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Summary

MicroRNAs (miRNAs) are short regulatory RNAs that direct

repression of their mRNA targets. The miRNA ‘‘seed’’—
nucleotides 2–7—establishes target specificity by mediat-

ing target binding [1–5]. Accurate processing of the miRNA
50 end is thought to be under strong selective pressure [6,

7] because a shift by just one nucleotide in the 50 end of
a miRNA alters its seed sequence, redefining its repertoire

of targets (Figure 1). Animal miRNAs are produced by the
sequential cleavage of partially double-stranded precur-

sors by the RNase III endonucleases Drosha and Dicer,
thereby generating a transitory double-stranded intermedi-

ate comprising the miRNA paired to its partially comple-
mentary miRNA* strand [8, 9]. Here, we report that in flies,

the 50 ends of miRNAs and miRNA* strands are typically
more precisely defined than their 30 ends. Surprisingly,

the precision of the 50 ends of both miRNA and miRNA*
sequences increases after Argonaute2 (Ago2) loading.

Our data imply that either many miRNA* sequences are
under evolutionary pressure to maintain their seed se-

quences—that is, they have targets—or that secondary

constraints, such as the sequence requirements for loading
small RNAs into functional Argonaute complexes, narrow

the range of miRNA and miRNA* 50 ends that accumulate
in flies.

Results and Discussion

We used high-throughput pyrosequencing of 18–30 nt RNAs to
identify miRNAs expressed in Drosophila melanogaster heads
and in cultured Drosophila S2 cells. Among the 120,896 miRNA
reads (66,377 from fly heads; 54,519 from S2 cells), we ob-
served two sources of heterogeneity for the ends of fly miRNAs:
the addition of nucleotides not present in the gene from which
the miRNA is transcribed (nontemplated nucleotides) and
inaccurate or alternative cleavage by Drosha or Dicer. Ap-
proximately 5% of the reads for a typical miRNA contained
nontemplated nucleotides on at least one end (Figure 2A and
Figure S1 available online), most frequently the addition of
a single uridine or adenosine to the 30 end, but longer exten-
sions were also observed, both on the 50 and the 30 ends (Table
S1). Interestingly, longer extensions were also U- and A-rich at
the 30 end, whereas at the 50 end, the 30-most nontemplated nu-
cleotide was frequently a cytidine, and other added nucleo-
tides were typically uridines. This observation could prove to
be useful for the identification of the 50-elongating enzymatic
activity. The nontemplated addition of nucleotides, especially
uridines, to the 30 ends of miRNAs has been reported
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previously in wild-type Caenorhabditis elegans [6] and hen1
mutant Arabidopsis thaliana [10]. Overall, the addition of non-
templated nucleotides to the 50 end of miRNAs was rarer
(w1%; Figure 2A and Table S1).

We also observed a second, more frequent type of hetero-
geneity: variability in the position of the miRNA 50 and 30 ends
within the sequence of the miRNA precursors (Figure 2B).
Nontemplated nucleotides fortuitously matching the tem-
plated sequence are predicted to occur much less often
than the heterogeneity we observe (Table S2). Similar
terminal heterogeneity has been noted for the 30 ends of C.
elegans [6] and the 50 and 30 ends of mouse [11] miRNAs.
The aberrant miRNA termini we observe are likely to reflect
imprecision in precursor cleavage by Drosha and Dicer.
They are unlikely to correspond to degradation products
because we recorded nearly as many miRNA reads that
were longer than the dominant species as were shorter
(Figure S2) and because 93% (S2 cells) and 99% (fly heads)
of sequences of the fly-specific 30 nt 2S ribosomal RNA
(rRNA)—whose termini are expected to be single-
stranded—were full length (Supplemental Discussion). 30

degradation was slightly more common than 50 degradation:
We detected 30 degradation for 1010 reads versus 50 degra-
dation for 201 reads among the 33,505 total 2S rRNA reads
from S2 cells and fly heads combined; five reads corre-
sponded to 2S rRNA trimmed from both ends.

The 50 ends of miRNAs were more precisely defined than
their 30 ends, irrespective of whether the miRNA originated
from the 50 or 30 arm of the pre-miRNA (Figure 3A). Thus, the
difference in cleavage accuracy between the 50 and 30 ends
cannot be attributed to an intrinsic difference in fidelity be-
tween Drosha and Dcr-1. We expected that the 30 ends of
miRNA* strands would be precisely defined because they are
created by the pair of cuts that generates the 50 ends of miRNA
and that the 50 ends of miRNA* strands would be imprecisely
determined because they are created by the pair of cleavages
that generates the highly heterogeneous 30 ends of miRNA. In-
stead, we found that the 50 end of a strand (for example, the
miRNA) was more accurate than the 30 end of the adjacent
strand (in this example, the miRNA*; Figure 3B); these two ex-
tremities are produced by a pair of cuts catalyzed by the same
enzyme.

Current dogma holds that the local sequence or structure of
miRNA precursors is under strong selective pressure to gener-
ate accurate 50 ends because a precise miRNA 50 end directly
establishes the seed sequence and hence the targets of the
miRNA. Because we observe that, in flies, the 50 ends of both
the miRNA and the miRNA* are more precisely determined
than the 30 ends of either strand, this explanation implies that
miRNA* sequences are under selective pressure to establish
a unique seed sequence, implying that they, too, have regula-
tory targets.

It is also possible that both Drosha and Dcr-1—whose ac-
tive sites are homologous—may also be intrinsically more
precise in 50 cleavage than in 30 cutting. A third alternative
is that 50 and 30 ends might be generated with similar, imper-
fect accuracy, but subsequent constraints in RISC loading or
stability select for those small RNAs that begin with
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Figure 1. Inaccurate Processing of the 50 End of

a miRNA Alters its Seed Sequence

miRNA precursors are cleaved by two RNase III

enzymes, Drosha and Dicer, liberating a short du-

plex: In this duplex, the mature miRNA (red) is

paired to a partially complementary small RNA,

the miRNA* (blue), derived from the opposite

arm of the pre-miRNA stem. Inaccurate cleavage

of the miRNA 50 end changes its seed sequence

(underlined).
a particular nucleotide or sequence. The subsequent de-
struction of miRNAs without these 50 features would increase
the apparent accuracy of miRNA 50 ends and retain miRNA 30

heterogeneity. To test this idea, we separately sequenced
small RNAs containing modified 30 termini (Table S3). In flies,
the 30 termini of small RNAs that are loaded into Ago2 [12],
but not those bound to Argonaute1 [13], are 20-O-methylated
by Drosophila Hen1 as the last step in Ago2-RISC maturation
[14]. To sequence small RNAs bearing 20-O-methylated 30

ends, we treated the total small RNA with NaIO4 followed
by b-elimination; this method blocks ligation of adapters to
small RNAs bearing 20,30 hydroxy termini, preventing them
from being sequenced.

Figure 2. Cleavage Inaccuracies Are More Frequent than Nontemplated

Additions

(A) The percentage of reads with nontemplated 50 or 30 extensions was eval-

uated for each miRNA whose sequence was read at least 100 times.

(B) The most abundant 50 and 30 ends were identified for each miRNA, and all

other ends corresponding to the sequence of the primary miRNA transcript

were flagged as ‘‘alternative.’’ The percentage of reads with alternative ends

was then determined for each miRNA read at least 100 times. Note the dif-

ference in the y axis scales in (A) and (B). Box plots follow Tukey’s standard

conventions: A rectangle encloses all data from the first to the third quar-

tiles, a bold horizontal line reports the median, whiskers connected to the

rectangle indicate the largest and smallest nonoutlier data, and outliers

(values distant from the box by more than 1.53 the interquartile range) are

displayed as open circles.

To determine whether the greater accuracy of miRNA and
miRNA* 50 versus 30 ends reflects the constraints of RISC as-
sembly or stability, rather than more accurate 50 versus 30

cleavage by Drosha and Dicer, we compared the terminal het-
erogeneity of miRNA and miRNA* reads from the 30 modified
population to the heterogeneity of the total miRNA and miRNA*
population. As a control, we compared the 30 heterogeneity
between the two populations. For both analyses, we only con-
sidered miRNA or miRNA* strands displaying some heteroge-
neity in the total population. For both fly heads and S2 cells, we
observed a dramatic increase in the precision of the 50—but
not the 30—ends of miRNAs and miRNA* strands upon loading
into Ago2 (Figure 4). We also performed the analysis for those
small RNAs that both had heterogeneous 50 termini and were
specifically enriched in the b-eliminated sequences relative
to the non-b-eliminated set. For the 13 small RNAs (four
miRNAs and nine miRNA*s) meeting these criteria, the 50

ends in the subpopulation of miRNA and miRNA* sequences
loaded into Ago2—i.e., those that were 20-O-methylated—
were again more precisely defined than the 50 ends of the
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Figure 3. miRNA and miRNA* 50 Ends Are More

Precisely Defined than Their 30 Ends

(A) miRNAs originating from the 50 (left panels) or

30 (right panels) arm of their pre-miRNAs were

analyzed separately. For each miRNA, the het-

erogeneity of its termini was calculated as the

mean of the absolute values of the distance

between the 50 or 30 extremity of an individual

templated read and the most abundant 50 or 30

end for that miRNA. Sequences read from RNA

isolated from fly heads and cultured S2 cells

were analyzed separately.

(B) Box plots show the distribution of mean het-

erogeneity for the 50 and 30 ends of miRNA and

miRNA* sequences.

[16, 17] in nested, prechilled sieves (U.S.A. stan-

dard sieve, Humboldt MFG, Chicago, IL), allow-

ing the heads to pass through the top sieve (No.

25), and collecting them on the bottom sieve

(No. 40). S2 cell RNA was prepared from a clonal

line containing the stably integrated GFP trans-

gene (pKF63) and was transiently transfected

with a double-stranded RNA against GFP [18].

RNA Preparation

A amount of 400 mg total RNA was extracted with

the mirVana kit (Ambion), then 18-to-30 nt long

RNAs were gel purified. 2S rRNA was depleted

by hybridization to immobilized DNA oligonucle-

otide (50-biotin-TCA ATG TCG ATA CAA CCC

TCA ACC ATA TGT AGT CCA AGC A-30). A total

of 1.6 nmol of the biotinylated oligonucleotide

was bound to 32 mg M270 Streptabeads (Dynal,

Norway) in 3.2 ml 0.53 SSC for 30 min on ice,

and then the beads were washed with ice-cold

0.53 SSC, resuspended in 8 ml 0.53 SSC, and in-

cubated 5 min at 65�C. Gel-purified RNAs were

diluted with 7 volumes 0.53 SSC to a final volume

of 160 ml and denatured at 80�C for 5 min; then

they were added to the bead suspension and in-

cubated 1 hr at 50�C. Beads were magnetically

captured for 1 min at room temperature, and
same small RNA sequences in the total small RNA population
(Figure S3). We conclude that loading or stabilization of
miRNAs in Ago2, and perhaps Argonaute proteins in general,
imposes a purifying selection on their 50 ends.

The mechanism responsible for the homogenization of 50

ends remains to be determined. We can imagine that the effi-
ciency of Argonaute loading is affected by the nature of the
50 end of a small RNA, much as the stability of its pairing to
the other strand influences this process [15]. The 50 sequence
itself may also play a role in RISC assembly, with some miRNA
variants loaded more efficiently than others, according to the
identity of their 50 nucleotide(s). Alternatively, some Argonaute
complexes might be selectively stabilized after their assembly,
for example, by the presence of a target RNA whose binding
stabilizes those RISCs containing miRNA isoforms with a com-
plementary seed sequence.

Experimental Procedures

Biological Sources

We isolated fly heads by vigorously shaking liquid nitrogen-frozen flies

expressing a long double-stranded hairpin RNA corresponding to white
then the 2S rRNA-depleted supernatant

collected and precipitated with absolute ethanol. Greater than 99% of the

2S rRNA was routinely removed without measurably altering miRNA con-

centration; without the depletion step, nearly all the small RNA reads would

correspond to 2S rRNA. Half the sample was then b-eliminated as described

[19], and half was subject to the same treatment, except that sodium period-

ate was omitted.

Amplification and Pyrosequencing

Adapters were ligated to the small RNA sample, and the resulting library was

amplified by PCR as described [20], except that a truncation mutant of RNA

ligase 2 [Rnl2(1-249) (see [21])] was used for the 30 ligation step; T4 RNA

ligase (Ambion) was used for 50 ligation. The 50 adaptor was 50-dAdTdC

dGdTrA rGrGrC rArCrC rUrGrA rArA-30 (Dharmacon, Lafayette, CO); 30 ‘‘pre-

adenylated’’ adapters were 50-rAppdCdA dCdTdC dGdGdG dCdAdC

dCdAdA dGdGdA ddC-30 for fly head and 50-rAppdTdT dTdAdA dCdCdG

dCdGdA dAdTdT dCdCdA dGddC-30 for S2 cell RNA (IDT DNA, Coralville,

IA). After adaptor addition, the RNA was amplified by PCR with DNA primers

corresponding to the adapters. This PCR pool was gel purified (4% Meta-

phor Agarose, Cambrex, East Rutherford, NJ) with Qiaex II (QIAGEN, Valen-

cia, CA), then reamplified by PCR (common 50 primer, 50-GCC TCC CTC

GCG CCA TCA GAT CGT AGG CAC CTG AAA-30; 30 primer for fly heads,

50-GCC TTG CCA GCC CGC TCA GTC CTT GGT GCC CGA GTG-30; 30-primer

for S2 cells, 50-GCC TTG CCA GCC CGC TCA GCT GGA ATT CGC GGT TAA

A-30). The PCR-amplified libraries were pyrosequenced by Roche Applied

Science (Branford, CT).
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Figure 4. Ago2 Loading, as Evidenced by 30 Terminal

20-O-Methylation, Refines miRNA and miRNA* 50 Ends

On average, the 50 ends of the miRNAs and miRNA* strands

in the 20-O-methylated populations from both fly heads and

S2 cells were more precisely defined than in the total popu-

lation. We observed no statistically significant increase in the

precision of the 30 ends of the 30 modified miRNAs and

miRNA* strands.
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