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A b s t r a c t - - T h i s  paper investigates the global stability of a viral infection model with lyric and 
nonlytic immune responses. If the basic reproductive ratio of the virus is less than or equal to one, by 
the LaSalle's invariance principle and center manifold theorem, the disease-free steady state is globally 
asymptotically stable. If the basic reproductive ratio of the virus is greater than one, then the virus 
persists in the host and the disease steady state is locally asymptotically stable. Furthermore, by the 
method of Lyapunov function, the global stability of the disease steady state is established. At the 
same time, if we neglect the efficacy of the lyric component, using a geometrical approach, we obtain 
a different type of conditions for the global stability of the disease steady state. @ 2006 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - V i r u s  dynamics, hnmune responses, Global stability, Uniform persistence, Center 
manifold. 

1. I N T R O D U C T I O N  

Mathematical models can provide insights into the dynamics of viral load in vivo. A simple model 
may play a significant role in the development of a better understanding of the disease and the 
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various drug therapy strategies used against it. Recently, there has been a lot of papers on virus 
dynamics within-host, some include the immune response directly (e.g., [1-5]), and others don't 
contain the immune responses (e.g., [6-11]). Being different from the epidemic compartment 
models (e.g., [12,13] and references cited therein), in which individuals are partitioned into some 
classes and the transmission dynamics of infectious diseases in host populations is studied, virus 
models focus on the disease dynamics within an infected individual. 

During viral infections, the host immune system reacts with innate and antigen-specific immune 
responses. Both types of responses can be subdivided broadly into lytic and nonlytic components. 
Lytic components kill infected cells, whereas the nonlytic inhibit viral replication through soluble 
mediators. As a part of the innate response, natural killer cells can lyse infected cells and 
cytokines (e.g., interferon c~ (IFN-c~) and IFN-~) secreted by various cell types can inhibit viral 
replication in a nonlytic fashion. In an antigen-specific response, cytotoxic T lymphocytes (CTLs) 
kill infected cells, whereas antibodies neutralize free virus particles and thus, inhibit the infection 
of susceptible cells. In addition, CD4+ and CD8+ T cells can secrete cytokines that inhibit 
viral replication (e.g., IFN-7 and tumor necrosis factor c~ (TNF-c~)). In order to investigate the 
role of direct lytic and nonlytic inhibition of viral replication by immune cells in viral infections, 
Bartholdy et al. [1] and Wodarz et al. [5] constructed a mathematical model describing the 
basic dynamics of the interaction between susceptible host cells, a virus population, and immune 
responses, which is described by the following differential equations, 

~xy 
z '  = A - dx 

l + q z '  
y , _  ~ x y  

ay - pyz ,  (1.1) l + q z  

z'  = cy bz, 

x(0) > 0, y(0) > 0, 40)  > 0, 

where x( t )  is the number of susceptible host cells, y(t)  is the number of virus population and z( t )  

is the number of immune responses; susceptible host cells are generated at a rate A, die at a rate 
dx and become infected by virus at a rate/3xy without the immune responses; to model nonlytic 
antiviral activity, viral replication is inhibited by the immune responses at a rate 1 + qz; infected 
ceils die at a rate ay and are killed by the immune system at a rate p y z  for modelling lyric 
effector mechanisms; the immune responses are assumed to get stronger at a rate proportional to 
the number of infected cells, cy, and also decay exponentially at a rate proportional to its current 
strength, bz. Note that the variable z represents the total immunity that can be generated in 
response to virus infection. The parameter p expresses the strength of the lyric component, 
whereas the parameter q expresses the efficacy of the nonlytic component. 

Note that system (1.1) has not included the dynamics of free virus explicitly. This is be- 
cause [1,5] assume that the turnover of free virus is much faster than that of infected cells. This 
allows them to make a quasi steady-state assumption, whereby the amount of free virus is sim- 
ply proportional to the number of infected cells. Hence, the number of infected cells y can be 
considered also a measure of virus load. 

Since the global dynamics of (1.1) is very useful in investigating the fundamental question of 
which type of responses is required to combat different types of viral infection, in the present 
paper, we focus on the mathematical analysis of the global dynamics of (1.1). We will show that 
if the basic reproductive ratio R0 < 1, the disease-free steady state is globally asymptotically 
stable, corresponding to which the virus is cleared and the disease dies out; if R0 > 1, the virus 
persists in the host and the disease steady state is locally asymptotically stable. Furthermore, 
the global stability of the disease steady state is established by Lyapunov function. When the 
efficacy of the lyric component is neglected, simple sufficient conditions for the global stability of 
the disease steady state is also obtained by geometrical approach of Li and Muldowney [24]. 
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Our paper is organized as follows, in the next section, we give the conditions of stability of the 
disease-free steady state. The stability of the disease steady state is analyzed in Section 3. The 
paper ends with some numerical simulation in Section 4 and a brief discussion in Section 5. 

2. D I S E A S E - F R E E  S T E A D Y  S T A T E  

In [1,5], the basic reproductive ratio of the virus for system (1.1) is given by R0 = Af /ad .  
This ratio describes the average number of newly infected cells generated from one infected cell 
at the beginning of the infectious process. It is easy to see that  if Ro ~ 1, the disease-free 
steady state E0 = (A/d, 0, 0) is the unique steady state, corresponding to the extinction of the 
free virus; if R0 > 1, in addition to the disease-free steady state, there is only one disease steady 
state E1 = (2, Y, 5), corresponding to the survival of the free virus, described by the following 
expressions 

(a +pS)(1  + q2) cA(1 + q2) 

f cd + (b/~ + cdq)5' 
b5 

= - - ,  (2.1) 
C 

5 = 
- ( p c d +  ab3 + acdq) + V/(pcd + ab f  + acdq) 2 - 4p(bfl + cdq)(acd - carl) 

2(bpf + cdpq) 

The objective of this section is to perform a globM analysis to the disease-free steady state E0. 
First, we show that  solutions of system (1.1) are positive and ultimately bounded. 

THEOREM 2.1. Ali solutions of system (1.1) are positive for t > 0 and there exists M > 0, such 
that all the solutions satisfy x(t) ,  y(t), z(t) < M for all large t. 

PROOF. Because y = 0 is the constant solution of system (1.1), by the uniqueness and continuity 
of the solutions for initial conditions, we get y(t) > 0 for any t > 0. Next, we prove that  x(t) 
and z(t) are positive for all t > 0. Suppose, for example, x(t)  is not always positive. Then, let 
7- > 0 be the first time such that  x(T) = 0. By the first equation of (1.1) we have x'(T) = A > 0. 
This means x(t)  < 0, for t E ( v -  z, ~-), where e is an arbitrarily small positive constant. This is a 
contradiction. It follows that  x(t)  is always positive. In the same way, we see that  z(t) is always 
positive. 

Next, we sketch the ultimate boundedness argument. Since all solutions of (1.1) axe positive, 
by the first equation of (1.1) we have x' = A - dx - f x y / ( 1  + qz) < )~ - dx. Therefore, we have 
x(t) < A/d  + 1 for all large t, say t > to. Adding the first two equations gives x'  + y '  = A - dx - 
a y - p y z  < )~-dy.  Let A > 0 such that  dA > A + I .  Then, so long as x ( t ) + y ( t )  >_ A + A / d + I  and 
t > to, we have x ' + y '  < - 1 .  Clearly, there must exist tl > to such that  x ( t ) + y ( t )  < A + A / d + I  
for all t > tx. 

The asymptotic  bound for y(t), namely, y(t) < A + A/d + 1, together with the differential 
inequality z '  < c(A + A/d + 1) - bz, which holds for large t, leads immediately to the asymptotic 
bound z(t) <_ c/b (A + Aid + 1). | 

To be concise, let f ( T )  denotes the vector field of (1.1), where T = ( x , y , z ) .  The Jacobian 
matrix J of (1.1) at T is 

fly fix q f x y  
- d  1 + qz 1 + qz (1 + qz) 2 

J =  ~Y - a - p z +  fix q~xy 
1 + q------~ 1 + q ~  PY (1 + qz) 2 

0 c - b  

(2.2) 

Now, we consider the stability of (1.1) at the disease-free steady state E0. By Routh-Hurwitz 
criterion and center manifold theorem [25, Chapter  2, Theorem 2.7.2], we obtain the following. 
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THEOREM 2.2. The  disease-free s teady  s ta te  Eo is locally asympto t i ca l l y  s table  i f  Ro <<_ 1 and is 

unstable i f  Ro > 1. 

PROOF. The characteristic equation associated with the Jaeobian matrix (2.2) at the disease-free 
steady state Eo is given by 

HEo (W) = (~ + d) ( ~  ÷ a - ~-ff-S) (~ + b) -- O. (2.3) 

Therefore, all roots of equation (2.3) are negative when R0 < 1, i.e., the disease-free steady state 
E0 is locally asymptotically stable. If Ro > 1, ~ = (At3 - da ) /d  > 0 is a root of equation (2.3), 
thus, the disease-free steady state E0 is unstable. 

To consider the case R0 = 1, we set 2 = x - A/d,  ~] = y, 5 -- z. Under this transformation, 
equation (1.1) becomes 

/3zy /~),y 
X I ~ - d x  

1 + qz d(1 + qz ) '  

y, _ ~ x y  + /~Ay a y -  pyz ,  (2.4) 
1 + qz d(1  + qz) 

z' = cy - bz, 

where we substitute x, y, z for 2, Y, 5. The disease-free steady state E0 is shifted to 0 = (0, 0, 0). 
The Jacobian matrix at 0 of (2.4) is 

_° & =  o 0 o 

0 c b 

when R0 = 1. The matrix Jo has eigenvalues - d ,  0 , - b ,  thus, the center manifold is a curve 
tangent to the y-axis. In order to obtain the approximative expression of the center manifold, we 
s e t  

x = -~xy  + T~2y 2 + O ( y 2 ) ,  
z = ~ y  + ~2~ ~ + o ( y ~ ) .  (2.5) 

It  follows that  
x ~ = rn ly  t + 2m2yy  ~ + 0 (y ) ,  

z '  = n l y '  + 2n2yy'  ÷ 0 (y) . (2.6) 

In order to find the unknown coefficients, m l , m 2 , n l , n 2 , . . . ,  we substi tute (2.4) and (2.5) 
into (2.6) and obtain 

(~ + d ~ )  ~ + ( Z - ~  + 9 ~  + d.~2 - ~q~x - p ~ n ~  - a q ~ n ~ )  y~ + O (y~) = 0, 
(2.7) 

(b~x c) ~ + (Z.~1~1 - p ~  - a q ~  + b .~ )  y~ + o (y~) = 0 

Comparing the coefficients of y, y2 in (2.7), we find that  

a acq acq a2cq a/3 a2/~ 
m l -  d' m 2 -  bd bd 2 bd ~ + d 2 d 3 ' 

c acfl c 2 (p + aq) 
n l  = ~, n2 = - ~  ÷ 53 

Then, substituting (2.5) into (2.4), we have 

y' = - + -b- + + o ( y ~ ) .  (2.8) 

Clearly, the zero point y = 0 of (2.8) is locally asymptotically stable, then the zero point y = 0 
of (2.4), or equivalently, the zero point y = 0 of (1.1) is also locally asymptotical ly stable. Thus, 
the disease-free steady state E0 is locally asymptotically stable when R0 = 1. | 

For the global stability of E0, we have the following. 
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T H E O R E M  2 . 3 .  

PROOF. 

The disease-free steady state Eo is globally asymptotically stable i f  Ro <_ 1. 

Define a Lyapunov function, 

1 
V =  2 

k =  ~ a 
0, 

(x - ~ ) 2 + ny + kz, 

- - ~ ) - s > O ,  i f R o < l ,  

if Ro = 1. 

where n A/d and 

Along the trajectories of system (1.1), we have 

l + q z J  + 1 + q-------~ 

Since 

any - npyz  + eky - bkz 

(an - ck) y - npyz - bkz. 

Since n = A/d , k  = (A/cd)(a - At3/d) - ~, we have A - n d  = O, nl3A - d(an - ck) = -cdg  and 
q(an - ck) = q/3A2/d 2 + cqg. Thus, 

V'1(1.1) = -  d +  fly x -  l + qz l + qz (2.9) 

~PYZd b ( ~ ( a  - ~ ) - O ~" 

Note that  x, y, z are positive. All terms of the right in (2.9) are nonpositive when R0 < 1, i.e., 
V'  _< 0 and V'  = 0 if and only if x = A/d, y = 0, z = 0. Therefore, the maximal invariant set in 
{(x, y, z ) :  V'  = 0} is the singleton {E0}. 

If R0 = 1, then 

Vt[(1.1) ~- - d  x - 1 + qz x - d 2 (1 + qz) d 

Thus, V'  _< 0 and V'  = 0 if and only if x = A/d, yz  = 0. By LaSalle's invariance principle, 
any solution of system (1.1) tends to M, where .5I C {(x, y, z) : x = A/d, yz  = 0} is the largest 
invariant subset of system (1.1). By the expression of system (1.1), M = {Eo} is a singleton set. 

The globally asymptotical  stability of E0 when Ro _< 1 follows from LaSalle's invarianee prin- 
ciple [26, Chapter  2, Theorem 6.4] and Theorem 2.2. | 

Zzy  Z--Y x -  + 
1 + qz 1 + qz d(1 + qz)'  

we h a v e  

2 Zy 
( Ab~ \ x -  / d ( l + q z )  

n~Ay 
+ (an - ck) y - npyz - bkz 

d (1 + qz) 

Zy J~i + qz) 
rt/3Ay - dy (an - ck) (1 + qz) npyz  - bkz + 

d (1 + qz) 

+ 9y _ ~ (5 ;~qz) = - ( d  1-VVqz)(x ~_)2 (A-,~d)~y ( x - ~ )  
(~/~A - d (a,~ - & ) )  y q ( a ~  - &) yz 

+ npyz - bkz. 
d(1 + qz) 1 + qz 
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3. D I S E A S E  S T E A D Y  S T A T E  

In this section, we analyze the global stabili ty of the disease s teady state. First, we s tudy the 
local stabili ty of the disease s teady state. 

TttEOREM 3.1. The disease steady s ta te  E1 is 1ocally asymptotiealiy stable i[ Ro > 1. 

PROOF. After tedious calculations, the characteristic equation associated with the Jacobian ma- 
trix (2.2) at E1 is given by 

where 

HE1 (w) = w a 4- AlW 2 4- A2w + Aa = O, 

A1 b +  A = - > 0 ,  
X 

/32~211 cq/3~ 9 bA 
A 2 - - -  4- cp[1+ - - + 7 > 0 ,  

(1 + q e ) 2  ( l + q e ) 2  x 

b/52211 cqA/329 c p A [ 1  eq/32x[12 
A 3 - - - + - - + - -  

(1 4- q5)2 (1 + q5) 2 g" (1 4- qe) a" 

Using the first expression of (2.1), we have/3x = (a +p5) (1  + qS). Thus,  

_ /31t [b/3~ 4- cqA c_q/3e[1] cpA[1 
A3 (1 + qS) 2 1 + qSJ + T 

_ /311 
(1 4- q5)2 [b (a + p2") (1 + qS) 4- cqA - cq9 (a + pS)] + - -  

cpl[1 -- /311 [b (a + pC) + cqA] + > O. 
(1 4- q5)2 

To finish the proof, we need to show tha t  

Using (3.2), we have 

A2 = A1 1 = A1A2 - A3 > O. 
Aa A2 

Hence, 

b/325:[1 cqb/32[1 b2A A/3211 cpA[l 
A1A2 (1 + q2)~ + cbp[1 + (1 + q2) - - - - - ~ 2  + --z + - - ( 1  + qS)2 + - - 2  + - -  

cpA[1 

cqA/3[1 bA 2 + - -  
(1 4- q2) 2 22 ' 

(3.1) 

(3.2) 

b2A bA 2 A/3211 + cqb/3~29 cq~2"~ 2 
A2 = cbp[1 4- --if- 4- -~ -  4- (1 + q2) 2 4- (1 + q2) 3 > O. 

Therefore, all roots of equation (3.1) have negative real parts  by Routh-Hurwi tz  criterion. It 
follows tha t  the disease steady state E1 is locally asymptot ical ly  stable. | 

Next,  we deal with the uniform persistence of (1.1). 

THEOREM 3.2. /iv R0 > 1, then system (1.1) is uniformly persistent, i.e., there exists e > 0 
(independent of initial conditions), such that liminft._++e~ x(t)  > ¢, liminft--++oo y(t) > ¢, and 
liminft--++oc z(t) > s. 

PROOF. The  result follows from an application of Theorem 4.6 in [27], with X1 = int(R a)  
and X2 = bd(Ra+). Since the proof is similar to tha t  of L e m m a  3.5 in [9], we only sketch the 
modifications tha t  E0 is a weak repeller for X1. 

Since R0 > 1, there exists e > 0 such tha t  / 3 ( ( A / d ) - e ) / ( l + q s ) - a - p e  > ~. Suppose 
there exists a solution (z(t) ,  y(t), z(t)) such tha t  (x(t),  y(t), z(t)) --+ (A/d, 0, 0). Thus, when t is 
sufficient large, we have 

A A 
d ~ < x(t) < ~ + ~, y(t) _ ~, 4 0  - ~ 
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By the second equation of system (1.1), we have 

, f x y  / 3 ( ( A / d ) - e ) Y _ a y  pey>¢y .  y -- - -  ay -- pyz >_ 
l +qz  l + q E  

Then y(t) tends to infinity when t tends to infinity. This is a contradiction to that y(t) tends to 
zero. Thus, E0 is a weak repeller for X1. | 

The following results study the global stability of the disease steady state El.  

THEOREM 3.3. The disease steady state E1 is giobally asymptotieally stable if  Ro > 1 and 

4bdp (1 + qS) 2 + 2bdqf~ (1 + qS) >_ c q 2 f 2 ~  2. (3.3) 

PROOF. Define a Lyapunov function, 

( ~) ~/z-~, ~ V=-~I ( x _ ~ ) 2 + n  y - ~ - ~ l n  +-~ 

where 

Thus, 

Furthermore, we have 

f x y  fY:9 fly (x ~2) fl~ (y -- ~) qf'2.~ (z -- 2) 
l + q z  l + q ~ - -  l + q z  + l + q z  ( l + q z ) ( l + q S ) '  

f x  /32 f (x - 2) q f~ (z - 2) 
1 + qz  1 + q5 i + qz (1 + qz) (1 + qS)" 

()~_ bqfe2 ) (~_ ~)~_ 
+ c ( l + q S ) ( l + q z )  

Since q z / ( l + q z )  < 1, we have 

bqef22z 
2 c ( l + q S ) ( l + q z )  2 

< 
2 c ( l + q S ) ( l + q z ) "  

flY ) (x - y~)2 + q f2y  (x -- Y') (z -- 2) 
V'/(M) < -  d + ~  ( l + q z ) ( l + q S )  

(~-~  q f 2 2 ( b ( l + q z ) + c q y ) ) ( z _ 5 )  2 
- + 2 c ( l + q S ) ( l + q z ) 2  

= A l ( x - ~ ) 2 + A 2 ( x - 2 ) ( z - 5 ) - A a ( z - e )  2, 

fY A l = d +  >0 ,  
1 +qz 

q/3~ 
A 2 =  ( l + q z ) ( l + q S )  > 0 '  

bp~ qf~2 (b (1 + qz) + cqy) 
A3 = - -  + 

c 2c ( i  + qS) (1 + qz) 2 
>0 .  

q2fy:2 (ey -- bz) (z - 5) 2 . 
2c (1 + qS) (1 + qz) 2 

bq/322 

(3.4) 

where rt = ~, 

k P:~ q/3~2 - - - [ -  
e c(1 + qs) (1 + qz)" 

Along the trajectories of system (1.1), we have 

V ' l ( 1 . 1 ) = ( x - 2 )  - d ( z - 2 ) -  l + q z  l + q S J  

/3~ ['p2 + qf~2 2 
1 + + + 
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\Vhen ( x - 2 ) ( z - 2 )  <_ O, then from (3.4), we have V' < 0 is always true. When (x-Yc)(z-5 . )  > O, 
since the arithmetical mean is greater than or equal to the geometrical mean, we have V' < 0 if 
A~ _< 4A1A3, i.e., 

cq2fl2~2fl 2 < 4 d + ~ bp 4. 

Note that  

(b (1 +qq_+ cqy)] 
2(l+qS)(l+qz) 2 ] (l+qz) 2(1+q )2. (3.5) 

fly ( q~_~ (b (1 + q z ) + c q y ) ' ]  
4 ( d 4 . 1 ~ )  \bP4.  2 ( 1 4 . q f ' ) ( 1 4 - q z )  2 j ( l + q z ) 2 ( 1 4 . q S )  2 

= 4bdp (1 + qs) 2 (1 + qz) 2 + 2bdqfl~ (1 + q2) (1 + qz) 

4- 2fly (1 4- qS) bqfl2 4- 2bp(1 + q2) (1 + qz) + c2q 2 d + 1 + q z ]  

> 4bdp (1 + q5)2 + 2bdqfl2 (1 + qS). 

It follows that  (3.5) is valid when (3.3) holds, i.e., V' < 0, which concludes the proof. | 

In fact, the condition (3.3) of Theorem 3.3 can be rewrit ten as a form of R0. Using (2.1), we 
have 

cA(1 4- qS) b2 
= cd 4- (bfl 4- cdq)5' Y = c 

Thus, (3.3) is equivalent to 

(4dpq(bfl + cdq) - bAq2fl2)ff 4- (8cpqd 2 4- 4bdpfl + 2edflAq2)2 4- 4cpd 2 4- 2edqflA >_ O. (3.6) 

When 

i.e., 

4dp(bfl + edq) 
A <  

- bq32 ' 

Ro <_ 4p(bfl + cdq) =_ R*, 
abqfl 

inequality (3.6) is always valid. When R0 > R*, let 

f ( z )  = B l z  2 + B2z + Ba, 

where B1 = 4dpq(bfl + cdq) - bAq2fl 2 < O, B2 = 8cpqd 2 + 4bdpfl + 2cdflAq 2, B3 = 4cpd 2 + 
2cdqflA. By the figure of equation f ( z )  = 0, we see that  the sufficient and necessary condition of 
inequality (3.6) is 2 _< z*, where 

z* = - B 2  - x / B ~  - 4BIB3 
2B1 

is the positive root of f ( z )  = 0. Thus, we obtain the following corollary. 

COROLLARY 3.1. I f  1 < RO <_ R*, then the disease s teady state E t  is globally asymptotical ly  
stable; i f  R o > R* > 1, then the disease s teady state E1 is globally asymptot ical ly  stable when 
z ~ z * .  

Now, we study the influence of the different immune responses. In the absence of the efficacy of 
the nonlytic component,  i.e., q = 0, inequality (3.6) is always true. In the absence of the efficacy 
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of the lytic component,  i.e., p = 0, the expressions of E~ = (~:, ~, 5) in (2.1) is changed to the 
following, 

a(1 + qh) cA(l + q2) 

/~ cd + (b/3 + cdq)5' 

b5 

C 

- (2acdq + ab/3 - cq;~Z) + v/(2acdq + abZ - cq;~#) 2 - 4acq(b~ + cdq)(ad - A/~) 

: 2aq(bfl + edq) 

(3.7) 

Inequality (3.6) becomes to following, 

- b q ~ f f  + 2cdq2 + 2cd ~ 0 (3.8) 

and the positive root of f ( z )  = 0 is 

Z = 
c d q + x / c d q ( c d q + 2 b ~ )  

bq/3 

Thus, inequality (3.8) is true when 2 _< z*. Let C1 = bfl + cdq, C2 = 2acdq + ab/3 - cqAfl, using 
equation (3.7), we know that  2 _< z* is equivalent to 

aC1 (cdq + v/cdq(b/3 + CJ)2 + b,@C2 (cdq + x/cdq(b/3 + C1) ) _ _  / 1 ~ 1 .  

Ro <_ 1 + acdqb2 fl~ 

In order to ensure 

aC1 (cdq + x/cdq(b/~ + C1))2 + b/9C2 (cdq + v/cdq(b~ + C1)) > O, 

we need 
c1 (cdq + ,/c q(b9 + c1)) 

Ro < 2 + ~ + bcdq~ R~. 

Thus, let R** = max{R 1, R02}, we have the following corollary. 

COaOLLAaY 3.2. I fRo  > 1 and q = 0, then the disease steady state E1 is globally asymptot ical ly  
stable; if I < Ro < R** and p = O, then the disease steady state E1 is globally asymptoticalIy 

stable. 

REMARK. By Corollary 3.2, when the efficacy of the nonlytie component  is neglected, i.e., q = 0, 
which is very common in virus dynamics models (e.g., [2-4]), the disease steady state Et  is 
globally stable only if it exists. 

In the following, using the geometrical approach of Li and Muldowney in [241, we obtain simple 
sufficient conditions tha t  the disease steady state E1 is globally asymptotical ly stable when p = 0. 
At first, we give a brief outline of this geometrical approach. 

Let x ~ f ( x )  E IR n be a C 1 function for x in an open set D C R n. Consider the differential 
equation, 

x ' =  f ( x ) .  (3.9) 

Denote by x(t ,  xo) the solution to (3.9) such that  x(0, xo) - x0. We make the following two 
assumptions. 

(H1) There exists a compact  absorbing set K C D. 
(H2) Equation (3.9) has a unique equilibrium 2 in D. 
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The equilibrium 2 is said to be globally stable in D if it is locally stable and all trajectories in D 
converge to 2. For n _> 2, by a Bendixson criterion we mean a condition satisfied by f which 
precludes the existence of nonconstant periodic solutions of (3.9). The classical Bendixson's 
condition d i v f ( x )  < 0 for n = 2 is robust under C 1 local perturbat ions of f .  For higher- 
dimensional systems, the C 1 robust properties are discussed in [24,28,29]. 

A point x0 G D is wanderin 9 for (3.9) if there exists a neighborhood U of x0 and T > 0 
such that  U n x(t, U) is empty for all t > T. Thus, for example, all equilibria and limit points 
are nonwandering. Tile following global-stability principle is established in [24] for autonomous 
systems in any finite dimension. 

TIIEOREM 3.4. Suppose that Assumptions (H1) and (H2) hold. Assume that (3.9) satisfies 
a Bendixson criterion that is robust under C 1 local perturbations of f at all nonequilibrium 
nonwandering points for (3.9). Then, • is globally stable in D provided it is stable. 

The following Bendixson criterion is given in [24] and shown to have the robustness required 
by Theorem 3.4. Let x ~ P(x)  be an (~) x (~) matrix-valued function that  is C 1 for x C D. 
Assume that  P - l ( x )  exists and is continuous for x E K, the compact  absorbing set. A quanti ty 
q2 is defined as 

~72 = l i m s u p  sup l--/t t+cc xocg 7 Jo # ( B ( x ( s ,  xo))) ds, (3.10) 

where 
Of [21 

B = p i P - 1  + P-~x p - l ,  (3.11) 

the matrix PI is obtained by replacing each entry p of P by its derivative in the direction of f ,  
p~j¢, and #(B) is the LozinskCi measure of B with respect to a vector norm I ' I in R N, N = (~), 
defined by [30, p. 41] 

~ ( B )  = n m  I I + h B  I - 1  
h-+0+ h 

It is shown in [24] that,  if D is simply connected, the condition q2 < 0 rules out the presence 
of any orbit tha t  gives rise to a simple closed rectifiable curve tha t  is invariant for (3.9), such 
as periodic orbits, homoclinic orbits, and heteroclinic cycles. Moreover, it is robust under C 1 
local perturbations of f near any nonequilibrium point that  is nonwandering. In particular, the 
following global-stability result is proved in [24]. 

THEOREM 3.5. Assume that D is simply connected and that the Assumptions (H1) and (H2) 
hold. Then, the unique equilibrium ~ of (3.9) is globally stable in D if q2 < O. 

Now, we study the global stability of the disease steady state E l ,  and obtain the following. 

THEOREM 3.6. I f  R0 > 1, p = 0, 2a < b + 2d, and eqA < min{bfl, (b + 2 d -  2a)fl}, then the 
disease steady state E1 is globaI1y asymptotically stable. 

PROOF. The Jacobian matrix d associated with a general solution to (1.1) is as (2.2), its second 
additive compound matrix j{2] is 

- a - d  - -  + - -  
l +qz  l +qz  

j[2] 

A comprehensive 
given in [31]. Set the function, 

q•xy ql~xy 
(1 + qz) 2 (1 + qz) 2 

- b  - d /~Y /~x 
l +qz  l +qz  

fly - a - b +  /3x 
l + q z  

(3.12) 

survey on compound matrices and their relations to differential equations is 

P ( x ,  y, z)  = f2 
f~ f2 
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where f l  = 1 + qz, f2 = qx. Then,  

P f P - l = d i a g {  f{ f~ f 2 }  
f l '  f2 '  f2 

and the mat r ix  B = PI P -1  + Po°--Lf [21P -1 in (3.11) can be wr i t t en  in block form, 

[Bll B121 
B =  [B21 B22 ' 

where 

Blz = j l  - a - d +  l +q~z l + q z '  l + q z  ' 

c q 2g 3x /~y 3x  1 F 1 " ~ - b - d + -  /a+qz / ~ l + q z  l + q z  l + q z  ] B21 = _  B =  = 
|l-l+qz_lCqz | ' a - d f2 a - b 

f2 
Let (u, v, w) denotes tile vectors in R a ~ R ( D  we select a norm in R 3 as I(u, v, w)l = max{[ul,  tvl + 
Iwl} and let # denotes the  Lozinskff measure  with respect  to this  norm. Following the method  
in [32], we have the estimate ~(B) _< sup{g,,g2}, where 

gz = . l ( B l l )  + IBI~I, g~ = IB~ll + ~ ( B ~ ) ,  

I B12I, ]B21[ are mat r ix  norms with respect  to  the  l I vector  norm, and #1 denotes  the  Lozinskig 
measure with respect  to the 11 norm, see [30, p.41]. More specifically, # l ( B n )  = f { / f l  - a -  d + 
9~/(1 + qz) - ~y/(1 + qz), IB~2[ = 9y/(1 + qz), IB211 = ~q~/(1 + qz). To calculate .1(B~2), add 
the absolute  value of the  off-diagonal elements to the diagonal  one in each column of B22, and 

then take the  max imum of two sums, see [30, p. 41]. From Theorem 2.1, 3.2, and 2a < b + 2d, 

we have 

' 9~ 9y + l a -  dl, f~ ¢~z } #l (B22) = max { ~ - b - d + l + q~ 1 + q------~ -f22 - a - b +1---~qz 

< f~ + /3x 
- f--2 1 + q-----~ a - m i n { b + 2 d - 2 a ,  b}. 

From the second equat ion of (1.1) when p = 0, we have 

y'  ~ z  
- -  a .  

y l + q z  

From Theorem 2.1, 3.2, and the first equat ion of (1.1), we have 

cqx cqA 
- -  < cqx < - -  
l + q z  

Since cqA < min{b~, (b + 2d - 2a)~}, take ~ = rain{b/3, (b + 2d - 2a)fl} - cqA > 0 is a constant ,  

we have 
f~ ~x 

gl = ffl - a - d +  l + q ~  

y, =f_I + _ _ d ,  
f l  Y 
f~ y' eqx 

g 2 <  ~ + - - + - -  min{b+2d-2a, b} 
- y l + q z  

f~ y' cqA 
< ~ + - - y  + - 7 - n f i n { b + 2 d - 2 a ,  b} 

yt c = fA + _ _ _ .  

f2 Y /3 
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Using the variation of constants formula for inhomogeneous linear ordinary differential equa- 
tions, we write the solutions to the first and the third equality of sys tem (1.1) in the form of 

22 (t)  = X (0) e fo(d-c~Y(S)/( l+qz(s)))ds ~- 
fo (/~ej~(d+~y(T)/(l+qz(r)))dr) ds 

ef~(d+~y(s)/(l+qz(s))) ds 

and 

Thus, 

rt 
( s )  e bs ds cy  

z ( t )  = z ( o )  e -b~ + ~o  cbt 

~ ( t )  -- d + ~y(t)/(1 + qz(t)) --~ 0 

and 

- ~  -*0,  ast~oo z ( t )  

are valid. Note tha t  
f; _ q(cy-  bz) 
fl 1 + qz ' 
f~ ~ - d z  ~ y  

f2 x l + qz" 

We can choose tl  large enough such tha t  

y! 
g l  ~ - -  -- ( d -  5 ) ,  

Y 
yl 

for t >_ t l ,  where 5 can be chosen arbitrari ly small. 
Therefore, 

y/ 
#(B)  < - -  - l) 

Y 

for t _> tl ,  where b = min{d - 5, ~//~ - 5} > 0 is a constant.  Along each solution (x(t), y(t), z(t)) 
of equation (1.1) with (x(0), y(0), z(0)) C K,  where K is the compact  absorbing set and exists 
by Theorems 2.1 and 3.2, we have 

1lot 1/otl l~ t t  l~otl 1 y(t) 7 #(B) ds=-[  # ( B )  d s + ~ -  ~ # ( B )  d s <  7 _  #(B) ds+-~ tOgy( t l ) -b ,  

which implies tha t  q2 _< -1)/2 < 0 from (3.10). This complete the proof. II 

REMARK 3.2. In Corollary 3.2 and Theorem 3.6, the conditions of the global stabil i ty of E1 
when p = 0 is not same and cannot include each other. 

4. S I M U L A T I O N  

In this section, to investigate whether  the above findings could be explained in simple quan- 
t i tat ive terms,  we used the numerical simulation to analyze the effect of the dynamics  between 
the rate of CTL-media ted  virus inhibition (q) and the rate of target  cells' replication (A). The 
parameters  were fixed by 

d = 0 . 1 ,  ~ = 0 . 0 5 ,  a = 0 . 1 ,  c = 0 . 2 ,  b = 0 . 1 ,  p = 0 . 1 .  
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target cells' replication (~) on the outcome of viral infection, as predicted by the 
disease steady state El .  
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Figu re  3. (cont .)  

Figure la  shows the effect of pathology, measured by the total number of target cells (uninfected 
and infected) at the disease steady state El. The degree of pathology depends on the rate of CTL- 
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mediated virus inhibition and the rate of target ceils' replication. If the rate of CTL-mediated 
virus inhibition at a low rate and the rate of target cells' replication is fixed, or the rate of target 
cells' replication at a high rate and the rate of CTL-mediated virus inhibition is fixed, then strong 
depletion of target cells is observed, and the host is likely to die. Figure lb  and Figure lc show 
that virus load and CTL activity at the disease steady state both decline if one of the rates 
increase and the other is fixed. 

Now, when R0 > 1, we discuss the effect of q and A on the condition (3.3) in Theorem 3.3. 
Figure 23 shows that  the condition (3.3) is always valid if the rate of target cells' replication is 
at a low rate, and Figure 2b indicates that  the condition (3.3) depends on the value of the rate 
of CTL-mediated virus inhibition when the rate of target ceils' replication is at a high rate. If 
the rate of CTL-mediated virus inhibition is sufficient small, the condition is true. 

However, Figure 3 indicates that the disease steady state E1 is globally asymptotically stable 
although the condition (3.3) is not satisfied. Thus, we conjecture that  the unique disease steady 
state E1 is globally asymptotically stable only if the basic reproductive ratio of the virus R0 > 1. 

4.  D I S C U S S I O N  

It has been difficult to obtain the global dynamics of the viral infection models. Recently, 
Korobeinikov [8], Leenheer et al. [9], and Wang et al. [11] give a global analysis of virus dynamics 
on the basic HIV models, which don't contain the immune responses. Since the basic HIV models 
can be translated to competitive systems, Leenheer et al. [9] and Wang et al. [11] used the theory 
of competitive system, which was initiated by Hirsch in a series of six well-known papers and was 
improved by Smith, of which we list [33 36]. Korobeinikov [8] constructed a class of Lyapunov 
function successfully, and thus obtained the global stability. However, the theory of competitive 
system or Korobeinikov type Lyapunov function is not fit to model (1.1). 

In this paper, we present a mathematical analysis on global dynamics of the viral infections 
model, which is constructed by Bartholdy et al. [1] and Wodarz et al. [5] and include the immune 
responses directly (the efficacy of the nonlytic component and lytic component). It is rigorously 
established in Theorems 2.3 and 3.2 that the basic reproductive ratio of the virus R0 is a sharp 
threshold parameter. If R0 _< 1, the virus is cleared and the disease dies out; if R0 > 1, the 
virus persists in the host. Furthermore, when the efficacy of the nonlytic component q - 0, 
which is very common in virus dynamics models (e.g., [2-4]), R0 > 1 means that  the unique 
disease steady state is globally asymptotically stable. When the efficacy of the lyric component 
p = 0 or the efficacy of nonlytic component and lyric component are both present, the unique 
disease steady state is globally asymptotically stable if the basic reproductive ratio R0 less than 
a constant, which is defined by the parameters of the model. Especially, when the efficacy of the 
lyric component p = 0, using the geometrical approach of Li and Muldowney [24], Theorem 3.6 
established simple sufficient conditions for the global stability of the unique disease steady state. 
We expect that  those approaches can be applied to solve global-stability problems in many other 
viral infection models. 
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