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1. Introduction

We investigate the orientability of a class of vector bundles over flag manifolds of real semi-simple Lie groups, the so-
called (generalized) real flag manifolds. These include the tangent bundle and also stable bundles of some gradient flows on
these manifolds which were considered elsewhere (see Section 3 of Duistermat, Kolk and Varadarajan [7] and Section 5 of
the present article). We get closed formulas, in terms of roots associated to the real flag manifolds, to decide when they are
orientable. As far as we know, our results and methods of proof are not known.

The topology of flag manifolds of complex semi-simple Lie groups, and of holomorphic vector bundles over them is,
by now, a well-understood classical subject (see, for example, Bernstein, Gel’fand and Gel’fand [1] or Bott–Borel–Weil’s
Theorem [10]). On the other hand, the topology of real flag manifolds is a more delicate subject. Its mod 2 homology was
obtained in the 1980’s (see Section 4 of [7]) and in the 1990’s it was obtained a complete (although algorithmic) description
of its integral homology (Kocherlakota [14], see also [17]) and its fundamental groups (Wiggerman [20]). It is beginning to
emerge relations between the cohomology of real flag manifolds and infinite dimensional representation theory of the real
semi-simple Lie group (Casian and Stanton [2]) and dynamics of integrable systems (Casian and Kodama [3,4]). As for the
topology of vector bundles over real flag manifolds, we are not aware of any general result in the literature. This article is a
contribution in this direction.

The structure of the article is as follows. In Section 2 we recall some definitions and facts about real semi-simple Lie
groups and their flag manifolds. In particular we look at the structure of the connected components certain centralizers
that will appear later as isotropy subgroups (Section 2.3). Also we recall the construction of the stable and unstable vector
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bundles over fixed points of gradient flows (Section 2.4). For these stable bundles, and also for the tangent bundle of a real
flag manifold, there is a Lie group acting on the vector bundle by linear maps in such a way that the action on the base
space is transitive. In both cases, the base space is a homogeneous space of a Lie group.

In Section 3 we derive our method of determining orientability of vector bundles over a homogeneous space of a Lie
group, which consists of reducing the orientability question to a computation of signs of determinants. Namely the vector
bundle is orientable if and only if each linear map coming from the representation of the isotropy subgroup on the fiber
at the origin has positive determinant (see Proposition 3.1). Using this criterion we get closed formulas, in terms of roots
and their multiplicities to decide when one of our vector bundles is orientable (see Theorems 3.2 and 3.6, below). In
particular, we prove that any maximal flag manifold is orientable. A result has been already obtained by Kocherlakota [14]
as a consequence of the computation of the homology groups of the real flag manifolds.

In Section 4 we make a detailed analysis of the orientability of the flag manifolds associated to the split real forms of
the classical Lie algebras Al = sl(l + 1,R), Bl = so(l, l + 1), Cl = sp(l,R) and Dl = so(l, l).

The orientability of the stable and unstable bundles was our original motivation to write this paper. It comes from the
computation of the Conley indices for flows on flag bundles in [16]. In this computation one wishes to apply the Thom
isomorphism between homologies of the base space and the disk bundle associated to a vector bundle. The isomorphism
holds in Z homology provided the bundle is orientable, asking for criteria of orientability of such bundles. We develop along
this line on Section 5.

2. Preliminaries

We recall some facts of semi-simple Lie groups and their flag manifolds (see Duistermat, Kolk and Varadarajan [7],
Helgason [11], Humphreys [12], Knapp [13] and Warner [19]). To set notation let G be a connected noncompact real semi-
simple Lie group with Lie algebra g. Fix a Cartan involution θ of g with Cartan decomposition g = k⊕ s. The form 〈X, Y 〉θ =
−〈X, θY 〉, where 〈·,·〉 is the Cartan–Killing form of g, is an inner product. An element g ∈ G acts in X ∈ g by the adjoint
representation and this is denoted by g X .

Fix a maximal abelian subspace a ⊂ s and a Weyl chamber a+ ⊂ a. We let Π be the set of roots of a, Π+ the positive
roots corresponding to a+ , Σ the set of simple roots in Π+ and Π− = −Π+ the negative roots. The Iwasawa decomposition
of the Lie algebra g reads g = k⊕ a⊕ n± with n± = ∑

α∈Π± gα where gα is the root space associated to α. As to the global
decompositions of the group we write G = K S and G = K AN± with K = exp k, S = exp s, A = expa and N± = expn± .

The Weyl group W associated to a is the finite group generated by the reflections over the root hyperplanes α = 0 in a,
α ∈ Π . W acts on a by isometries and can be alternatively be given as W = M∗/M where M∗ and M are the normalizer
and the centralizer of A in K , respectively. We write m for the Lie algebra of M .

2.1. Subalgebras defined by simple roots

Associated to a subset of simple roots Θ ⊂ Σ there are several Lie algebras and groups (cf. [19, Section 1.2.4]): We write
g(Θ) for the (semi-simple) Lie subalgebra generated by gα , α ∈ Θ , put k(Θ) = g(Θ) ∩ k and a(Θ) = g(Θ) ∩ a. The simple
roots of g(Θ) are given by Θ , more precisely, by restricting the functionals of Θ to a(Θ). Also, the root spaces of g(Θ) are
given by gα , for α ∈ 〈Θ〉. Let G(Θ) and K (Θ) be the connected groups with Lie algebra, respectively, g(Θ) and k(Θ). Then
G(Θ) is a connected semi-simple Lie group.

Let aΘ = {H ∈ a: α(H) = 0, α ∈ Θ} be the orthocomplement of a(Θ) in a with respect to the 〈·,·〉θ -inner product. We
let KΘ be the centralizer of aΘ in K . It is well known that

KΘ = M(KΘ)0 = M K (Θ).

Let n±
Θ = ∑

α∈Π±−〈Θ〉 gα and N±
Θ = exp(n±

Θ). We have that KΘ normalizes n
±
Θ and that g = n

−
Θ ⊕ pΘ . The standard parabolic

subalgebra of type Θ ⊂ Σ with respect to chamber a+ is defined by

pΘ = n−(Θ) ⊕m⊕ a⊕ n+.

The corresponding standard parabolic subgroup PΘ is the normalizer of pΘ in G . It has the Iwasawa decomposition PΘ =
KΘ AN+ . The empty set Θ = ∅ gives the minimal parabolic subalgebra p = m ⊕ a ⊕ n+ whose minimal parabolic subgroup
P = P∅ has Iwasawa decomposition P = M AN+ .

Let d = dim(pΘ) and consider the Grassmannian of d-dimensional subspaces of g, where G acts by its adjoint represen-
tation. The flag manifold of type Θ is the G-orbit of the base point bΘ = pΘ , which we denote by FΘ . This orbit identifies
with the homogeneous space G/PΘ . Since the adjoint action of G factors trough Int(g), it follows that the flag manifolds of
G depend only on its Lie algebra g. The empty set Θ = ∅ gives the maximal flag manifold F = F∅ with basepoint b = b∅ .

2.2. Subalgebras defined by elements in a

The above subalgebras of g, which are defined by the choice of a Weyl chamber of a and a subset of the associated
simple roots, can be defined alternatively by the choice of an element H ∈ a as follows. First note that the eigenspaces of
ad(H) in g are the weight spaces gα . Now define the negative and positive nilpotent subalgebras of type H given by



2776 M. Patrão et al. / Topology and its Applications 159 (2012) 2774–2786
n
−
H =

∑{
gα: α(H) < 0

}
, n

+
H =

∑{
gα: α(H) > 0

}
,

and the parabolic subalgebra of type H which is given by

pH =
∑{

gα: α(H) � 0
}
.

Denote by N±
H = exp(n±

H ) and by P H the normalizer in G of pH . Let d = dim(pH ) and consider the Grassmannian of d-
dimensional subspaces of g, where G acts by its adjoint representation. The flag manifold of type H is the G-orbit of the
base point pH , which we denote by FH . This orbit identifies with the homogeneous space G/P H , where P H is the normalizer
of pH in G .

Now choose a chamber a+ of a which contains H in its closure, consider the simple roots Σ associated to a+ and
consider

Θ(H) = {
α ∈ Σ: α(H) = 0

}
,

the set of simple roots which annihilate H . Since a root α ∈ Θ(H) if, and only if, α|aΘ(H)
= 0, we have that

n
±
H = n

±
Θ(H) and pH = pΘ(H).

Denoting by K H the centralizer of H in K , we have that K H = KΘ(H) . So it follows that

FH = FΘ(H),

and that the isotropy of G in pH is

P H = PΘ(H) = KΘ(H) AN+ = K H AN+,

since KΘ(H) = K H . Denoting by G(H) = G(Θ(H)) and by K (H) = K (Θ(H)), it is well known that

K H = M(K H )0 = M K (H).

We remark that the map

FH → s, kpH �→ kH, where k ∈ K , (1)

gives an embedding of FH in s (see Proposition 2.1 of [7]). In fact, the isotropy of K at H is K H = KΘ(H) which is, by the
above comments, the isotropy of K at pH .

2.3. Connected components of K H

We assume from now on that G is the adjoint group Int(g). There is no loss of generality in this assumption because
the action on the flag manifolds of any locally isomorphic group factors through Int(g). The advantage of taking the adjoint
group is that it has a complexification GC = Aut0(gC) with Lie algebra gC in such a way that G is the connected subgroup
of GC with Lie algebra g.

For a root α, let α∨ = 2α/〈α,α〉 so that 〈α∨,α〉 = 2. Also, let Hα be defined by α(Z) = 〈Hα, Z〉, Z ∈ a, and write
H∨

α = 2Hα/〈α,α〉 for the corresponding co-root. Finally, let

γα = exp
(
iπ H∨

α

)
,

where the exponential is taken in gC , and put

F = group generated by {γα: α ∈ Π},
that is F = {exp(iπ H): H ∈L}, where L is the lattice spanned by H∨

α , α ∈ Π .
It is known that F is a subgroup of M normalized by M∗ and that M = F M0 (see Proposition 7.53 and Theorem 7.55

of [13]). Also, γα leaves invariant each root space gβ and its restriction to gβ has the only eigenvalue exp(iπ〈α∨, β〉). The
next result shows that F intersects each connected component of the centralizer K H .

Lemma 2.1. For H ∈ a, we have that K H = F (K H )0 . In particular, KΘ = F (KΘ)0 .

Proof. Take w ∈W such that Z = w H ∈ cla+ . Thus, since K Z = M(K Z )0 and M = F M0, we have that K Z = F (K Z )0. Now

K H = w−1 K Z w = w−1 F w
(

w−1 K Z w
)

0 = F (K H )0,

since M∗ normalizes F . The last assertion follows, since KΘ = K HΘ , where HΘ ∈ cla+ is such that Θ(HΘ) = Θ . �
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2.4. Stable and unstable bundles over the fixed points

Take H ∈ cla+ . The one-parameter group exp(t H) acts on a flag manifold FΘ , defining a flow, whose behavior was
described in Duistermat, Kolk and Varadarajan [7]. This is the flow of a gradient vector field, and the connected components
of its fixed points are given by the orbits fixΘ(H, w) = K H wbΘ , where w runs trough W , bΘ is the origin of the flag
manifold FΘ and wbΘ = wbΘ , where w is any representative of w in M∗ . Since K H = K (H)M and the group M fixes wbΘ ,
it follows that

fixΘ(H, w) = K (H)wbΘ.

It follows that fixΘ(H, w) = K (H)/(K (H)∩ K w HΘ ), and hence fixΘ(H, w) is a flag manifold of the semi-simple group G(H).
The stable set of each fixΘ(H, w) is given by

stΘ(H, w) = N−
H wbΘ,

and the stable bundle, denoted by V −
Θ(H, w), is the subbundle of the tangent bundle to stΘ(H, w) transversal to the fixed

point set.
In order to write V −

Θ(H, w) explicitly in terms of root spaces we use the following notation: Given a vector subspace
l⊂ g and x ∈ FΘ denote by l · x the subspace of the tangent space TxFΘ given by the infinitesimal action of l, namely

l · x = {
X̃(x) ∈ TxFΘ : X ∈ l

}
,

where X̃(x) = d
dt (exp t X)|t=0(x) is the vector field induced by X ∈ g. With this notation the tangent space Tbw

Θ
FΘ at bw

Θ ≈
w HΘ is

Tbw
Θ
FΘ = n

−
w HΘ

· bw
Θ.

Now, V −
Θ(H, w) → fixΘ(H, w) (which we write simpler as V − → fixΘ(H, w)) is given by the following expressions:

1. At bw
Θ we put V −

bw
Θ

= (n−
w HΘ

∩ n
−
H ) · bw

Θ .

2. At x = gbw
Θ ∈ K H · bw

Θ , g ∈ K H put

V −
x = (

Ad(g)
(
n

−
w HΘ

∩ n
−
H

)) · x. (2)

This is the same as dgbw
Θ
(Vbw

Θ
) due to the well-known formula g∗ X̃ = ˜(Ad(g)X). Also, the right-hand side of (2) depends

only on x because n
−
w HΘ

∩ n
−
H is invariant under the isotropy subgroup K H ∩ K w HΘ of fixΘ(H, w) = K (H)/(K (H) ∩

K w HΘ ).

For future reference we note that, by taking derivatives, the action of K (H) on fixΘ(H, w) lifts to a linear action on
V −

Θ(H, w). Also, in terms of root spaces we have

n
−
w HΘ

∩ n
−
H =

∑
β∈Π−

Θ (H,w)

gβ

where

Π−
Θ (H, w) = {

β ∈ Π : β(H) < 0, β(w HΘ) < 0
}
.

In a similar way we can define the unstable bundles V +
Θ(H, w) → fixΘ(H, w) that are tangent to the unstable sets

N+
H wbΘ and transversal to the fixed point set fixΘ(H, w). The construction is the same unless that n

−
H is replaced by n

+
H ,

and hence Π−
Θ (H, w) is replaced by

Π+
Θ (H, w) = {

β ∈ Π : β(H) > 0, β(w HΘ) < 0
}
.

Remark. The stable and unstable bundles V ±
Θ(H, w) → fixΘ(H, w) can be easily obtained by using the general device to

construct a vector bundle from a principal bundle Q → X and a representation of the structural group G on a vector
space V . The resulting associated bundle Q ×G V is a vector bundle. For the stable and unstable bundles we can take
the principal bundle K (H) → fixΘ(H, w), defined by identification of fixΘ(H, w) = K (H)/(K (H) ∩ K w HΘ ), whose structural
group is K (H) ∩ K w HΘ . Its representation on l± = n

−
w HΘ

∩ n
±
H yields V ±

Θ(H, w), respectively.
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3. Vector bundles over homogeneous spaces

We state a general criterion of orientability of vector bundles acted by Lie groups. Let V → X be an n-dimensional vector
bundle and denote by BV the bundle of frames p : Rn → V . It is well known that the vector bundle V is orientable if and
only if BV has exactly two connected components, and is connected otherwise.

Let K be a connected Lie group acting transitively on the base space X in such a way that the action lifts to a fiberwise
linear action on V . This linear action in turn lifts to an action on BV by composition with the frames.

Fix a base point x0 ∈ X with isotropy subgroup L ⊂ K . Then each g ∈ L gives rise to a linear operator of the fiber l = V x0 .
Denote by det(g|l), g ∈ L, the determinant of this linear operator.

The following statement gives a simple criterion for the orientability of V .

Proposition 3.1. The vector bundle V is orientable if and only if det(g|l) > 0, for every g ∈ L.

Proof. Suppose that det(g|l) > 0, g ∈ L, and take a basis β = {e1, . . . , ek} of V x0 . Let g1, g2 ∈ G be such that g1x0 = g2x0.
Then the bases giβ = {gie1, . . . , giek}, i = 1,2, obtained by the linear action on V , have the same orientation since
deg(g−1

1 g2|l) > 0. These translations orient each fiber consistently and hence V .
Conversely, denote by BV the bundle of frames of V . If V is orientable then BV splits into two connected components.

Each one is a Gl+(k,R)-subbundle, k = dim V , and corresponds to an orientation of V . The linear action of G on V lifts to
an action on BV . Since G is assumed to be connected, both connected components of BV are G-invariant. Hence if g ∈ L and
β is a basis of V x0 then β and gβ have the same orientation, that is, det(g|l) > 0. �
Remark. Clearly, det(g|l) does not change sign in a connected component of L. Hence to check the condition of the above
proposition it is enough to pick a point on each connected component of L.

3.1. Vector bundles over flag manifolds

Now we are ready to get criteria for orientability of as stable vector bundle V −
Θ(H, w) → fixΘ(H, w) and for the tangent

bundle of a flag manifold FΘ . These two cases have the following properties in common:

1. The vector bundles are acted by a connected group whose action on the base space is transitive. Hence Proposition 3.1
applies.

2. The connected components of the isotropy subgroup, at the base space, are given by a subgroup S of the lattice group F .
3. The action of the isotropy subgroup on the fiber above the origin reduces to the adjoint action on a space

l =
∑
α∈Γ

gα

spanned by root spaces, with roots belonging to a certain subset Γ ⊂ Π .

Now, a generator

γα = exp
(
iπ H∨

α

)
, α ∈ Π,

acts on a root space gβ by exp(iπ〈α∨, β〉) · id. Hence the determinant of γα restricted to l = ∑
α∈Γ gα is given by

det(γα |l) = exp

(
iπ

∑
β∈Γ

nβ

〈
α∨, β

〉)
.

So that det(γα |l) = ±1 with the sign depending whether the sum∑
β∈Γ

nβ

〈
α∨, β

〉
is even or odd. Here, as before nβ is the multiplicity dimgβ of the root β . From this we get the following criterion for
orientability in terms of roots: The vector bundle is orientable if and only if for every root α the sum∑

β∈Γ

nβ

〈
α∨, β

〉 ≡ 0 (mod 2)

where the sum is extended to β ∈ Γ .
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3.2. Flag manifolds

In case of orientability of a flag manifold FΘ (its tangent bundle) the subspace to be considered is

l = n
−
Θ =

∑
β∈Π−\〈Θ〉

gβ,

that identifies with the tangent space to FΘ at the origin. On the other hand the isotropy subgroup KΘ = F (KΘ)0 (see
Lemma 2.1), which means that F covers the connected components of KΘ . Hence we get the following criterion.

Theorem 3.2. The flag manifold FΘ is orientable if and only if∑
β

nβ

〈
α∨, β

〉 ≡ 0 (mod 2) (3)

where the sum is extended to β ∈ Π− \ 〈Θ〉 (or equivalently to β ∈ Π+ \ 〈Θ〉). This condition must be satisfied for any simple root α.

Proof. In fact, Π− \ 〈Θ〉 is the set of roots whose root spaces span the tangent space at the origin. Hence the determinant
condition holds if (3) is satisfied for every root α ∈ Π . However it is enough to take α in the simple system Σ . This is
because the set of co-roots Π∨ = {α∨: α ∈ Π} is also a root system having Σ∨ = {α∨: α ∈ Σ} as a simple system of roots.
By taking linear combinations of Σ∨ with integer coefficients it follows that condition (3) holds for any root α ∈ Π if and
only if it is satisfied for the simple roots. �

Now we derive some consequences of the criteria stated above. First we prove that any maximal flag manifold is ori-
entable, a result already obtained by Kocherlakota [14] as a consequence that the top Z-homology groups are nontrivial.

Theorem 3.3. Any maximal flag manifold F is orientable.

Proof. We write, for a simple root α, Πα = {α,2α} ∩ Π+ , Πα
0 = {β ∈ Π+: 〈α∨, β〉 = 0} and Πα

1 = {β ∈ Π+: 〈α∨, β〉 �= 0,
β /∈ Πα}. Let rα be the reflection with respect to α. It is known that rα(Π+ \ Πα) = Π+ \ Πα . Moreover, for a root β we
have 〈

α∨, rα(β)
〉 = 〈

α∨, β − 〈
α∨, β

〉
α

〉 = 〈
α∨, β

〉 − 〈
α∨,α

〉〈
α∨, β

〉 = −〈
α∨, β

〉
.

Hence the subsets Πα
0 and Πα

1 are rα-invariant and 〈α∨, β + rα(β)〉 = 0.
Now fix α ∈ Σ and split the sum

∑
β∈Π+ nβ〈α∨, β〉 into Πα , Πα

0 and Πα
1 . For Πα this sum is 2nα + 4n2α , with n2α = 0

if 2α is not a root. For Πα
0 the sum is zero. In Πα

1 the roots are given in pairs β �= rα(β) with 〈α∨, β + rα(β)〉 = 0, since
Πα

1 is rα-invariant and β = rα(β) if and only if 〈α∨, β〉 = 0. Since nrα(β) = nβ , it follows that
∑

β∈Πα
1

nβ 〈α∨, β〉 = 0. Hence
the total sum is even for every α ∈ Σ , proving the orientability of F. �

In particular this orientability result applies to the maximal flag manifold of the semi-simple Lie algebra g(Θ). Here the
set of roots is 〈Θ〉 having Θ as a simple system of roots. Therefore the equivalent conditions of Theorem 3.2 combined with
the orientability of the maximal flag manifold of g(Θ) imply

Corollary 3.4. If α ∈ Θ then∑
β

nβ

〈
α∨, β

〉 ≡ 0 (mod 2),

where the sum is extended to β ∈ 〈Θ〉− (or equivalently to β ∈ 〈Θ〉+).

This allows to simplify the criterion for a partial flag manifold FΘ .

Proposition 3.5. FΘ is orientable if and only if, for every root α ∈ Σ \ Θ , it holds∑
β

nβ

〈
α∨, β

〉 ≡ 0 (mod 2), (4)

where the sum is extended to β ∈ 〈Θ〉− (or equivalently to β ∈ 〈Θ〉+).
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Proof. Applying Corollary 3.4 with Θ = Σ , we have that
∑

β∈Π− nβ 〈α∨, β〉 is even. Hence, by Theorem 3.2, FΘ is orientable
if and only if, for every root α ∈ Σ , the sum

∑
β∈〈Θ〉− nβ 〈α∨, β〉 is even. By Corollary 3.4, it is enough to check this for every

root α ∈ Σ \ Θ . �
Finally we observe that if G is a complex group then the real multiplicities are nβ = 2 so that any flag FΘ is orientable.

This is well known since the FΘ are complex manifolds.

3.3. Stable and unstable bundles in flag manifolds

For the stable bundles V −
Θ(H, w) we take

l = n
−
w HΘ

∩ n
−
H =

∑
β∈Π−

Θ (H,w)

gβ,

where

Π−
Θ (H, w) = {

β ∈ Π : β(H) < 0, β(w HΘ) < 0
}
.

Also the acting Lie group is K (H) whose isotropy subgroup at w HΘ of the base space fixΘ(H, w) is L = K (H) ∩ Z w HΘ

where Z w HΘ is the centralizer of w HΘ . Applying the determinant criterion we get the following condition for orientability.

Theorem 3.6. The vector bundle V −
Θ(H, w) is orientable if and only if∑

β

nβ

〈
α∨, β

〉 ≡ 0 (mod 2),

where the sum is extended to β ∈ Π−
Θ (H, w). Here the condition must be verified for every α ∈ Θ(H).

Proof. It remains to discuss the last statement about the scope of the condition. It is a consequence of Lemma 2.1. In fact,
K (H) is the compact component of the semi-simple Lie group G(H). Hence

L = K (H) ∩ Z w HΘ = F (H)
(

K (H) ∩ Z w HΘ

)
0,

where F (H) is the F group of G(H), that is, the group generated by{
γα = exp

(
iπ H∨

α

)
: α ∈ 〈

Θ(H)
〉}

,

because the restriction of 〈Θ(H)〉 to a(H) is the root system of G(H). Finally, it is enough to check the condition for the
simple roots in Θ(H). �
Remark. The same result holds for the unstable vector bundles V +

Θ(H, w) with Π+
Θ (H, w) instead of Π−

Θ (H, w).

We have the following result in the special case when Θ = ∅ and w is the principal involution w− .

Corollary 3.7. For every H ∈ cla+ , the vector bundles V −(H,1) and V +(H, w−) are orientable.

Proof. Applying Corollary 3.4 with Θ = Σ and Θ = Θ(H), it follows that both∑
β∈Π+

nβ

〈
α∨, β

〉
and

∑
β∈〈Θ(H)〉+

nβ

〈
α∨, β

〉

are even for α ∈ Θ(H). Hence, for every α ∈ Θ(H), it holds that
∑

β nβ 〈α∨, β〉 is even, where the sum is extended to
β ∈ Π+ \ 〈Θ(H)〉. If Θ = ∅, then HΘ is regular and β(w−HΘ) < 0 if and only if β ∈ Π+ . Thus Π+(H, w−) = Π+ \ 〈Θ(H)〉
and the result follows from Theorem 3.6.

The proof for V +(H, w−) is analogous. �
Remark. The above result is not true in a partial flag manifold. An example is given in G = Sl(3,R) with H =
diag{2,−1,−1}. Then it can be seen that the repeller component of H is a projective line and its unstable bundle a Möbius
strip.
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Table 1
Connected subdiagrams.

� Σ

Ak (k � 1) any diagram
Bk (k � 2) Bl (l > k), Cl (k = 2) and F4 (2 � k � 3)
Ck (k � 3) Cl (l > k) and F4 (k = 3)
Dk (k � 4) Dl (l > k), E6 (4 � k � 5), E7 (4 � k � 6) and E8 (4 � k � 7)
E6 E7 and E8

E7 E8

4. Split real forms

When g is a split real form every root β has multiplicity nβ = 1. Hence, the criterion of Corollary 3.5 reduces to

S(α,Θ) =
∑

β∈〈Θ〉+

〈
α∨, β

〉 ≡ 0 (mod 2), (5)

that can be checked by looking at the Dynkin diagrams. In the sequel we use a standard way of labelling the roots in the
diagrams as in the picture below.

Al , l � 1 � � . . . � �

α1 α2 αl−1 αl

Bl , l � 2 � � . . . � ��
�α1 α2 αl−1 αl

Cl , l � 3 � � . . . ��
�

�

α1 α2 αl−1 αl

Dl , l � 4 �

α1

�

α2

. . . �

αl−2

�
�

�
�

�αl−1

�αl

G2
� ��

�α1 α2

F4
�

α1

�

α2

�

α3

�
�

�

α4

E6
� � � � �

�

α1 α2 α3 α4 α5

α6

E7
� � � � � �

�

α1 α2 α3 α4 α5 α6

α7

E8
� � � � � � �

�

α1 α2 α3 α4 α5 α6 α7

α8

For the diagram G2 there are three flag manifolds: the maximal F, which is orientable, and the minimal ones F{α1} and
F{α2} , where α1 and α2 are the simple roots with α1 the longer one. These minimal flag manifolds are not orientable since
in both cases (5) reduces to the Killing numbers 〈α∨

1 ,α2〉 = −1 and 〈α∨
2 ,α1〉 = −3. From now on we consider only simple

and double laced diagrams.
Our strategy consists in counting the contribution of each connected component � of Θ to the sum S(α,Θ) in (5). Thus

we keep fixed α and a connected subset � ⊂ Σ . If α is not linked to � then S(α,�) = 0 and we can discard this case.
Otherwise, α is linked to exactly one root of �, because a Dynkin diagram has no cycles. We denote by δ the only root in
� linked to α.

A glance at the Dynkin diagrams shows the possible subdiagrams � properly contained in Σ . We exhibit them in
Table 1. For these subdiagrams we can write down explicitly the roots of 〈�〉+ and then compute S(α,�), when α is
linked to �. In fact, if β ⊂ 〈�〉+ then β = cδ + γ where δ is the only root in � which is linked to α and 〈γ ,α∨〉 = 0, so
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Table 2
Al subdiagrams.

� = Ak

links S(α,�)

α δ −k

α �
�

δ −k

α �
�

δ −2k

Table 3
Bl subdiagrams.

� = Bk

Σ S(α,�)

Bl (2 � k < l) −(2k − 1)

Cl (k = 2) −4
F4 (k = 2) −3 or −4
F4 (k = 3) −9

Table 4
Cl subdiagrams.

� = Ck

Σ S(α,�)

Cl (3 � k < l) −2k
F4 (k = 3) −6

Table 5
Dl subdiagrams.

� = Dk

Σ S(α,�)

Dl (4 � k < l) −2(k − 1)

El (k = 4) −6
El (k = 5) −8, δ = α1

El (k = 5) −10, δ = α5

El (k = 6) −6, δ = α1

El (k = 6) −15, δ = α6

E8 (k = 7) −21

that 〈β,α∨〉 = c〈δ,α∨〉. Hence it is enough to look at those roots β ∈ � whose coefficient c in the direction of δ is nonzero.
In the sequel we write down the values of S(α,�) and explain how they were obtained.

In the diagram Ak with roots α1, . . . ,αk the positive roots are αi + · · · + α j , i � j. Hence if � = Ak then the possibilities
for δ are the extreme roots α1 and αk . In case δ = α1 the sum S(α,�) extends over the k positive roots α1 + · · · + α j ,
j = 1, . . . ,k, that have nonzero coefficient in the direction of α1. (It is analogous for δ = αk .)

In the standard realization of Bk the positive roots are λi ± λ j , i �= j, and λi , where {λ1, . . . , λk} is an orthonormal basis
of the k-dimensional space. The possibilities for δ are extreme roots λ1 −λ2 (to the left) and λk (to the right). If δ = λ1 −λ2
then α and δ are linked by one edge, that is, 〈δ,α∨〉 = −1. Also, the positive roots in Bk having nonzero coefficient c in the
direction of λ1 − λ2 are the 2k − 2 roots λ1 ± λ j , j > 1 together with λ1. For all of them c = 1, hence the contribution of �

to S(α,�) is −(2k − 1). Analogous computations with δ = λk yields Table 3.
For Ck the positive roots are λi ±λ j , i �= j, and 2λi . If δ = λ1 −λ2 then 〈δ,α∨〉 = −1, and we must count the 2k − 2 roots

λ1 ± λ j , j > 1, having coefficient c = 1 and 2λ1 with c = 2. Then the contribution to S(α,�) is −2k. This together with a
similar computation for the other δ gives Table 4.

For Dk the positive roots are λi ± λ j , i �= j. If δ = λ1 − λ2 then 〈δ,α∨〉 = −1, and we must count the 2k − 2 roots
λ1 ± λ j , j > 1, all of them having coefficient c = 1. Then the contribution to S(α,�) is −2k − 2. We leave to the reader the
computation of the other entries of Table 5.

The results for the exceptional cases are included in Table 6. To do the computations we used the realization of Freuden-
thal of the split real form of E8 in the vector space sl(9,R) ⊕ ∧3

R9 ⊕ (
∧3

R9)∗ . The roots of E8 are the weights of the
representation of the Cartan subalgebra h ⊂ sl(9,R) of the diagonal matrices (see Fulton and Harris [8] and [18]). The roots
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Table 6
El subdiagrams.

� = Ek

Σ S(α,�)

El (k = 6) −16
E8 (k = 7) −27

are λi − λ j , i �= j (with root spaces in sl(9,R)) and ±(λi + λ j + λk), i < j < k (with root spaces in
∧3

R9 ⊕ (
∧3

R9)∗). From
the realization of E8 one easily obtains E6 and E7, and the computations can be performed.

4.1. Classical Lie algebras

The split real forms of the classical Lie algebras are Al = sl(l + 1,R), Bl = so(l, l + 1), Cl = sp(l,R) and Dl = so(l, l). Their
associated flag manifolds are concretely realized as manifolds of flags (V 1 ⊂ · · · ⊂ Vk) of vector subspaces V i ⊂ Rn . For Al
one takes arbitrary subspaces of Rn , n = l + 1. Given integers 1 � d1 < · · · < dk � l we denote by F(d1, . . . ,dk) the manifold
of flags (V 1 ⊂ · · · ⊂ Vk) with dim V i = di .

For the other classical Lie algebras we take similar manifolds of flags, but now the subspaces V i are isotropic w.r.t. a
quadratic form for Bl and Dl , and w.r.t. a symplectic form in Cl . Again the flag manifolds are given by integers 1 � d1 <

· · · < dk � l and we write FI (d1, . . . ,dk) for the manifold of flags of isotropic subspaces with dim V i = di . Here V i ⊂ Rn with
n = 2l + 1 in Bl and n = 2l in the Cl and Dl cases.

The way we order the simple roots Σ in the Dynkin diagrams allows a direct transition between the dimensions
d1, . . . ,dk and the roots Θ ⊂ Σ when F(d1, . . . ,dk) or FI (d1, . . . ,dk) is FΘ . In fact, except for some flags of Dl the di-
mensions d1, . . . ,dk coincide with the indices of the roots α j /∈ Θ . (For example, the Grassmannian F(r) is the flag manifold
FΘ with Θ = Σ \ {αr}.) We detail this correspondence below.

The orientability criteria for the split real groups use several times the following

Condition. We say that the numbers 0 = d0,d1, . . . ,dk satisfy the mod 2 condition if the differences di+1 − di , i = 0, . . . ,k,
are congruent mod 2, that is, they are simultaneously even or simultaneously odd.

4.1.1. Al = sl(l + 1,R)

The flag manifolds are F(d1, . . . ,dk) = FΘ such that j ∈ {d1, . . . ,dk} if and only if j is the index of a simple root α j /∈ Θ .
If we write F(d1, . . . ,dk) = SO(n)/KΘ then KΘ = SO(d1) × · · · × SO(n − dk) is a group of block diagonal matrices, having
blocks of sizes di+1 − di .

Proposition 4.1. A flag manifold F(d1, . . . ,dk) of Al is orientable if and only if d1, . . . ,dk,dk+1 satisfy the mod 2 condition. Here we
write dk+1 = n = l + 1. Alternatively orientability holds if and only if the sizes of the blocks in KΘ are congruent mod 2.

Proof. By the comments above, the simple roots outside Θ are αr1 , . . . ,αrk , where d1, . . . ,dk are the dimensions determin-
ing the flag. For an index i there either di+1 = di + 1 or di+1 > di + 1. In the second case the set � = {αri+1, . . . ,αri+1−1} is
a connected component of Θ , having di+1 − di − 1 elements. We consider two cases:

1. If the second case holds for every α /∈ Θ then the connected components of Σ \ Θ are singletons. If this holds and
α /∈ Θ is not one of the extreme roots α1 or αl then α is linked to exactly two connected components of Θ . By the
first row of Table 2 these connected components of Θ must have the same mod 2 number of elements if F(d1, . . . ,dk)

is to be orientable. Hence if {α1,αl} ⊂ Θ then F(d1, . . . ,dk) is orientable if and only if the number of elements in
the components of Θ are mod 2 congruent. This is the same as the condition in the statement because a connected
component has di+1 −di −1 elements. On the other hand if α1 or αl is not in Θ then orientability holds if and only if all
the number of elements of the components of Θ are even. In this case di+1 −di is odd and d1 −d0 = 1 or dk+1 −dk = 1.
Hence the result follows.

2. As in the first case one can see that if some of the components of Σ \ Θ is not a singleton then all the components of
Θ must have an even number of elements. Therefore the integers di+1 − di are odd. �

Example. A Grassmannian Grk(n) of k-dimensional subspaces in Rn is orientable if and only if n is even.

Remark. The orientability of the flag manifolds of Sl(n,R) can be decided also via Stiefel–Whitney classes as in Conde [6].

4.1.2. Bl = so(l, l + 1)

Here the flag manifolds are FI (d1, . . . ,dk) = FΘ such that j ∈ {d1, . . . ,dk} if and only if j is the index of a simple root
α j /∈ Θ . The subgroup KΘ is a product SO(n1) × · · · × SO(ns) with the sizes ni given as follows:
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1. If dk = l, or equivalently αl /∈ Θ then KΘ = SO(d1) × · · · × SO(dk−1 − dk−2).
2. If dk < l, or equivalently αl ∈ Θ then

(a) KΘ = SO(d1) × · · · × SO(dk − dk−1) × SO(2) if dk = l − 1, that is, {αl} is a connected component of Θ .
(b) KΘ = SO(d1)× · · ·× SO(dk − dk−1) × SO(l − dk)× SO(l − dk + 1) if dk < l − 1, that is, the connected component of Θ

containing αl is a Bl−dk .

Proposition 4.2. The following two cases give necessary and sufficient conditions for flag manifold FI (d1, . . . ,dk) of Bl to be orientable.

1. Suppose that dk = l, that is, αl /∈ Θ . Then FI (d1, . . . ,dk) is orientable if and only if d1, . . . ,dk−1 , up to k − 1, satisfy the mod 2
condition. Equivalently, the sizes of the SO(ni)-components of KΘ are congruent mod 2.

2. Suppose that dk < l, that is, αl ∈ Θ . Then FI (d1, . . . ,dk) is orientable if and only if d1, . . . ,dk together with l − dk satisfy the
mod 2 condition.

Proof. If αl /∈ Θ then Θ is contained in the Al−1-subdiagram {α1, . . . ,αl−1}. Hence the condition is the same as in the Al
case. Furthermore, S(αl,�) is even for any � because αl is a short root. Therefore no further condition comes in.

In the second case, if � is the connected component of Θ containing αl then the contribution S(α,�) of � to the total
sum is the number of elements of � by Tables 2 and 3. Again, the conclusion is as in the Al case. �
Example. A Grassmannian GrI

k(n) = FI (k) of k-dimensional isotropic subspaces in R2l+1 is orientable if and only if either
(i) k = l or (ii) k < l and l is even.

4.1.3. Cl = sp(l,R)

Again the flag manifolds are FI (d1, . . . ,dk) = FΘ such that j ∈ {d1, . . . ,dk} if and only if j is the index of a simple root
α j /∈ Θ . The subgroup KΘ is

1. SO(d1) × · · · × SO(dk−1 − dk−2) if dk = l.
2. SO(d1) × · · · × SO(dk−1 − dk−2) × SO(2) if dk = l − 1.
3. SO(d1) × · · · × SO(dk−1 − dk−2) × U(l − dk) if dk < l − 1.

Proposition 4.3. For Cl a necessary and sufficient condition for the orientability of FI (d1, . . . ,dk) is that d1, . . . ,dk satisfy the mod 2
condition.

Proof. There are two possibilities:

1. If dk = l, that is, αl /∈ Θ then Θ is contained in the Al−1 and the condition, up to k − 2, comes from the Al case. The
difference dk − dk−1 also enters in the condition because αl is a large root.

2. If dk < l, that is, αl ∈ Θ then the conditions are necessary as in the Al case. To see that no further condition appears
look at the connected component � containing αl . If � = {αl} then S(αl−1,�) is even because αl−1 is a short root.
Otherwise, � is a Ck and its contribution is also even by Table 4. �

4.1.4. Dl = so(l, l)
The flag manifolds of so(l, l) are also realized as flags of isotropic subspaces with a slight difference from the odd

dimensional case Bl = SO(l, l + 1). First a minimal flag manifold FΣ\{αi} is the Grassmannian of isotropic subspaces of
dimension i if i � l − 2. However, both FΣ\{αl−1} and FΣ\{αl} are realized as subsets of l-dimensional isotropic subspaces.
Each one is a closed orbit of the identity component of SO(l, l) in the Grassmannian GrI

l (2l) of l-dimensional isotropic
subspaces. We denote these orbits by GrI

l+ (2l) = FΣ\{αl} and GrI
l− (2l) = FΣ\{αl−1} . (By the way the isotropic Grassmannian

GrI
l−1(2l) is the flag manifold FΣ\{αl−1,αl} , which is not minimal.)
Accordingly, the flag manifolds of so(l, l) are defined by indices 1 � d1 � · · · � dk � l − 2 joined eventually to l+ and l− .

The elements of FI (d1 . . . ,dk) are flags of isotropic subspaces V 1 ⊂ · · · ⊂ Vk with dim V i = dk . When l+ or l− are present
then one must include an isotropic subspace in GrI

l+ (2l) or GrI
l− (2l), respectively, containing Vk , and hence the other sub-

spaces.
The group KΘ is a product of SO(d)’s components each one for a connected component of Θ unless a Dk component

appears. Such a component contributes to KΘ with a SO(k) × SO(k).

Proposition 4.4. The orientability of the flag manifolds of Dl = so(l, l) is given as follows:

1. For a flag FI (d1, . . . ,dk) there are the possibilities:
(a) If dk � l − 4 then orientability holds if and only if d1, . . . ,dk satisfy the mod 2 condition.
(b) If dk = l − 3 then orientability holds if and only if the differences di+1 − di , i = 0, . . . ,k − 1, are even numbers.
(c) If dk = l − 2 then orientability holds if and only if the differences di+1 − di , i = 0, . . . ,k − 1, are odd numbers.
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2. For the flag manifolds FI (d1, . . . ,dk, l+) and FI (d1, . . . ,dk, l−) we have:
(a) If dk = l − 2 then the condition is that di+1 − di , i = 0, . . . ,k − 2, are even numbers.
(b) If dk < l − 2 then the condition is that di+1 − di , i = 0, . . . ,k − 2, are odd numbers and dk − dk−1 is even.

3. For the flag manifolds FI (d1, . . . ,dk, l+, l−) we have:
(a) If dk = l − 2 then d1, . . . ,dk−2 satisfy the mod 2 condition.
(b) If dk < l − 2 then di+1 − di , i = 0, . . . ,k − 2, are odd numbers.

Proof. If dk � l − 4 then Θ contains a connected component � which is a Dk (at the right side of the diagram). By Table 5
the contribution of � is even, so that orientability depends on the roots in the Al−4 diagram {α1, . . . ,αl−4} where the
condition is as in the statement. If dk = l − 3 then the differences di+1 − di , i = 0, . . . ,k − 1, must be congruent mod 2 to
have orientability. But the root αl−3 is linked to the A3 = {αl−2,αl−1,αl}, so that the number of elements of the components
of Θ are odd, that is, the differences di+1 − di are even. The same argument applies to dk = l − 2, but now αl−2 is linked to
the two A1’s {αl−1} and {αl}.

The other cases are checked the same way. �
5. Vector bundles over flag bundles

In this final section we consider vector bundles over flag bundles. The orientability of vector bundles over the flag
manifolds carry over to vector bundles over flag bundles in case the latter are bundles associated to trivial principal bundles.

With the previous notation let R be a K -principal bundle. Since K acts continuously on V and X , the associated bundle
R ×K V is a finite dimensional vector bundle over R ×K X whose fibers are the same as the fibers of V .

Proposition 5.1. Assume that R is trivial. Then the vector bundle

R ×K V → R ×K X

is orientable if, and only if, the vector bundle V → X is orientable.

Proof. Since the K -principal bundle R → Y is trivial, we have that R ×K V → R ×K X is homeomorphic as a vector bundle
to Y × V → Y × X . Since the frame bundle of Y × V can be given by Y × BV , the orientation bundle of Y × V can be given
by Y ×OV . If σ : X →OV is a continuous section, then (y, x) �→ (y, σ (x)) is a continuous section of Y ×OV . Reciprocally,
if σ : Y × X → Y ×OV is a continuous section, then x �→ σ(y0, x) is a continuous section of OV , where y0 ∈ Y . �

Let G be a Lie group acting on its Lie algebra g by the adjoint action. The vector bundles we will consider in the sequel
arise as associated bundles of the L-principal bundle K → K/L, where K is a subgroup of G . For an L-invariant subspace l

of g, we will consider the associated vector bundle

V = K ×L l,

whose typical fiber is l.

Corollary 5.2. The associated vector bundle V is orientable if and only if det(g|l) > 0, for every g ∈ L.

Proof. We only need to show that V satisfies the hypothesis of Proposition 3.1. First we note that its frame bundle is given
by BV = K ×L Gl(l). Defining an action k ∈ K on m · X ∈ BV by

k(m · X) = km · X,

where m ∈ K , X ∈ l, we have that the action of K on K/L lifts to a continuous action of automorphisms on the frame bundle
BV . �

To conclude we apply our results to the situation of [16], where flows on flag bundles and their Conley indices are
considered. In [16] one starts with a principal bundle Q → X whose structural group G is semi-simple, and a flow φt , t ∈ Z

or R, of automorphisms of Q . There are induced flows on the associated bundles Q ×G F , where the typical fiber F is
acted by G on the left. In particular, in [16] it is taken as a typical fiber F a flag manifold FΘ of G yielding the flag bundle
EΘ = Q ×G FΘ .

According to the results of [15] and [16], each Morse component MΘ(w) of φt is a flag bundle of a certain subbundle
Q φ of Q . Moreover, the unstable set V+

Θ(w) of the Morse component MΘ(w) is an associated vector bundle of Q φ whose
base is MΘ(w) and whose typical fiber is the same as the fiber of V +

Θ(Hφ, w), where Hφ is a certain element of cla+ ,
called the parabolic type of φt .
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When the base B is a point, the flow of automorphisms φt is given by gt for some g ∈ G , when t ∈ Z, or by exp(t X) for
some X ∈ g, when t ∈ R. In [9], it is shown that the parabolic type Hφ of these flows is given by the hyperbolic component
of g or X under the Jordan decomposition.

In [16], we show that the Conley index of the attractor component in the maximal flag bundle and, under certain
hypothesis, the Conley index of each Morse component, is the Thom space of its unstable vector bundle. The orientability
of the unstable vector bundle then comes to the scene in order to apply Thom isomorphism and detect the homological
Conley indices of the Morse components. With these results in mind we state the following criterion of orientability of
V+

Θ(w), that follows immediately from Proposition 5.1.

Proposition 5.3. Assume that the reduction Rφ is a trivial bundle. The stable and unstable vector bundles V±
Θ(H, w) are orientable if

and only if the vector bundles V ±
Θ(H, w) are orientable.

There are two cases where the hypotheses of the above result are automatically satisfied. Namely for periodic flows, it is
shown in [9] that the reduction Q φ is trivial. For the control flow of [5], the reduction Q φ is always trivial since the base
space of the control flow is contractible.
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