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Abstract: � The paper presents an analytical study of the helicopter rotor v ibratory load reduction design

optimization w ith aeroelastic stability constr aints. The composite ro to r blade is modeled by beam type fi�

nite elements, and warping deformation is taken into consideration for 2�dimension analysis, while the

one�dimension nonlinear differential equat ions of blade motion are formulated v ia Hamilton� s principle.

T he rotor hub vibr ator y loads is chosen as the objective function, while r otor blade section construction

parameter, composite material ply structure and blade tip swept ang le as t he design variables, and au�

torotation inertia, natural frequency and aeroelastic stabilit y as the constraints. A 3�bladed rotor is de�

signed, as an example, based on the vibrator y hub load reduction optimization process w ith sw ept tip an�

gle and composite mater ial. The calculating results show a 24. 9%�33% reduction of 3/ rev hub loads in

comparison w ith the base�line rotor.
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带气弹稳定性约束的复合材料浆叶减振优化设计. 郭俊贤, 向锦武. 中国航空学报 (英文版 ) ,

2004, 17( 3) : 152- 158.

摘 � 要:研究以降低直升机旋翼激振力为目标的复合材料桨叶结构动力学减振优化设计, 分析了

桨叶结构特性及桨尖后掠角等参数对 N 次/转旋翼桨毂振动载荷 的影响。在建立的桨叶二维结

构特性有限元分析方程中,计入了桨叶剖面翘曲变形的影响, 并利用哈密尔顿原理推导了旋翼桨

叶的一维非线性运动微分方程。以桨毂交变载荷为目标函数, 直接以复合材料桨叶典型剖面构造

节点数据、铺层设计参数和桨尖后掠角等为设计变量 ,引入桨叶挥舞惯量、固有频率和气弹稳定性

约束,进行旋翼的动力学优化设计, 并结合 3 片桨叶旋翼的设计进行了算例分析, 优化结果使 3 次

/转的桨毂载荷降低了 24. 9% ~ 33%。

关键词:减振优化设计; 气弹约束;复合材料旋翼桨叶设计
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� � As one of the major vibrat ion sources, the he�
licopter rotor has gained severe attentions for a long

time in foreign researches, and a lot of efforts had

been g iven to achieve helicopter vibrat ion reduct ion

by decreasing the vibratory loads f rom the rotor.

T he design optimizat ions mainly focused on rotor

blade dynamic characteristics ( including natural

frequency and mode shape) , rotor hub vibratory

load ( especially N / rev load) and hub vibrat ion lev�
el. The rotor blade w eight , autorotat ion inert ia

and aeroelast ic stability w ere usually selected as op�
t imizat ion object ive funct ions or constraints, while

blade mass and/ or st if fness span�w ise dist ribut ions,

aerodynam ic parameters ( such as blade platform,

pre�tw ist law, and t ip shape, etc . ) , as well as the

ply angle of composite lay�ups in blade cross�sect ion
structures, were used as design variables in opt i�

mizations[ 1] . How ever, the blade structural models

adopted in these researches w ere aw fully simplified

even in the latest reference paper[ 2] , and for the

sake of easy opt imizat ion process, a simple tw o�box
beam sect ion model was chosen as the opt im izing

composite blade, w hich w as actually much differ�
ent f rom the real designed blades, so as to lead to a

result that would be far from the real helicopter sit�
uat ion.
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U p till now, only a few references w ere re�
ported w ith composite blade sect ion ply structures

( including ply angle as well as other ply shape pa�
rameters) as design variables, and meanwhile the

N / rev hub vibratory load as object ive funct ion,

w ith aeroelast ic stability const raints. This paper

presents, in accord w ith the above descriptions, the

effort of structural opt imization of composite rotor

blade w ith C�spar and D�shape�torsion�box sect ion
to minimize the N / rev vibratory hub load. T he

typical blade cross�section w ith out�of�plane w arp�
ing is included in the blade model. The blade sec�
t ion st ructural parameters are calculated with 2D

FEM , and the nonlinear equat ions of blade mot ion

are derived using Hamilton� s principle for aeroelas�
t ic analysis

[ 3�5]
. A 3�blade rotor is considered for

optimizat ion design w ith 3/ rev vibratory hub vert i�
cal shear force as object ive funct ion, and blade dy�
namic frequency, aeroelast ic stability and autorota�
t ion inertia as constrains, while blade cross�sect ion
composite ply parameter and tip sw ept ang le as de�
sign variables. A reduct ion of 24. 9%�33% in 3/

rev vert ical hub shear can be obtained from opt i�
mization in comparison w ith the init ial design as for

baseline rotor model.

1 � Blade Structural Model and Formulation

of Equations of Mot ion

T he rotor blade is described as an elastic beam

w ith constant rotating speed �. A main current

part and a t ip part are divided on the blade, and an

ang le �s is used to def ine the tip sw eep. The basic

hypotheses used are listed in the follow ing :

( 1 ) For 2D structural property analysis:

w hole blade section movement w ith addit ional 3D

w arping, expressed in displacement;

( 2) For one�dimension aeroelast ic analysis:

blade with a nonlinear moderate def lect ion, rig id

cross�sect ion, isolated homogeneous rotat ing beam;
( 3) Blade w ith non�uniform mass and st if fness

dist ribut ions, nonlinear tw ist and small precone;

( 4) Blade w ith litt le torsion deformat ion, and

chord length far less than blade radius.

T he rotor non�rotating coordinates eH ( î nr,

ĵ nr, k̂ nr ) and show n coordinates eHr ( î r, ĵ r, k̂ r ) are

shown in Fig�1.

F ig�1 � Coordinates of rotor system

( footnotes  r! and  nr! stand for rotating

and non�rotating, r espectively)
1. 1 � Blade structural analysis

Arbitrary cross�sect ional shape and anisot ropic
composite material behavior are considered in blade

structural 2D FEM analysis[ 3�5] . T he displacement

of any point in the cross�sect ion can be w rit ten as

u =

w 0+ y x - x y + g z

u 0- y z + gx

v 0 + x z + gy

(1)

where u = w � u � v
T
is the displacement of

any point in section, s0= w 0 � u0 � v 0
T
is the

translat ion of one section as a w hole,  0 =

 z �  x �  y T
is angular displacement, and g =

g z � gx � gy
T
is the elast ic displacement, while

gx and gy are the w arpings in the sect ion and g z is

the w arping out of the section ( plane) . According

to the relat ionship of stress�displacement, the fol�
low ing is obtained,

!=

w∀0+ y ∀x - x ∀y + g∀z

u∀0 -  y - y ∀z + g∀x +
∀ g z

∀x

v∀0+  z + x ∀z + g∀y +
∀g z

∀y

∀gx

∀x

∀gy

∀y

∀gy

∀x
+
∀gx

∀y

(2)

� � And then, based on minimum potent ial energ y

principle, the equilibrium equat ion w ith its condi�
t ions of the sect ion can be derived. From one of the

specif ic solut ion to the equat ions the inverse of the
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st iffness matrix w ill be obtained w ith unit load

method. The st iffness matrix as w ell as other sec�
t ion properties can be resulted.

1. 2 � Equations of blade motion

T he blade is divided into several beam ele�
ments w hile a single f inite element is used for the

sw ept tip. T he equat ion of blade mot ion can be de�
duced by applicat ion of Hamilton� s principle in dis�
cret ized form:

∃
t
2

t
1

%
n

i= 1

[#Ui - #T i - #W i ] dt = 0 (3)

where n is the total number of finite elements,

#U i , #T i and #W i are the variat ions of st rain ener�

gy, kinet ic energy and v irtual w ork of external

load, respectively, of element i . T he final form of

the equation is as follow ing:

M�+ C�y + Ky = F (4)

1. 3 � Analysis of rotor aeroelastic response and

stabi lity

T he modeling of rotor blade aeroelast ic analy�
sis is to build the dynamic equat ion of mot ion w ith

finite element method and get the f inal form as

shown in formula ( 4) . U sually this equation of

mot ion can be w ritten as

M�+ C( ∃)�y + K( ∃) y = F( ∃, y ,�y ) (5)

Here, M and C ( ∃) include the effects of aerody�
namic and inert ial forces, K ( ∃) include the effects

of aerodynamic inert ial force and structures, while

the effects of all nonlinear terms and excitat ion

forces are included in F( ∃, y ,�y ) .
T he solution of blade aeroelast ic response anal�

ysis is based on Floquet theory w ith status t rans�
mission matrix. The Eq� ( 5) are t ransferred into

status equat ions in status space and the nonlinear

terms are locally linearized, unt il the blade steady

response is obtainee from irritations of the equa�
t ions.

As for blade aeroelast ic stability analysis, Eq�
( 5) is linearized about stat ic equilibrium posit ion,

and the stability of the blade is obtained from the

solut ion of a standard eig envalue problem. And for

isolated rotor blade, it will be

Mb &qb0 + Cb�qb0+ Kbqb0+ K b%%0 =

Fb( qb0, �qb0, &qb0) ( 6)

Mb&&qb + Cb&�qb+ Kb&qb0 =

&Fb( qb0, �qb0, &qb0, &q b, &�q b , &&q b) (7)

where,

&Fb =
∀Fb

∀ qb
| b0&qb+

∀Fb

∀ qb
| b0&�qb +

∀Fb

∀ qb
| b0&&qb

( 8)

� � From the result of eigenvalue problem analysis

with Floquet theory, it gives %k= ∋k+ i(k. If the

real part ∋k< 0, then the stability is conf irmed.

2 � Hub Vibratory Load Optimization

T he hub v ibratory loads can be obtained by

the g iven aeroelast ic response analysis. The force

integral is used to form blade root force f rom dis�
t ributed components in rotating coordinats, and

transferred to the non�rotat ing system as hub

loads. In this paper the N / rev vibratory hub

loads, w hich are the determinant components for

rotor vibrat ion reduct ion, are calculated and then

optimized.

2. 1 � Description of blade structure and design

variables

T he composite blade is const ructed w ith C�
spar and D�shape torsion box , w hich is one of the

popular eng ineering st ructural forms, and the blade

typical cross�sect ion is demonstrated in Fig�2.

Fig� 2 � Blade typical cross�sectional structure

and par ts of ply design variables

� � ( 1) Design variables of blade typical cross�sec�
t ion

T he main structural parameters of blade cur�
rent part are chosen as design variables of cross�sec�
t ion:

V1 = ( x 1, x 2, y 2, x 3, X 1, X 2) (9)

and � V2= ( n1, m 1, n 2, m 2, . . . nL , mL ) ( 10)
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where x 1, x 2, y 2 and x 3 are shape point coordi�
nates of C�spar, X 1 and X 2 are posit ions of forw ard

and aft ribs of D�shape torsion box; mI and nI ( I=

1, 2, . . . L ) are material codes and ply numbers of

skin and torsion box, respect ively, Here mI and n I

are t reated as discrete variables, w hile the values

can only be chosen in a set of arrangemens relat ive

to the blade sect ion st ructure. T he materials and

ply angles of the forw ard and af t ribs are supposed

to be the same as those of the D�box.
T he cont inuity of section betw een dif ferent

blade elements is linearly connected as

V I = ∋VI 1+ (1 - ∋) V I2 (11)

where, VI 1 and VI 2 are section design variables,

and the second footnote stands for the lef t ( - ) or

right ( + ) side view of the same section.

( 2) Design variables of concentrated w eight

T he blade frequency tuning and mass balanc�
ing w eights are def ined by:

V3 = ( M 1, Z1, . . . MB , ZB) (12)

where MS and ZS ( S = 1, 2, . . . B ) are the mass

value and its spanw ise position, respectively, while

NB is the number of w eights used.

(3) Design variables of t ip sw eep angle � T he

blade t ip is defined by swept angle �S and its posi�
t ion Z�

S
, tapered ratio R T and position ZRT , i . e,

V4 = ( �S , Z �S , R T , Z RT ) (13)

2. 2 � Model of optimization analysis
[ 6�8]

( 1) Objective funct ions

f ( D) = K F [ ( Fx , N )
2

+ ( Fy , N )
2
+ ( Fz , N )

2
]
1/ 2

+

K M # [ ( M x , N )
2

+ ( My , N )
2
+ ( M z , N )

2
]
1/ 2 � (14)

or f ( D ) = K 1Fx , N + K 2Fy , N + K 3Fz , N (15)

where F and M stand for the hub force and mo�
ment , w ith footnotes x , y and z , to the six com�
ponents; w hile K F, K M , K 1, K 2 and K 3 are

w eighted factors.

( 2) Const raints

∋ Frequency (i : the f irst m�th mode fre�
quencies w ill meet the limits as follow ing:

gi , U( D ) =
(i

(i, U
- 1 ( 0

i = 1, 2, ), m (16)

g i, L( D ) = 1-
(i

(i , L
( 0

i = 1, 2, ), m (17)

where (i , U and (i, L are the upper and lower lim its

of the acceptable blade frequencies, and in this re�
search the mode number m is set as 7.

∗ Aeroelastic stability: the follow ing con�
st rains are given:

g( D ) = ∋k + !k ( 0, � k = 1, 2, ), M � (18)

where ∋k is the real part of eigenvalue of k�th mode
in hover, and !k is the acceptable m inimum damp�
ing for k�th mode in hover. M is the number of

modes.

T he aeroelast ic stability analysis in forw ard

flight is not included in the opt imizat ion process,

but is checked after w hen the opt im ized design

comes out to conf irm that there is no stability prob�
lem .

+ Autorotat ion inert ia I b: the follow ing con�
st rains are given:

g ( D ) = 1-
I b
I 0

( 0 (19)

where I 0 is the minimum targ et value necessary for

helicopter autorotat ion.

3 � Results and Discussion

T he results presented in this section are for

three bladed sphere�flex rotor, in w hich the blade

current ( airfoil) part is divided into 4 elements,

with the blade t ip( 10% of blade radius) as a sing le

finite element. The composite blade cross�section is
designed w ith C�spar and two cells. T he structural
propert ies of blade root part, as w ell as the hub

components are given in real values. T he design

optimizat ion is performed for 3/ rev hub loads at ad�
vancing ratio )= 0. 3 in level flig ht .

T hree cases are conducted for opt imizat ion

from the init ial design:

( 1) The st ructural parameters such as cross�
sect ional propert ies, ply st ructure and generalized

weight are used for design variables to minimize the

3/ rev hub loads;

(2) The blade t ip sw eep parameters are used

for design variables to minimize the 3/ rev hub

loads;

( 3 ) Based on the opt im ization of the f irst
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case, the blade t ip sw eep parameters are used for

design variables, to minimize the 3/ rev loads, and

the t ip sw eep ang le value can be ranged from - 4,

to + 28,. A 4, step is set in the presented example,
for higher ef ficiency.

T he hub vert ical shear force is chosen as the

optimizat ion objective function, i�e. , in Eq�( 15) ,
put K 1= 1. 0, K 2= K 3= 0, and get

f ( D ) = Fz , N (20)

� � The blade f requency lim itat ions are listed in

T able 1, while the m inimum autorotat ion inert ia

for single blade I 0= 334 kg#m2
.

Table 1 � Blade frequency limitations( s- 1)

Order of mode 1 2 3 4 5 6 7

Low er limitat ion 20. 00 41. 50 88. 88 169. 68 169. 68 214. 12 286. 80

U pper limitat ion 25. 00 45. 00 111. 10 193. 92 193. 92 234. 32 303. 00

� � For aeroelast ic stability, the first mode of

flapping, lead�lag and torsion are chosen as con�
st raints, and for convenient in calculation, !k in

Eq�( 18) is set as 0. 02 for each mode ( it is possible
to set one value for different modes) .

As for reference, a helicopter rotor blade in

service is analyzed, w ith the related parameters

listed in Table 2, w hile Tables 3 and 4 present the

init ial design and opt imized results, respect ively.

Table 2 � Parameters of reference rotor blade

General parameters Blade

Diameter 10. 69m

Number of blades 3

Speed 386 r/ min

Disk load 22. 344N/ m2

Rotor hub:

Hub radius 0. 565m

Flapping hinge of fset 0. 205m

Lead�lag hinge of fset 0. 205m
Pitch�f lap coupling parameter
� k∗= 0

Precone 3. 5,

Chord 0. 35 m

Airfoil OA212/ OA209

Pre�tw ist �12, /R
Dynamic frequency :

1 st�4th f lapping modes ( � ) :
1. 032, 2. 53, 4. 58, 7. 12

1 st�2th lead�lag modes ( � ) :
0. 55, 4. 66

1 st torsion mode ( � ) :
�
5. 11

� � In case 1, the opt imizat ion of blade mass and

st iffness spanwise dist ributions resulted f rom blade

sect ion ply st ructures g ives 12% and 4% reduc�
t ions of 3/ rev hub vert ical shear force, in compari�
son w ith the init ial design and reference rotor

blade, respect ively. In case 2, the opt imizat ion of

blade t ip sw eep angle g ives 24. 9% and 19. 6% re�
duct ions of 3/ rev hub vert ical shear force, in com�
parison w ith the initial design and reference rotor

blade, respect ively. In case 3, the combined opti�

Table 3 � Comparison of initial design and optimized

result ( blade design variables)

No Design variable
Initial

value

Opt imized

value

1 Spar shape points x 1/ mm 48. 0 45. 5

x 2/ mm 42. 0 40. 5

y2/ mm 13. 0 12. 0

x 3/ mm 39. 0 38. 5

2 Rib posit ion X 1/ mm 180 165

X 2 � � � Only one rib designed

3 Skin ply 0, Number of materials n L 3 1

Number of plies m L [ 1/ 2/ 2] s [ 2] s

− 45, Number of materials n L 2 2

Number of plies m L [ 4/ 4] s [ 2/ 2] s

4 D�box ply − 45, Number of materials n L 2 2

Number of plies m L [ 4/ 6] s [ 6/ 4] s

5 Con cent rated Mass/ kg 1. 2 0. 5

Acting posit ion/ % 50

Radius

45

Radius

Table 4� Blade frequency after optimization

Mode (∗1 (∗2 (∗3 (∗4 (+1 (+2 (,1

s- 1 41. 693 98. 576 176. 144292. 092 22. 22 187. 052220. 584

(/ � 1. 03 2. 44 4. 36 7. 23 0. 55 4. 63 5. 46

mizat ion resulted from ply organizat ion and t ip

sw eep ang le ( �s= 20,) gives 33% and 21% reduc�
t ions of 3/ rev hub vertical shear force, in compari�
son with the init ial design and reference rotor

blade, respect ively. T he comparisons are shown in

Fig�3, and the other components of 3/ rev hub

loads, w hich are not included in the objective func�
t ion, are also f igured out in Fig�4 and Fig�5.

Fig�3 � 3/ rev optimized hub vertical shear for ces

F ig�4 � 3/ rev other hub shear forces
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Fig� 5� 3/ rev hub moment ( non�dimensional)

� � Fig�6 and Fig�7 g ive the comparisons of flap�
ping and lead�lag stiffness, respectively, w hile the
influence of sw ept angle to hub load is show n in

Fig�8.

F ig� 6� comparison of blade flapping stiffness

Fig�7 � Compar ison o f blade lead�lag st iffness

Fig�8 � Effect of tip swept angle on hub vertical shear

4 � Concluding Remarks

A structural opt imization of composite rotor

blade w ith swept t ip has been conducted. Numeri�
cal results for three�bladed rotor with C�spar and
D�shape torsion box blade sect ion are obtained.

The follow ing conclusions can be summarized based

on the results studied in this conf igurat ion:

( 1) The effect of structural parameter opt i�
mization by aeroelastic tailoring w ith composite ply

organization has been demonst rated to minimize the

N / rev vibratory hub load, while the lead�lag st iff�
ness has larger potential for reduction of vibratory

hub vert ical shear force.

( 2) The blade t ip sweep angle has remarkable

potent ial effect on hub vert ical shear force, and a

reasonable tip sw ept angle may result in great de�
crease in vibratory hub load. But be aw are of that

the instability marg in might also decrease due to

the increase of sw ept angle.

( 3) The combined opt imizat ion effects of

sw ept t ip and composite ply structure are bet ter

than that of indiv iduals.

( 4) The combined sum of the hub shear force

and moment components is a better object ive func�
t ion than the 3/ rev hub vert ical shear force alone,

for the reduct ion ef fect of the other components is

small; besides, the ef fect of ply w ith coupling is

bet ter than that of the uncoupled plys. This w ill be

the future subject.
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