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Abstract 

We show that computing (and even approximating) MAXIMUM CLIQUE and MINI- 

MUM GRAPH COLORING for circulant graphs is essentially as hard as in the general 
case. In contrast, we show that, under additional constraints, e.g., prime order and/or 
sparseness, GRAPHISOMORPHISM and MINIMUMGRAPHCOLORING hecomeeasierin 
the circulant case, and we take advantage of spectral techniques for their efficient 
computation. 0 1998 Elsevier Science Inc. All rights reserved. 

AMS classijkation: 05C15; 05C50; 05C85; 15A18; 68RlO 

Keywork Circulant matrices; Circulant graphs; Eigenvalues; Eigenvectors; Chromatic number; 
Clique; Approximation algorithms 

1. Introduction 

Circulant matrices have been extensively studied over the years. Both the 
linear algebra and the combinatorics communities have paid attention to this 
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important class of matrices. The algebraic properties of circulant matrices have 
led to efficient algorithms for several related computations, notably the 
Winograd Fourier Transform is based on circulants [16], and several precon- 
ditioners for solving Toeplitz or other related systems use circulant matrices [7]. 
Circulants also have several applications in combinatorics and counting [l 11, 
e.g., the solution of the well-known rencontres and menage problems can be 
obtained as a permanent one of a circulant matrix. 

In this paper, we start an investigation on the complexity of the computation 
of some combinatorial objects on (0, 1) circulant matrices, and we show that 
there seems to be a complexity gap depending on certain properties, such as 
whether or not the matrices have enough ones. 

More precisely, we show that MAXIMUM CLIQUE (finding the size of the 
largest complete subgraph) and MINIMUM GRAPH COLORING (finding the 
minimum number of colors to be assigned to vertices so that no two adjacent 
vertices have the same color) are NP-hard, even if restricted to circulant graphs 
(graphs whose adjacency matrix is circulant). We show that not only is the 
above true, but also that it is NP-hard even to get good approximations for 
both problems (in the case of MAXIMUM CLIQUE, this holds also for graphs of 
prime order). 

On the other hand we show that, unlike in the general case, some combi- 
natorial problems become more tractable via linear algebra techniques when 
the circulant graph is either sparse (in other words, when the adjacency matrix 
has a few ones on each row) or of prime order. 

More precisely, for MINIMUM GRAPH COLORING we find proper colorings 
using information given by the sign pattern of certain eigenvectors; [log kl 
vectors are necessary for correctly coloring a k-chromatic graph, and in the 
sparse case (i.e., degree less than 5) we can prove a matching upper bound, thus 
supporting the conjecture that some problems are substantially easier in this case. 
For MAXIMUM CLIQUE, we present estimates depending on some eigenvalues. 

All graphs in this paper are simple and nonempty (i.e., they contain at least 
one edge). We denote by f integer division, and by [n] the set (0, 1, . . . , n - 1). 
In our expressions, the modulo operator has lowest priority. Moreover, 6 will 
always denote the exponent of the best approximation bound for MAXIMUM 

CLIQUE, i.e., MAXIMUM CLIQUE is not approximable within a factor better 
than ns, where n is the number of vertices of the graph; note that 6 may depend 
on the separation assumption (P # NP [2] and NP # ZPP [9], for instance). We 
denote with w(G) and cl(G) the maximum number of vertices of a clique (in- 
dependent set, respectively) of G. By the notation s[a, b] we mean the interval 
[.sa, sb]. Finally, in our n x n matrices, the row and column indices run from 0 
to n - 1, and their arithmetic will be always modulo n. 

The rest of the paper is organized as follows. In Section 2 we prove the NP- 
hardness and the nonapproximability of MINIMUM GRAPH COLORING and 
MAXIMUM CLIQUE for circulant graphs. In Section 3 we recall some results 
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from algebraic graph theory. In Section 4 we present the spectral properties of 
circulant graphs. In Section 5 we give lower bounds for clique and indepen- 
dence sets for circulant graphs. In Section 6 we show how to color a circulant 
graph using spectral information. 

2. Hardness results 

This section is devoted to the proof of the fact that MAXIMUM CLIQUE and 
MINIMUM GRAPH COLORING are difficult both to compute and to approxi- 
mate on circulant graphs (in the case of MAXIMUM CLIQUE, even if the graph 
is of prime order). We build sequences of numbers whose sums are distinct, and 
use them in order to map an instance into a circulant graph. Note that 
throughout the paper we shall assume that instances of problems restricted to 
circulant graphs are represented by the first row of a circulant adjacency ma- 
trix. 

Lemma 1. For all n E N, there are nonnegative numbers ao, al, . . . , a,_1 distinct 
module 8~“g”l < 8n3, such that all sums ai + aj are distinct modulo Sr“‘g ‘1 - 1 
and all sums ai + aj + ak are distinct module 8 Ilog ‘1 - 1. Moreover, the sequence 
ao,al,..., a,_1 is computable in time polynomial in n, and the distinctness claims 
remain true modulo any integer m satisfying m > 3 . (8r”g ‘1 - 2). 

Proof. We recall that, for every prime number p, positive integer n and E > 0, 
one can find an irreducible polynomial of degree n over FP using 

0Cn3+“p”2+” + n4+’ log2 p) 

arithmetical operations in FP [12]. Moreover, if F is a field andfand g are two 
polynomials in F[x] of degree at most n, then fg [6] and f mod g [13] can be 
computed using O(n log n log log n) arithmetic operations in F. Thus, F2k (the 
Galois field of order 29 can be presented as F2[x]/( f), for some irreducible 
polynomialfof degree k, and both the representation and the operations of F2b 
can be computed in polynomial time. 

Let the element 29 E Fsflos “1 be a generator of the multiplicative cyclic group 
F&g n1 obtained by omitting the zero element (such a generator can be found 
by exhaustive search). Let A = {ao, al, . . . , a,_l} denote the set of integers 
satisfying 1 < ai 6 8l’“g nl - 1 for which 6”l = 19 + c, for some c E F2,10g nl. In 
Ref. [5] it is shown that all sums of two or three terms of A are distinct modulo 
8k ~1 _ 1 

Suppose now that 

ai, + ai + ag f aj, + ajz + ajX (mod 8’iog ” - l), 
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which a fortiori implies 

ai, + ai, + Ui, # Ujl + Uj2 + Ujg. 

Since m > 3 . (8r’“g ‘1 - 2), we have that ai, + ui, + ai,, uj, + uj, + uj, < m, 
which implies 

ai, + Ui, + ai, $ Uj, + ajz + aj, (mod m). 

The case of two summands follows analogously. 0 

Note that Lemma 1 trivially implies that all differences ai - aj are distinct 
for i # j, because ui - Uj = Uk - al gives Ui + a/ = Uk + Uj, SO i = k and 1 = j. 

Theorem 1. MAXIMUM CLIQUE restricted to circulunt graphs is NP-hard, and 
not upproximuble by a factor better than [n/81si3, where n is the number of 
vertices of the graph and 6 is the exponent of the best approximation bound for 
MAXIMUM CLIQUE. 

Proof. Let G = (V,E) and k be an instance of MAXIMUM CLIQUE, IV1 = n and 
IEJ = m. Consider now a circulant graph C with Sr’Os n1 - 1 vertices such that 
the first row of its adjacency matrix 3 has a one in position ui - aj whenever 
(i, j) E E (note that since G is symmetric, this implies that we have a one also in 
position uj - ai, so C is symmetric, too). We denote with f (i, j) the difference 
ai - aj; thus, f (i, j) is a vertex of C, the mapping (i, j) H f (i, j) is injective by 
Lemma 1 and -f(i,j) = f(j,i). 

If there is a clique of size K in C, then certainly by vertex-transitivity there is 
a clique of size K in the neighborhood N of vertex 0 (i.e., in the subgraph 
induced by the vertex labeled by 0 and all vertices adjacent to 0). We now 
proceed to show that such a clique has the same number of vertices as a clique 
in G. In order to do so, we analyze the structure of N. 

A vertex v of C is a neighbor of 0 iff u = f (i, j) for some i, j E V. Two 
vertices in v, w in N are thus of the form f (i, j) and f (k, 1) (we shall always 
assume that the arguments off are distinct). They are adjacent iff there are 
s, t E V such that (t, s) E E and 

Ui-Uj+U,-Ua,=Uk-U[, 

which is equivalent to 

By Lemma 1, we have that {i, s, 1) = G, t, k}; of the six permutations of & we 
can use in order to solve the set equation, four fix one element and thus are 

3 We assume that all computations on vertices of C are carried out modulo Sl”‘s nl - 1 
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ruled out by our assumption about the indices. The only remaining possibilities 
arei=t,s=kandI=j,ori=k,s=jandI=t.Inbothcases,theedgese 
and d of G corresponding to v and w have a vertex in common, and the 
equations i = t and s = k (s = j and I = t, respectively) imply that there is a 
third edge of G closing the triangle defined by e and e’. 

Stated otherwise, two vertices of N are adjacent iff the corresponding edges 
of G are adjacent and part of a clique on three vertices (3-clique). 

We now show that for every 3-clique {i, j, k} of G, the subgraph D s C 
induced by the six vertices of C corresponding to the edges of the clique 
contains no triangle. Indeed, the edges of D correspond to solutions of the 
equation 

f (ai - ai) f (ai - Uk) = f(Ui - ak), 

with i < j < k, and there are eight possibilities for the choice of the signs. It is 
immediate to see that except for 

+(Ui - Uj)+ (Uj -Uk) = +(Ui -Uk) 

and 

-(Ui - Uj) - (Uj - Uk) = -(Ui - Uk), 

all choices to against our assumption about the indices. The first equation 
claims the existence of edges {f(i, j),f(i, k)}, {f(i, j), -f(j, k)} and 
{f(j7k)JX k)), while the second one of edges {-f(i, j), -f(i, k)}, 
{ -f(i, j),f(j, k)} and { -f(j, k), -f(i, k)}. In the end, we get the following list 
of edges: 

{f(iJ)JXkJ)) 

{f(k~_Mo7i)~ 
U(k, i),fti, 4) 

UY.L%fO’l k)) 
U-ti>k)J-(6 k)) 

dr(i,k)J(k,j)) 

which is a simple 6-cycle; thus, no triangle is present. 
Suppose now there is a K-clique in N with vertices u1 = 0, u2,. . . , uK. We are 

going to show that for all 2 <p Q K, the edge eP of G corresponding to up is 
adjacent to a certain vertex of G independent of p. This implies that G has a K- 
clique, because for every pair of edges eP and e4, the other endpoints are 
necessarily part of a triangle, in view of the fact that up and u4 are adjacent in N. 

Indeed, for all 2 <p, q < K, the pair {u,, uq} corresponds to two edges eP, e4 
of a triangle of G. In particular, {u,, u,} uniquely identifies a vertex of G, which 
is the common vertex of eP and e4, denoted eP A e4. Suppose by contradiction 
that, for some 2 <p, q,r < K, ep A e4 # ep A e,. Thus we have just two 
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possibilities: either ep, e4 and e, from a triangle, which is false because they 
would not induce a triangle in N, or e4 and e, have no vertex in common, which 
is false because they belong to the same triangle (remember that {up, u,} is an 
edge of N). 

Note that by keeping a (polynomial size) table of the differences ai - aj, we 
can easily build the clique of G corresponding to a clique of N (i.e., to a clique 
of C). A generic clique ul, 02, . . . , UK of C can be easily transformed into the 
cliqueO,q-vi ,..., UK--u1 ofN. 

Conversely, suppose there is a K-clique in G with vertices il , i2, . . . , iK. Fix a 
vertex j from the list, and consider the set of K - 1 edges of the clique which are 
adjacent to j. We claim that the subgraph formed by vertex 0 and by the 
2(K - 1) vertices corresponding to those edges contains a K-clique. Indeed, the 
equation 

Clip - tlj + aiT - Clip = a, 
4 

- aj 

shows that all vertices of the formf(&,j) are connected, and form a clique with 
0 (the same holds for the vertices of the form fQ, &)). 

Thus, we have proved that for every K-clique in G we can build (in poly- 
nomial time) a K-clique in C, and vice versa. This implies that MAXIMUM 

CLIQUE restricted to circulant graphs is NP-complete. 
Suppose now by contradiction that there is a polynomial time algorithm 

approximating MAXIMUM CLIQUE on circulant graphs by a factor better than 
[n/81”‘. Then we could take an instance of MAXIMUM CLIQUE with n vertices 
and map it to a circulant graph on 8 ‘log n1 - 1 vertices, thus approximating 
MAXIMUM CLIQUE by a factor 

Note that the previous proof can be easily modified in order to obtain the 
following. 

Theorem 2. MAXIMUM CLIQUE restricted to circulant graphs o 
6v 

rime order is 
NP-hard, and not approximable by a factor better than [n/48] i . 

Indeed, we can find in polynomial time a prime number P satisfying 
3 . (8[“9 nl - 2) < P < 6. (8 r@ n1 - 2). Notice that the size of P is logarithmic 
in n (since P is cubic in n). The bound then follows noting that 
P/48 < (81 log nl - 2)/S. The reader should also contrast the previous result 
with the following. 

Theorem 3. GRAPH ISOMORPHISM for circulant graphs of prime order is 
decidable in polynomial time. 
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The proof uses the fact that circulant graphs with a prime number of vertices 
are isomorphic iff they have the same eigenvalues [14], and that two graphs 
have the same eigenvalues iff they have the same characteristic polynomial, 
which can be computed and compared in polynomial time (adjacency matrices 
contain only zeros and ones). 

In order to prove the hardness of MINIMUM GRAPH COLORING,~~ use a 

variation of the classical technique used in Ref. [lo]. First of all, we prove the 
existence of certain (circulant) graphs, derived from our instance, whose sta- 
bility index and chromatic number are tightly connected. 

Lemma 2. Let G = (V, E) be a circulant graph and r coprime with n = 1 VI. There 
exists a (polynomially computable from G) circulant graph G, of order nr such 
that cl(G,) = min{r, a(G)}. Moreover, ifr = a(G) then x(G,) = n. 

Proof. We describe a graph G, having the stated properties, and prove it 
isomorphic to a circulant graph C,.. 

We recall from Ref. [lo] that the graph G, has vertex set [r] x V. Two ver- 
tices of G, are connected if their first coordinate is the same; the vertices (i, Y) 
and (j, w) are connected if v = w or (u, w) E E. The graph C, has also vertex set 
[r] x V; for all (0, w) E E, and ZI = w vertices (i, yu mod n) and (j, rw mod n) are 
connected, and for all k E Z \ (0) vertex (i, u) is connected to vertex 
(i+(u+rk)+nmodr,u+rkmodn). 

Since r is coprime with n, we define a map p(x) = (x/r mod n), and functions 
‘p: G,+C,,IC/: C,+G, 

(i, u) A (i + TU + n mod r, rv mod n) 

(i, o) L (i - r/?(u) t n mod r, B(u)). 

Note that 

t-j?(x) s B(rx) =x (mod n), 

and that cp and $ and inverse bijections: 

$(cp(i, u)) = Il/(i + ru + n mod r, TU mod n) 

= (i + ru + n - rfi(ru mod n) t n mod r, p(m mod n)) = (i, v), 

cp($(i, u)) = cp(i - r/?(u) + n mod r, P(U)) 

= (i - r/?(v) f n + r/l(o) + n mod r, rb(v) mod n) = (i, v). 

We now show that cp and I++ are in fact inverse isomorphisms. Let (i, U) and 
(i, w) be adjacent vertices of G,.; they are mapped by cp to the vertices 
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(i + TU + n mod r, rv mod n) and (i + rw + n mod r, rw mod n) of C,.. By taking 
k = w - v (see the definition of adjacency in C,.) we have 

i+rv+n+[(rumodn)+r(w-v)]tn 

Ei+ru+n+[[rvmodn+n(rw+n)+(rwmodn)-n(ru+n) 

- (rumodn)] fn 

~i+rv~-+[[n(rw~-)+(rwmodn)-n(rv~-)]tn 

ri+rv+n+rw+n--rv+n 
-i+rw+n (modr), 

and, of course, rw = rv + r(w - v), so cp(i, v) and cpG, w) are adjacent. If we 
consider instead adjacent vertices (i, v) and (j, w) with i # j and v equal or 
adjacent to w in G, we just notice that vertices whose second coordinates are 
rr mod n and rw mod n are always adjacent in C,. Thus, cp is a graph morp- 
hism. 

Let now v and w be equal or adjacent vertices of G. Then, the adjacent 
vertices (i, ru mod n) and (j, rw mod n) of C, are mapped by r,/j to vertices of G, 
whose second coordinate is v and w, which are adjacent. On the other hand, for 
every vertex (i, v) and every k E Z \ (0) we have 

$(i + (v + rk) + n mod r, v + rk mod n) 
= (i+(v+rk)+n-r~(v+rkmodn)+nmodr,/3(v+rkmodn)) 

We now show that the first coordinate of $(i,v) and +(i+ (v + rk) 
+n mod r, v + rk mod n) are always the same. In fact, letting h, h’ E Z be such 
that r/l(v) = v + hn and /?(v + rk mod n) = p(v) + k + h’n, we have 

i + (v + rk) + n - r/?( v + rk mod n) + n 
E i + (v + rk) + n - r@(v) + k - h’n) + n 
- =i+(v+rk)tn-(hn+v+rk-rh’n)+n 
~i+(v+rk)tn-h-(v+rk)+n-rh’ 
E i - h E i - r/?(v) + n (mod r). 

This shows that $ is a graph morphism, and concludes the proof that cp and $ 
are inverse isomorphisms. In order to prove that C, is circulant, consider ad- 
jacent vertices (i, r-u mod n) and (j, rw mod n), where v and w are either equal 
or adjacent in G. Then, their distance (in the lexicographic ordering) 
is d = (j - i)n + ( rw mod n) - (rv mod n) mod rn. Let now (k, u) = 
(k,$(u) mod n) be an arbitrary vertex of C,; the vertex at distance d has 
second coordinate equal to rfl(u) +rw- rvmodn, but /I(U) and 
p(u) + w - u mod n are equal or adjacent in G (their distance is equal to the 
distance between v and w). 
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Finally, we notice that 

131 

[i + (u + rk) + n - i]n + (u + rk mod n) - u 
= [(u + rk) t n]n + (u + k r modn)-uru+rk-u=rk (modnr) 

holds independently of the values of i and v; thus all vertices at distance 
rk mod nr, for all k E if, are connected by the second condition on C,. This 
shows that C, is the union of two partial graphs which are circulant, and is thus 
circulant. 

We are just left with the issue of proving the claimed properties of G,.. The 
first statement is proved in Ref. [lo]. The second part follows by noting that if 
a(G) = r, then cr(G,) = r; moreover, given a maximal independent set 
01, u2,. . . ,v, of G, it is immediate that (O,ur),(l,~~),...,(r- l,u,.) is an inde- 
pendent set of G,, and that 

(O,ur +kmodn),(l,u2+kmodn),...,(r- l,u,+kmodn) 

remains an independent set of every k E fV. This gives a correct n-coloring of G, 
(a correct coloring with less than n colors would yield by pigeonholing the 
existence of an independent set with more than Y elements). 0 

Theorem 4. MINIMUM GRAPH COLORING restricted to circulant graphs is 
NP-hard and not approximable by a factor better than [n/2$14. 

Proof. Let G = (V,E) be an instance of MAXIMUM CLIQUE, and ]V( = n. For 
each 3 <r < n, by a trivial modification of the proof of Theorem 1 we build a 
circulant graph C(r) such that the number of vertices n, of C(r) is coprime with 
r and cr(C(r)) = cr(G) = o(G); it is easy to check that we have the upper bound 
n, < 3 . (8[“‘s nl - 2) + r. 

Using the same notation of Lemma 2, by elementary graph theory we 
have 

n,r nrr 
X(C(4,) 2 -q& 2 -=-. 

a(C(r)) w(G) 

This implies that by computing ~(C(Y),) for all r and minimizing the ratio 
nIr/x(C(r),) we could compute w(G), which is NP-hard. 

Analogously, if by contradiction we could compute x(C(r),) within an ap- 
proximation factor of [n~/25]“~, we could compute the ratios n,r/x(C(r),) 
within the same approximation factor; this implies that we could approximate 
o(G) within 

I[3 . (8”“g ‘1 - 2) + r]r/25]S’4 < [(24n4 + n2)/25j6’4 < [n4]s’4 6 n’. 0 
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3. The spectrum of a graph 

The spectrum of a graph is the spectrum of its adjacency matrix. The 
spectrum is related to the properties of the graph, and since it is invariant by 
symmetric permutations of the matrix, isomorphic graphs have the same 
spectrum. Some important spectral properties of adjacency matrices are sum- 
marized in the following theorem [8]. 

Theorem 5. Let G be a connected (undirected) graph with n > 1 vertices and A its 
adjacency matrix. Then 
1. the eigenvalues &,, ,11, . . . ,,$_I of A are real (labeled with 10 > 2, 

> . . . B A,-,); 
2. the corresponding eigenvectors ug, ~1, . . . , u,_l can be chosen to be orthonor- 

mal; 
3. CyYIi ii = 0; 
4. the maximum eigenvalue & is the spectral radius of A and is simple; 
5. uo can be chosen to have positive components. 

There are moreover several relations between the chromatic number and 
eigenvalues of a graph, the most significant being [4,8] 

x(G) < 1+ 10. 

Assuming that the eigenvalues have been labelled so that lo B I, > . . + 2 An-], 
we also have 

, 

from which one easily derives 

n, 
x(G) 2 1 + _l,_, > 

as C:, An_; 3 k&l. Finally, 2-colorable (bipartite) graphs are characterized 
by having a spectrum symmetric with respect to zero [8]. 

The signs of the eigenvectors associated with negative eigenvalues also give 
useful information on correct colorings of the graph. Indeed, intuitively, we 
know that the value of the ith entry of the eigenvector multiplied by some 
negative value (the eigenvalue) must be equal to the sum of the entries of the 
eigenvector corresponding to vertices adjacent to the vertex i. So if the mag- 
nitude of the eigenvalue is big enough, it is likely that such entries will have a 
different sign than the ith entry. This means that by choosing a subset of 
eigenvectors and assigning a color to vertex i depending on the list of signs of 
the ith entries of the selected eigenvectors, we can expect an approximation of a 
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coloring. For instance, in Ref. [3] it is shown that the signs of all eigenvectors 
color the graph assigning a different color to each vertex, while Ref. [l] refines 
algorithmically the eigenvector information so as to obtain a correct minimum 
coloring with high probability. 

4. Spectral properties of circulant graphs 

A circulant graph is a graph with circulant adjacency matrix (or, equiva- 
lently, the Cayley graph of a finite cyclic group). Consider a generic circulant 
adjacency matrix, and suppose that the nonzero elements in the first half of the 
first row are in positions p1 < p2 < . . . < ps 6 n/2, where n is the size of the 
matrix. Due to the symmetry of the adjacency matrix, the elements in the first 
row positions -pl > -p2 > . . . > -ps are also nonzero (recall that indices are 
computed modulo n). 

Let G be a circulant graph of degree d with n vertices and adjacency matrix 
A. Note that if G is not connected, it breaks into isomorphic circulant com- 
ponents. Let also a = [a0 al . . . LZ,_~]~ be the first row of A. If n is odd, we have 
that the eigenvalues of G, not necessarily ordered, are as follows. 

(n-1)/2 
JO = c 2uk, 

k=l 

(n-l)/2 
Aj = An-j = c 2uk COS 

k=l 

If n is even, we have 

n/2-1 

A0 = an/2 + c 2ak, 

k=l 

, 16 j<n/2. 

Note that while we do not assume that the eigenvalues are ordered, & is always 
the largest eigenvalue, and thus the spectral radius. 

For the rest of the paper we fix a choice of eigenvectors. The eigenvector 
related to lo = d will be u. = [l 1 . . . llT, and the eigenvectors related to /zi and 
1n-j will be given by 

Uj = [I COS (“2) ,,+j;) ,o+jy . . . co+;)]= 

uj = 10 sin (jc) sin(2j;) sin(Jj$) . . . sin ([n-l)jG)]‘, 

while if n is even, the eigenvector of A,,,, will be u,,j2 = [l - 1 1 - 1 . . - llT 
(and v,12 = 0). Said otherwise, if o is a primitive nth root of unity then 
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Uj(k) = i(oi” + o-jk), while Vj(k) = (1/2i)(dk - w-jk). Note that our choice 
gives an orthogonal eigenvector basis, but in the following we will be sometimes 
interested in an orthonormal basis. We just remark that 

because every nontrivial nth root of unity c!J satisfies C;Ii lk = 0. Analogous 
considerations can be made about the Vj’s. However, notice that ]]uo]12 = n and 
that /]ti,+]]* = n if n is even. 

5. Lower bounds 

In this section we sharpen the bounds on o(G) and a(G) given in Ref. [15] 
using the exact knowledge of the eigenvalues and eigenvectors of G. 

Theorem 6. Let G be a circulant graph, and I< &I = d its second largest 
eigenvalue. Then 

o(G) 3 Iz 
n-d-112’ 

Proof. We can assume that G be connected, for otherwise ;i = d and Wilf s 
bound for regular graphs o(G) 3 n/(n - d) gives o(G) B (n/h)/(n/h - d) 
= n/(n - hd) 2 n/(n -d-d/2), where h > 1 is the number of connected 
components. Since G is regular we have [15] 

w(G) 3 
n 

n-&-nM’ (1) 

where M is the maximum of >(Sf + Sz) subject the linear constraints 

79,&j(k)+fi*&j(k) > -k, k= 1,2 ,..., n, 

and uj, vj belong to the eigenspace of 1, which can be assumed at least of 
multiplicity two and positive (for otherwise the bound trivializes - cf. [15], 
Theorem 3). Thus, we have to maximize 8; + 29: subject to the constraints 

&/$s(kj$) +r%&in(,%) >/ -i, k= 1,2,...,n. (2) 

In order to do so, we study the inequality 

ticos(x)+ttisin(x)> -- 
& 
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where we set 61 = 6 and r!+ = t6; moreover, 8 and t can be chosen to be 
positive without loss of generality (just exchange x with --x or x: - x). 

Calculus shows that at its minima the function cos (x) + t sin(x) takes the 
value -dm. Thus, (Eq.2) is certainly satisfied when ti < (2n(t* + l))-“‘. 
But this means that, by choosing equality, we have 

max 29: + 29: b max 
&&92 f 2n(ti+ 1) + ?2n(tJ+ 1) = & 

which is independent of t. Substituting in (Eq.1) yields immediately the the- 
sis. 0 

Note that it is possible to prove that the choice of Uj and Vj as eigenvectors is 
in fact made without loss of generality, i.e., using an arbitrary basis does not 
lead to better bounds. Moreover, the bound can be easily transformed into a 
bound for the stability index. 

Corollary 1. Let G be a circulant graph and i be its smallest eigenvalue. Then 

a(G) > 
n 

1 +d+(l +$/2’ 

Proof. Let A be the adjacency matrix of G, and assume that G is connected. 
Since G is regular, the all-ones matrix J is in the algebra generated by A [4], and 
the eigenvalues of G can be obtained as p( &) - li - 1, where J,i is an eigenvalue 
of G and p(x) E @[xl is a polynomial satisfying p(A) = J. The matrix J has a 
unique nonzero eigenvalue n, which is associated with the eigenspace generated 
by the all-ones eigenvector. Thus, all the other eigenvalues of G are of the form 
-&i - 1, i > 0, and the two largest eigenvalues are n - d - 1 (by regularity) and 
-A - 1. If G is not connected, the lower bound is true for every component C 
of G; since independent sets from different components can be combined into a 
new independent set, and all components have, up to multiplicity, the same 
spectrum as G, we have 

o(G) 2 her(C) 2 h n/h n 

l+d+(1+$/2=1+d+(l+j)/2’ 

where h is the number of components of G. 0 

In order to see that Theorem 6 gives in fact sharper estimates than the 
general bound w(G) 2 n/(n - d), one can consider, for instance, circulant 
graphs whose first row contains in its first half just a small number k of con- 
secutive ones starting at position 1. In this case, 5 > 2[cos (27c/n) 
+ cos (4x/n) + . . . + cos(2krc/n)], so 
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n n 
n - d < n - d - [cos(27qn) + cos(47T/n) + . . . + cos (2k7c/n)] 

n 
< 

n - d - 112’ 

As an example, for n = 10 and k = 2 we have w = 3,n/(n - d) z 1.67 but 
n/(n -d-2/2) M 2.05, while for k = 3 we have o = 4, n/(n -d) FZ 2.5 but 
n/(n - d -I/2) M 3.13. 

6. Coloring circulant graphs 

In this section we give results about correct colorings derived from infor- 
mation contained in the signs of certain eigenvectors. As we suggested in 
Section 3, given a choice of indices J C (1,. . . , [n/21}, the color of a vertex t 
will be given by the 2]J]-dimensional vector [sgn(Uj(t)), sgn (Vj(t))]jEJ. 

Theorem 7. Let G be a circulant graph of order n whose adjacency matrix A has 
nonzero elements of index p1 < pz < . . < pS < n/2 in the first half of the jirst 
row. Let Uj and vj denote the choice of eigenvectors dejined in Section 4. Let 
JC {l,..., [n/2]} be a subset of indices such that, for all 1 < h < s, there exists 
j E J for which Uj(ph) < 0. Then the signs of {Uj, vjl j E J} correctly color the 
graph. 

Proof. It is sufficient to show that given a vertex t, the vertex t +ph has a 
different sign pattern in {Uj, vj( j E J}. Since uj(ph) < 0 for some j, we have 

$h.in ;+2kn<- 
n 

<$+2kq 

where k is an integer. Consider the vector 

[Uj(t),Vj(t)]= [COS(T),sin(F)] 

defined by the angle 2tj7c/n. The signs of Uj and Vj in position t +p, are de- 
termined by the angle 2(t + ph)jn/n, which satisfies 

?+;+2kz < 
2(t +ph)jn. 2tjn: 

n 
<-+$+2krr. 

n 
It is easy to see that the vector [Uj( t + ph), Vj( t + ph)] is not in the same quadrant 
as the first one, and thus at least one sign changes (no matter whether 0 is 
considered positive or negative). 0 
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As a consequence, we obtain the following. 
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Corollary 2. The pairs of eigenvectors associated with negative eigenvalues 
correctly color a circulant graph of degree 2. 

Proof. A circulant graph of degree 2 has only one nonzero position p1 < n/2 in 
the first half of the first row (of course, by symmetry also -pi is nonzero). 
Moreover in the odd case we have 

0 > /zj = 2 COS plj? 
( > 

= 2uj(pl)> 

and the thesis follows from Theorem 7. In the even case, if p1 # n/2 the result 
can be obtained analogously, since an/2 = 0. Otherwise, G is just a disjoint 
union of copies of K2, and the thesis follows trivially. ??

Example 1. Let us consider a circulant graph with n = 18 vertices whose 
circulant adjacency matrix is defined by the following first row: 

[001110001110001110]. 

Then, the sign patterns of u3 and v3 are 

[++---+++---+++---+I, 

and 

[++++--++++--++++--I, 

respectively, By Theorem 7, we have that {u3, n3} correctly colors the graph. 
Letting R = (+, +), Y = (+, -),B = (-, +) and G = (-, -) we obtain the 
coloring 

[RRBBGYRRBBGYRRBBGY] 

which is indeed correct. 

It is interesting to note that in the case of bipartite circulant graphs there is 
always a specific single vector which can be used to color the graph. In fact, the 
choice of the vector characterizes bipartiteness, under a connectedness hy- 
pothesis. 

Lemma 3. A connected circulant graph with n vertices of degree d is bipartite ifSn 
is even and 1,~ = -d. 

Proof. A circulant graph with an odd number of vertices certainly contains an 
odd cycle, and thus cannot be bipartite. Moreover, in a bipartite graph the 
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spectrum is symmetric w.r.t. zero, and in a circulant graph of even order all 
eigenvalues except for &, and &I2 have even multiplicity, so 1~ = -& = -d. 

On the other hand, a connected graph in which -10 is an eigenvalue does 
not contain odd cycles [8], and it is thus bipartite. 0 

Lemma 4. A connected circulant graph with n vertices is bipartite @n is even and 
the vector u,/2 correctly colors the graph. 

Proof. By the previous lemma we know that a connected circulant graph is 
bipartite if and only if n is even and A,,2 = -d, but a simple calculation shows 
that this happens iff the vector u,j2 = [ 1 - 1 1 - 1 . . . 1 - l] correctly colors the 
graph. 0 

We note that, as it is easy to check, the left-to-right implications of the two 
previous lemmas are true independently of the connectedness hypothesis; thus, 
we have the following. 

Theorem 8. A circulant bipartite graph is correctly colored by UQ. 

We now proceed towards the main result of this section, which provides 
estimates of colorability by means of eigenvector signs when d = 3,4. 

Lemma 5. A circulant graph of degree 4 contains a clique of order 5 if and only 
ifn/pl=5andn=2pl. 

Proof. First we note that the only circulant graphs of degree 4 that can contain 
a clique of order 5 are disjoint unions of cliques of order 5. Moreover, since all 
edges incident to a fixed vertex must belong to the same clique, each clique 
contains 5 edges of offset p1 and 5 edges of offset p2. Thus, 

5pi E 0 (mod n) 

for i = 1,2, i.e., Sp, = n or 5pi = 2n (recall that pi < n/2), and the condition 
pI < p2 hIplieS 5pl = n and 5p2 = 2n. 0 

Lemma 6. A circulant graph of degree 3 or 4 is colorable by vectors Ui and vi for 
some i ifs there exists an integer j such that 

jEn ‘+k, 2+k, 
[ PI 4 i4 1 [ nr I+k2,i+k2 

P24 I 
for some integers k, and k2. 

Proof. Since d = 3 or 4, s = 2. By Theorem 7 there exists an 0 < i < n/2 such 
that ui and vi color the graph iff there are kl, k2 E Z such that 
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(4) 

for j = 1,2. Since cos (x) = cos (27r - x), we can relax our assumptions and just 
require 0 < i < n. We can remove all assumptions by noting that if an arbitrary 
integer satisfies Eq. (4) its remainder modulo n will satisfy Eq. (4) too. The 
proof is completed by a trivial computation. 0 

Before proving the main theorem of this section, we notice that all intervals 
of the form 

$ [;+k,;+k] 

contain an integer if p < n/2, because the length of such intervals is greater 
than 1. Moreover, all intervals of the form 

n 3 3 

6)[ 1 - -- 
8’4 

contain an integer because either n/p 6 8/3, in which case they contain 1 since 
n/p 2 2, or else n/p > 8/3, in which case they have length greater than 1. 

Theorem 9. Given a circulant graph of degree 3 or 4, there exists an integer 
0 < i < n/2 such that ui and vi correctly color the graph, unless the graph 
contains a clique of order 5. 

Proof. Let p2/p1 = b/a, where (a, b) = 1. We start by establishing when 

for some kl, k2 E Z, since in this case the theorem is obviously true. A simple 
computation shows that this happens when 

for some kl , k2 E Z. Consider now the line 

k,=;klff 9-l , 
( 1 

which lies in the middle of the stripe defined by Eq. (5) as a line on the torus 
obtained as the quotient of the plane under the action of Z x h. This line in- 
tersects the segment S defined by kl = 0, kz E [0, l] in the points of ordinate 

+ti (modZ), 
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for t E H, i.e., in exactly a uniformly spaced points on S. Thus, the origin 
cannot be farther than 1/2a from one of these points; moreover, the stripe is 
vertically large i (8 - 1). This implies that when 

the stripe (5) contains certainly a point of integer coordinates. If b = a + 1 and 
a 2 2 we have that n/pi = b/u = (u + 1)/a < 3/2, but then 

; [;,;I 2; [;>a] $ [;_;I, 

and the second interval certainly contains an integer. We are left with the case 
P2 = 2Pl. 

Let c/d = n/pi, with (c, d) = 1. We will show that unless c/d = 5, the in- 
terval 

1 d[4 ‘8 
EC l+k!+k 

1 

contains an integer for some value of k. In order to do so, we consider the 
middle point of Zk, i.e., (c/d) (& + k). Noting that the length of Ik is c/8d, the 
same techniques used in the first part of the proof shows that when 

1 :a- * 
16d 2d 

c 3 8, 

for some k the interval I, will contain an integer. Since 2pi = p2 < n/2, we have 
c/d > 4, so we are left with the cases d = 1 and c = 4,5,6,7. But elementary 
computations show that 1 E 4 [i , i] and 2 E 6 [i ,i], 7 [:,:I. In the remaining 
case, the graph is just a disjoint union of &cliques by Lemma 5. 0 

Since (as it is easy to check) ~1, WI and u2 always correctly color a graph 
made of 5-cliques, the previous theorem, together with Theorem 8 and Cor- 
ollary 2, settles the problem of finding the minimum number of eigenvectors 
that correctly color a circulant graph in the case of low degree. 

Theorem 10. Let G be a k-chromatic circulant graph of degree less than 5. Then 
[log k] eigenvectors of G are necessary and suficient to color G. 

The general case is open, but we have the following upper bound for the special 
case in which all entries in the first half of the first row are ones starting frompl . 

Theorem 11. Let G be a circulant graph whose adjacency matrix A satisjies 

pjil =PI +j O<j< ;-PI 

Then, n/2pl vectors correctly color G. 
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Proof. Note that s(j) < 0 iff n/4i <j 6 3n/4i < n/2i. Since for 1 < i 6 n/4pl we 
have pl <j < n/2, Theorem 9 shows that the corresponding vectors ui and vi 
correctly color the graph. 0 

7. Conclusions 

This paper has provided a first look at using spectral techniques in the 
analysis of combinatorial problems on sparse circulant graphs. The main re- 
maining open questions concern the possibility of getting optimal colorings for 
sparse circulant graphs via eigenvector information. 
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