 1, 1, . . . , 1}} since |I (y)| = m and we must have

∑
y∈I (y|x)ny =

|I (y|x)| + m − |I (y)| = |I (y|x)| and ny �1 which forces ny = 1 ∀y ∈ I (y|x). According to Theorem 96 we have

x � y if and only if

∏
x∈I (x|y)(f (x))�(x|y,x)∏
y∈I (y|x)(f (y))�(y|x,y)

�1 if and only if

∏
x∈I (x|y)

(f (x))n(x,x)−1 �
∏

y∈I (y|x)

f (y).

Example 99. Continuing with Example 98, suppose, in addition, that there is exactly one individual in x which occurs
more than once in this population. That is, without loss of generality, let x = (y1, y2, . . . , yk, ym, ym, . . . , ym) and
y = (y1, y2, . . . , yk, yk+1, . . . , ym) where yi 
= yj for i 
= j and k < m. This is a special case of Example 98 where
I (x|y) = {ym} and I (y|x) = {yk+1, yk+2, . . . , ym−1}. According to the conclusion of Example 98 we have x � y if
and only if

(f (ym))m−(k+1) �
m−(k+1)∏

i=1
f (yk+i ) if and only if f (ym)� m−(k+1)

√
m−(k+1)∏

i=1
f (yk+i )

which, in words, says that x � y if and only if the fitness of the unique repeated individual of x is at least as large as
the geometric mean of the fitness of all the individuals in y which do not occur in x. It is also worth pointing out that
even if the inequality above is an equality we still have x � y since I (y)�I (x) and so S(x) � S(y). In particular, even
if the fitness function is flat, the relation � 
= ∅ in case one uses fitness-proportional selection.

Example 100. Now consider an “opposite extreme” to Example 98 (in the sense of the diversity of elements in
the population) where I (y) = I (x) = {x, y}. Let us say n(x, x) = k (which implies that n(x, y) = m − k) and
n(y, x) = l < k (hence n(y, y) = m − l). It follows then that I (x|y) = {x} and I (y|x) = {y}. Moreover, �(y|x, y) =
�(x|y, x) = k−l. Since |I (y|x)| = |{y}|, follows that Q(y|x) = {{k−l}} and which makes the maximization procedure

trivial. According to Theorem 96, we have x � y if and only if (k − l)k−l � f (x)k−l

f (y)k−l if and only if f (x)�(k − l) · f (y).

Theorem 96 tells us that in order to cheque if x � y with respect to fitness-proportional selection we need to solve
an integer optimization problem subject to linear constraints. Examples 98, 99 and 100 are particularly simple mainly
because the sets Q(y|x) were singletons so there was not much choice for the maximizing domain element. Although
we do not intend to pursue studying this optimization problem in much detail since it is not the main subject of the
current paper, it is worth mentioning that the method of Lagrange multipliers allows us to give an upper bound on the

max
{ny }y∈I (y|x)∈Q(y|x)

∏
y∈I (y|x)

(ny)
�(y|x,y)

by letting ny’s range over positive real numbers subject to the linear constraint
∑

y∈I (y|x)ny = |I (y|x)| + m − |I (y)|.
Moreover, if one wants an exact solution then the method allows to narrow down the choice of suitable integer sequences
significantly: Indeed, according to the method of Lagrange multipliers, if any local maximum of a differentiable function
f (−→n ) on an open set D ⊆ Rn subject to the constraint g(−→n ) = c where g is another differentiable function on D is
achieved at a point q, then we must have ∇f (q) = 
 · ∇g(q) where ∇ denotes the gradient (derivative of a real-valued
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function) operator and 
 is some constant proportionality coefficient (in other words, the gradients of f and g evaluated

at the point q must be collinear vectors). In our case f, g : U ⊆ RI (y|x) → R where U = {−→n |−→n ∈ RI (y|x) and ny �0}
are defined according to the following formulas: f (−→n ) = ∏

y∈I (y|x)(ny)
�(y|x,y) and g(−→n ) = ∑

y∈I (y|x)ny . Our goal is
to maximize f subject to the constraint g(−→n ) = |I (y|x)| + m − |I (y)| where −→n = {ny}y∈I (y|x). Clearly ∀ny we have
�g

�ny
= 1 and so the condition ∇f (q) = 
 · ∇g(q) boils down to the condition �f

�nu
= �f

�nv
for every u and v ∈ I (y|x).

For any given w ∈ I (y|x) we have

�f

�nw

= �(y|x, w) · (nw)�(y|x,w)−1 · ∏
y∈I (y|x),y 
=w

(ny)
�(y|x,y).

Therefore, the equation �f

�nu
= �f

�nv
holds for every u and v ∈ I (y|x) if and only if for every u and v ∈ I (y|x) we

have �(y|x, u) · nv = �(y|x, v) · nu if and only if nu

�(y|x,u)
= nv

�(y|x,v)
for all u and v ∈ I (y|x). In other words, the

equation �f

�nu
= �f

�nv
holds for every u and v ∈ I (y|x) if and only if the ratio ny

�(y|x,y)
= � is a constant independent of

y ∈ I (y|x). Moreover, this also gives us nu = nv

�(y|x,v)
· �(y|x, u) = � · �(y|x, u) for every u ∈ I (y|x) and, according

to the constraint, we also have∑
y∈I (y|x)

ny = � · ∑
y∈I (y|x)

�(y|x, y) = |I (y|x)| + m − |I (y)|

which gives

� = |I (y|x)| + m − |I (y)|∑
y∈I (y|x)�(y|x, y)

.

Notice that the point −→q with coordinates nu = |I (y|x)|+m−|I (y)|∑
y∈I (y|x)�(y|x,y)

· �(y|x, y) is the unique point which satisfies

∇f (−→q ) = 
 · ∇g(−→q ). We argue that this point must be the global maximum of the function f on the domain D =
{ny |ny �0} ∩ g−1({|I (y|x)| + m − |I (y)|}) which is a closed and bounded subset of RI (y|x) and, hence, is compact.
Clearly the function f is continuous on D and, since D is compact it must achieve a minimum and a maximum on D.
The only interesting case to consider is when |I (y|x)| > 1 (indeed, if |I (y|x)| = 1, then D is a singleton set whose
only point is −→q so that it is trivially a global maximum). If maximum of f was not the point −→q then it must be the point
on the boundary of D (since it is the only interior point satisfying ∇f (−→q ) = 
 · ∇g(−→q )). But every boundary point of
D has at least one zero coordinate so that f (−→y ) = 0 for every boundary point −→y of D. On the other hand f (−→q ) > 0.
Thus we deduce that f achieves a global maximum at the point −→q . We then have the following sufficient condition
for x � y:

Theorem 101. Given populations x and y of size m, we have x � y with respect to fitness-proportional selection as
described in Definition 4, if I (y) ⊇ I (x) and

∏
x∈I (x|y)(f (x))�(x|y,x)∏
y∈I (y|x)(f (y))�(y|x,y)

�
(

|I (y|x)| + m − |I (y)|∑
y∈I (y|x)�(y|x, y)

)∑
y∈I (y|x)�(y|x,y)

· ∏
y∈I (y|x)

�(y|x, y)�(y|x,y)

Example 102. Continuing with Examples 90, 93 and 97, according to Theorem 101 we have x � y (recall that we do
have I (y) ⊇ I (y)) if

f (a)3

f (c)2 · f (d)
�
( |I (y|x)| + m − |I (y)|

�(y|x, c) + �(y|x, d)

)�(y|x,c)+�(y|x,d)

· �(y|x, c)�(y|x,c) · �(y|x, d)�(y|x,d)

=
(

7

3

)3

· 22 · 11 = 50.(814).

Notice that the bound is only slightly larger than the exact one given in Example 97. Moreover, although Theorem 101
itself only provides a numerical bound, the method of Lagrange multipliers which was used to establish Corollary 101,
suggests how one can narrow down the search for the optimizing choice of coefficients by considering only the pairs
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(nc, nd) with integer coordinates which are closest to the point with coordinates xu = |I (y|x)|+m−|I (y)|∑
y∈I (y|x)�(y|x,y)

· �(y|x, u) in

“every direction”. In our specific example, this point is ( 7
3 · 2, 7

3 · 1) = (4 2
3 , 2 1

3 ) and so the only potential candidates
are (4, 3) and (5, 2). We saw in 97 that the point (5, 2) is the winner. Of course, this “narrowing down” procedure is
particularly useful for the cases when |I (y|x)| is a large number.

12. What can be said when the last elementary step is mutation?

Although not nearly as much can be said when the last elementary step is mutation, the following result is a rather
general “anti-communism” theorem. It should be noted that a much stronger and more informative result which depends
on the assumption that crossover is “pure” in the sense of [9] (meaning that identical pair of parents produce a pair of
the same identical children) shall be established in a sequel paper.

Theorem 103. Let {qxy}x,y∈X and {pxy}x,y∈X denote Markov transition matrices on a finite set X .
Suppose {qxy}x,y∈X is non-annihilating in the sense of Definition 82. Also let {{m�

xy}x,y∈X |0 < � < 1} denote an
indexed family of Markov transition matrices such that for every � > 0 there exists r > 0 such that for all � < r we
have ‖{m�

xy}x,y∈X − I‖ < � for some norm on the finite-dimensional vector space of |X | × |X | matrices. 13 Suppose

also that for all � > 0 with � < 1 the composed Markov chain M(�) = {m�
xy}x,y∈X · {pxy}x,y∈X · {qxy}x,y∈X is

irreducible. Let � denote the relation associated with the Markov transition matrix {pxy}x,y∈X (see Definition 79).
Finally, let �� denote the unique stationary distribution of the Markov chain M(�). Then, for all small enough �, either
there exists a state z ∈ X such that ��(z) < 1

|X | or, whenever x � y, we also have ��(x) > ��(y). In particular, as
long as � 
= ∅, the stationary distribution of the Markov chain determined by the transition matrix M(�) is never
uniform for all sufficiently small “mutation rates” �.

Proof. Denote by � = {{
z}z∈X |∑z∈X 
z = 1
z �0} the probability simplex and let �1/|X | = {{
z}z∈X |∑z∈X 
z =
1, 
z � 1

2|X | }. For any given x � y ∈ X consider a function fx,y : �1/|X | → R which sends a given 
 ∈ �1/|X | to the
number

{pxy}x,y∈X · {qxy}x,y∈X (
)(x) − {pxy}x,y∈X · {qxy}x,y∈X (
)(y) > 0

thanks to Proposition 84. From basic point-set topology we know that the set �1/|X | is a compact topological space (it
is a closed and bounded subset of R|X | with |X | < ∞) and, moreover, the function fx,y is continuous (it is a restriction
of a linear map). It follows then that the function fx,y achieves a minimum, min(fx,y), on �1/|X |. Thanks to Proposition
84 this minimum must be a positive number since the matrix {qxy}x,y∈X is non-annihilating and every 
 ∈ � 1

|X |
has

the property that 
(z)� 1
2|X | > 0 for every z ∈ X . We now conclude that

� = min{min{fx,y(
)|
 ∈ � 1
|X |

}|x � y ∈ X } > 0.

Now choose r > 0 small enough so that whenever 0 < � < r we have

‖{m�
xy}x,y∈X − I‖op < min

{
�

3
,

1

3|X |
}

.

Choose any � satisfying 0 < � < r . Now there are exactly two mutually exclusive and exhaustive cases:
Case 1: ∃n ∈ N such that {pxy}x,y∈X · {qxy}x,y∈X · M(�)n(�) ⊆ �1/|X |.
In this case, let �� = {pxy}x,y∈X · {qxy}x,y∈X · M(�)n(��). Since �� is the stationary distribution of M(�) (see the

statement of the theorem), it is also the stationary distribution of M(�)n+1 and it follows that

{m�
xy}x,y∈X (��) = {m�

xy}x,y∈X · ({pxy}x,y∈X · {qxy}x,y∈X · M(�)n(��))

= ({m�
xy}x,y∈X · {pxy}x,y∈X · {qxy}x,y∈X ) · M(�)n(��) = M(�)n+1(��) = ��

13 It is a fact that all the norms on finite-dimensional vector spaces are equivalent. It is then irrelevant which norm we consider. For practical
applications it is convenient to use ‖{axy}x,y∈X ‖max = max{|axy||x, y ∈ X }. For the purpose of proving the theorem it seems most convenient to

use the operator norm defined as ‖{axy}x,y∈X ‖op = sup{‖{axy}x,y∈X (�v)‖|‖�v‖ = 1} where ‖(v1, v2, . . . , v|X |)‖ = ∑|X |
i=1|vi |.
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and so

‖�� − ��‖ = ‖(I − {m�
xy}x,y∈X )(��)‖�‖I − {m�

xy}x,y∈X ‖op <
�

3
.

In particular, ∀x � y ∈ X we have

|��(x) − ��(x)| <
�

3
and |��(y) − ��(y)| <

�

3

so that

��(x) > ��(x) − �

3
and ��(y) < ��(y) + �

3

and, finally,

��(x) − ��(y) > ��(x) − �

3
−
(
��(y) + �

3

)
= ��(x) − ��(y) − 2�

3
>

�

3
> 0

thanks to the choice of �, and it follows, in this case, that ��(x) > ��(y).
Case 2: ∀n ∈ N we have {pxy}x,y∈X · {qxy}x,y∈X · M(�)n(�)��1/|X |.
In this case, first we claim that for every n ∈ N there exists a distribution � ∈ M(�)n+1(�) such that �(z) < 5

6|X | for

some z ∈ X . Indeed, the assumption of case 2 says that there exists a distribution 
 ∈ {pxy}x,y∈X ·{qxy}x,y∈X ·M(�)n(�)

such that 
(z) < 1
2X . But then � = {m�

xy}x,y∈X (
) is the distribution with the desired property. Indeed, since 
 ∈
{pxy}x,y∈X · {qxy}x,y∈X · M(�)n(�), it follows that 
 = {pxy}x,y∈X · {qxy}x,y∈X · M(�)n(�) for some distribution
� ∈ �. But then

� = {m�
xy}x,y∈X · ({pxy}x,y∈X · {qxy}x,y∈X · M(�)n(�)) = ({m�

xy}x,y∈X · {pxy}x,y∈X · {qxy}x,y∈X ) · M(�)n(�)

= M(�)n+1(�) ∈ M(�)n+1(�).

Moreover, since � < r we have

|�(z) − 
(z)|�‖� − 
‖ = ‖{m�
xy}x,y∈X (
) − 
‖ = ‖({m�

xy}x,y∈X − I )(
)‖�‖({m�
xy}x,y∈X − I )‖op <

1

3|X | .

But then we also have �(z)�
(z) + 1
3|X | < 1

2|X | + 1
3|X | < 5

6|X | as desired. So we deduce every one of the sets

M(�)n+1(�) contains a point �n+1 with �n+1(z) < 5
6|X | for some z ∈ X . It is well-known from Markov chain

theory that the sequence of convex compact sets {M(�)n+1(�)}∞n=1 is nested (M(�)n+1(�) ⊇ M(�)n+2(�)) and⋂∞
n=1M(�)n+1(�) = {��} where �� is the unique stationary distribution of the Markov chain determined by the

matrix M(�). Also, all the elements of the sequence {�n+1}∞n=1 inside of the compact set �, and, hence, the sequence
{�n+1}∞n=1 has a convergent subsequence {�(n+1)k

}∞k=1. But then �(n+1)k
→ �� as k → ∞ (since the limit point

must lie inside of every one of the compact sets M(�)n+1(�) and there intersection consists of a single point ��).
Moreover, notice that since X is a finite set while {�(n+1)k

}∞k=1 is an infinite sequence, according to the “pigeonhole
principle” it follows that ∃z ∈ X such that infinitely many elements of the subsequence {�(n+1)k

}∞k=1 have the property

that {�(n+1)k
}∞k=1(z) < 5

6|X | . In other words, ∃z ∈ X for which we can extract a subsequence {�(n+1)ks
}∞s=1 of the

convergent sequence {�(n+1)k
}∞k=1 with the property that �(n+1)ks

(z) < 5
6|X | . In particular, �(n+1)ks

(z) → ��(z) as

s → ∞ and it follows that ��(z)� 5
6|X | < 1

|X | which is what we were after. �

When applying Theorem 103 we have in mind that {qxy}x,y∈X is the Markov transition matrix corresponding to
recombination (i.e. a sub-algorithm determined by a single elementary step of type 2: see Definitions 10 and 7),
{pxy}x,y∈X is the Markov transition matrix corresponding to selection (i.e. a sub-algorithm determined by a single
elementary step of type 1: see Definition 4) and {m�

xy}x,y∈X is the Markov transition matrix corresponding to mutation
with some “rate” �. For the purpose of the current section, thanks to the generality of Theorem 103, it is sufficient to
assume only that m�

xy > 0∀x, y and that max({m�
xy|x 
= y ∈ X }) → 0 as � → 0. The following proposition tells us

when mutation determined by the reproduction 1-tuple (�, M, p) satisfies conditions of Theorem 103:
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Definition 104. An ergodic family of mutations is an indexed family of ergodic mutation 1-tuples (see Definition 67)
of the form {(�, M, p�)}�∈(0,1) where p�(1�)�1 − �.

Proposition 105. Suppose {(�, M, p�)}�∈(0,1) is an ergodic family of mutations as in Definition 104. Then ∀� ∈
(0, 1) the Markov transition matrix {m�

xy}x,y∈X associated to the sub-algorithm determined by the mutation 1-tuple

(�, M, p�) has the property that ‖I − {m�
xy}x,y∈X ‖ → 0 as � → 0.

Proof. Notice that ‖I − {m�
x,y}x,y∈X ‖ = max{m�

xy|x 
= y} and so it suffices to show that for every x 
= y we have

m�
x,y → 0 as � → 0 (since the state space is finite). Notice also that ∀x 
= y we have 0 < m�

x,y < 1 − m�
x,x. It now

suffices to show only that ∀x ∈ X = �m we have 1 − m�
x,x → 0 as � → 0, or, equivalently, that ∀x ∈ X = �m

we have m�
x,x → 1 as � → 0. If we write x = (x1, x2, . . . , xm) ∈ �m then, since 1�(xi) = xi we see that

1�m�
x,x �(p�(1�))m �(1 − �)m → 1 as � → 0 and the desired conclusion follows. �

Combining Theorem 103 with the conclusion of Example 99 (saying that � 
= ∅ for fitness-proportional selection)
we deduce the following:

Corollary 106. Suppose for every 0 < � < 1 we are given an evolutionary algorithm A� determined by the cycle
s1, s2, s

�
3 where s1 is any elementary step (but usually it is an elementary step of type 2), s2 is the elementary step of

type 1 (fitness-proportional selection as described in Definition 4) and s�
3 is an elementary step of type 2 determined

by an ergodic mutation 1-tuple chosen from an ergodic family of mutations (see Definition 104). Then the Markov
chain determined by the algorithm A� with state space X = �m is irreducible and, for all small enough �, the unique
stationary distribution of this Markov chain is not uniform.

Corollary 106 tells us, in particular, that the stationary distribution of the Markov chain associated to an algorithm
A with the second elementary step being of type 1 (selection) is never uniform, even when the fitness function is flat.
It is still reasonable to conjecture though, that in case of flat-fitness selection, under certain symmetry assumptions on
recombination and mutation, everyone of the individuals in a given population is equally likely to occur “in the long
run” in the sense of Definition 24. Results of this nature (and even stronger) shall be established in the upcoming paper.

13. Conclusions

In the current paper we applied the methods developed in [4] to obtain a schema-based version of Geiringer’s theorem
for nonlinear GP with homologous crossover. The result enables us to calculate exactly the limiting distribution of the
Markov chain associated with the evolution of a finite (fixed size) population under the action of repeated crossover,
or the action of the mixture of crossover and mutation. This is an extension of the results for fixed and variable-length
strings given in [4] for finite populations.

The main result established in [4] applies only in the absence of selection and only when crossover and mutation
are bijective (which is often, but not always the case). In the current paper we established a property of the stationary
distribution of the Markov chain for a rather wide class of EAs. More specifically, we introduced a pre-order relation
on the state space of a Markov chain which allows us to establish rather general inequalities concerning the stationary
distribution of the Markov chain determined by an EA. This pre-order relation depends primarily on selection and
not on the other stages determining an EA. In Section 11 this partial order is completely classified for the case of
fitness-proportional selection in Section 11. More results on this issue, as well as some connection between the infinite
and the finite population Geiringer theorems will appear in a forthcoming paper.
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