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I. INTRODUCTION

The paper of M. Padula [10] concerns the same topics of the classical
ideal gas and two-dimensional space domains. Padula’s paper is pioneer,
especially in its use of Orlicz spaces characterizing the finite entropy and
theorems of the compensated compactness type. Nevertheless, the main
existence theorem is false, cf. [11].

In this paper we follow the ideas presented in the work by M. Feistauer,
J. Netas, and V. Sverak [1] inspired by [10]. The main topic is the study
of multipolar fluids. The physical background is studied in the paper by
J. Ne¢as and M. Silhavy [8], where higher stress tensors to constitution
laws are introduced. There it is proved that it is possible (as we
corroborate) to satisfy all thermodynamical laws. Higher stress tensors
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imply the use of higher derivatives of the velocity field. This point of view
expresses some space nonlocality and also seems to better describe the
turbulence phenomena. It is interesting that the proof of the existence of
the central manifold to the incompressible fluid requires in fact higher
stress tensors; see C. Foias, G. R. Sell, and R. Temam [2].

We prove a global existence of Hopf solutions to the bipolar fluid under
general initial data and volume forces in the time cylinder (0, T) x 2 with
T>0and Q< RY N=2 or 3 provided the temperature 8 = §, = const. > 0.
In the same spirit, the general multipolar gas can be treated. We are also
concerned with the problem of cavitation, regularity up to the strong
solution, and uniqueness. In all these studies we look for the lowest
multipolarity.

In the present case only one new stress tensor is needed such that the
momentum equations are of the fourth order. So we handle a bipolar fluid.
The corresponding stress—strain relations are supposed to be linear.

II. FORMULATION OF THE PROBLEM

We suppose the classical state equation
p=Rp9, (2.1)

where p, p, 0 are pressure, density, and temperature, respectively, and R is
the universal gas constant. The isothermal process implies

p=Pp, f = const. > 0. (2.2)

We denote, as usual, the velocity vector by v; hence the continuity equation
has its standard form
dp 0
2t ax, (pv;) (2.3)
In (2.3) as well as throughout the paper we use summation convention.
A standard symmetric stress tensor 7, is considered such that
T,= —po,+15; (2.4)

i
its power on an elementary surface dS with outer normal v is

T,;0,v; dS. (2.5)
We consider a further 3-order stress tensor ti,, whose power on an

elementary surface dS with outer normal v is

ov;
T;k 5; Vi ds. (26)
J
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The general linear form for r“ (with coefficients depending on the
temperature 6 only and therefore constant in our case), provided 7
symmetric, reads

ov ov,
rg(v)=y*a;[[5,»j+2ue —nd 5 15,,
6% (ov,
— 2. Ae.. — = 2.7
2uadey+ 72 0x, 0x, <6x,>’ (27)

see [8] (4 denotes as usual the Laplace operator). We suppose y = (—3) 4,
u>0,v,> (—3)y1,u1>0 72=0, 2e;= 0v,/0x; + 0v;/0x,.

For the stress tensor 19 e We require the symmetry in i, j; then the general
form, according to [8], is
d

eyt 730, Av,

T,,k( )=2u s—e;+7.96,

0%y 7 0%,

15}
S €n
O0x;

7

+Va0u AV, 4746, Av;+ 750,
2 62

e+ v,
ax,0x, K o, B

+ 7504

5, +
€
d ; T Ve

2

+ 75 (2.8)

0x; 0x, i
We restrict ourselves to the case y3=p,=ys=7,=7,=0. The
Clasius-Duhem inequality implies (see [8]

0%,

0x; c7xk

t(v) e+ 15()

,,k(v)) (29)

/

this is satisfied in our example, which work with and we also show that the
corresponding Korn’s inequality will be satisfied.

Let Q< RY, N=2 or 3 be a bounded domain with a boundary smooth
enough and let 7=(0, T), Qr=1Ix2 be the time cylinder. Let F be the
density of volume forces. The momentum equation combined with (2.3)
give

%) o}
= (pv))+—+—

— 24(p)) = oF.
ot axj(p”f”f“LB/"sff T(v)) = pF.. (2.10)

In addition to initial conditions for v and p we suppose v=0 on
(0, T) x . The further boundary condition is in the general case

14 () vy, =0  on (0, T)xL. (2.11)
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First let us suppose that we consider a solution smooth enough and
p>0in Q. Then we get

2.12 THEOREM.

L} pdx—fgopdx=0,

¢

1 o
2, Pl dx =3l dv ] e+ 2uese
d F ?
+y1-——(e,1) (311)+2#1 (e; ) (ey)) dt dx
0x, ox, 7.
+ﬂjnlplnpdx—ﬂf plnpdx
2
- f pFuw,dxdr,  1e(0, T, 0,=(0, 1) xQ.
O

For usual notation for Sobolev, Orlicz, and Bochner spaces see, for
example, A. Kufner, O. John, S. Fuc¢ik [3]. The equalities in Theorem 2.12
show the function spaces that we work in:

ve L3I, W*¥£, R")), (2.13)
peL (I L,(R)), p>0 (2.14)

We denote by Y(t)=(1+0)In(1+¢)—1t, D(t)=e'—t—1 resp. ¥,,(1),

@,(1) = ¢”—1 the pairs of Young complementary functions and by
L,(R2), Ly(R2) resp. Ly,,(2), Ly,(L2) the Orlicz spaces of functions for
which the Luxemburg norm

|[u]|Lf([2)—1nf{h>O f f('“(x)') 1}< +o0, (2.15)

where f stands for y, D, ¥, ,, @,.
Let #(Q2) be the set of all bounded measurable functions defined on £2.
Let us denote further by C,(€2) the closure of #(2) in L,(22). We have

(see [3])
(Ca(2))*=Ly(2), (Co(RN*=L,(2),

(2.16)
(Cw(g))*=L¢(Q), (C./,m(g))* chz(g)
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Of course, C,(£2) are separable Banach spaces and % °(£2) is dense in every
CH(). We realize that ¥, ), satisfy the 4, condition; hence

Cy(Q)=Ly(Q),Cy, (2)=Ly () (2.17)

The weak formulation to Eq. (2.10) is also useful. It reads

ow;
- ngui?t_ dx dt — L) Pob,w(0) dx

T ow,
+ fo (v, w)) di — jQT (pv;v, + Bpd ;) T dx dt
=f pF,w, dx dt (2.18)
Qr

for every we€™(Qr, RY), w(t)e W3X(Q, RY), te , w(T)=0; v, is the
initial condition for v. In our situation, for v,we V= W?>*(Q, R")n
W 5*(2, RY), ((v, w)) is defined by (3.1) in the following section.

I11. A MoODIFIED GALERKIN METHOD

Let us denote V= W22(Q, R")n W52, R") and for v, we V' let
(0. w) =] (veu(o) exal) + 2, ) ¢, )
0 0
+" a;e”(”)éze“(w)

+2u, — 0 eU(v) ¢ y(w)> dx. (3.1)

0x

From the coerciveness of deformations (see, e.g., J. NecCas, I. Hlavacek {7])
and from the very strong ellipticity of the bilinear form ((v, w)) it follows
forveV

(00D >k [ (o + Vol + Vool dx, ks >0 (32)

(as usual V resp. V, denotes first resp. second gradient). Let {w*} 7> be a
complete orthonormal system of eigenfunctions in V, solutions to the
following eigenproblem in ¥

((v, w)) = A(v, w) forevery veV, weV, (3.3)
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where (v, w)= [, v;w, dx. We have

((v, W)= Ao, w*); k=1,2,.; O0<i; <4< -, (34)
(W5, w')) = .
From the regularity of solutions to the linear elliptic problem (6.1) (see
Appendix) we get
wke C*(Q, RY). (3.5)

Let us put for we L*(Q, R")
P,w=Y L(wk w)wk (3.6)
k=1

If L2 =span{w',..,w™} in L*(£2, R"), V,,=span{w', .., w™} in V, then
P, is an orthogonal projector of L? onto L2, and of ¥ onto V,,.

By (6.1) one defines the operator «/: ((v, w)) = (v, w) for every we V.
Its definition domain is denoted by D(s/) and of course W§*(Q, RY) <
D(f). It is the consequence of Theorem 6.1 (see Appendix) that

lloll WA, RY) S ks fl=fv| L2(2,R") (k;>0) (3.7)
for every ve D(</); hence
[ S| PPERPRPINES ky | P, vl L2 rY
<k, ”Pm«ﬂUHL?(Q.RN) <kgy ol w42(Q, RNy
(k4> 0)for every ve W§*(£2, R").
Thus, due to the interpolation theorem it holds for every ve W3 %(2, R")
| Ppoll 2o, gy < ks vl w30, RY) (ks>0). (3.8)

Let c;e%'(I) and let us put v™(f, x)=3", c.(z) wi(x). Let us look for
Pm€ € (Qr) such that

pm O

ot Ton, (pm07")=0. (39)
We suppose throughout the paper
Pm(0, X)=po(x)€€'(2),  po(x)>0in Q. (3.10)

Let
x™(t) =v™(t, x™(1)), x™(0) =y, yef. (3.11)
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For every tel, y —» x™(¢) is a diffeomorphism of Q onto Q. For o,,=Inp,,
we have

d w0 m
E(om(t,x ()= —axiv,-(t,x ) (3.12)
Hence
t g
pm(t,x)=po(y)exp(—j 3o xm(r))dr), (3.13)
0 i

where x = x™(t), y = x"(0). Let us look now for #” such that for every te/

ov oy ap )
i m_ i rm__ F. kg
L)(pm EARNZLY ax,.+ﬂax,. P ) wi dx
= — ((7™, wh)), k=1,2,..,m (3.14)

Let the initial conditions be given by
J ¢;(0) wiw, dx=J 7,(0, x) wi(x) dx. (3.15)
Q 2

We suppose in the sequel
vo(x) =(0, x) e LR, R"), F.e LA(I, L*(2)). (3.16)

Because det({,, p,,wiw/ dx) #0, we can solve (3.14), (3.15) uniquely in 1.
We get the standard estimate

1 ~m|2 1 =m|2 a -m
Ejglpmlv dx—3 | polsl dx—ﬁjglpma—xiv,- dx dt
—j pF,.ﬁrdrdx+j (5™, 7)) de=0, &7 =5"(0). (3.17)

Q 0

If we start with ¢,(¢) in the ball

max |c;(1)—c;(0)| < 1; i=12,..,m, (3.18)
[0.a]

we get
max |¢;(t)—c;(0) < 1, i=1,..,m; (3.19)
[0,a]

max |¢;| <ke(a),  ke¢>0 (3.20)
[0,a]
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provided « is small enough. So applying the Schauder fixed point theorem,
we get on [0, a], ¢;=c,. But for this solution we get

p,,,dx—j podx=0,
2j P |57 dx——j po 15712 dx+f (5™, 5™)) dr
+B{ (1+pu) (1 +p,)dc~F [ (1+po)In(l +po) dx
£2, 2

o5
=f poF57 dx dr+/3j In(1 +p,,) L dx dr. (3.21)
[ Q: Ox

J

o P F 07 dx dv <ky | Fill 12, o2y 1071 2, vy 1P™ ) Lo, L1(2))»
t

=m 1/2
[0t pm) 5L dxdes (] (1400004 0)) 16700, 10,7 0.

” ” | S (( ))1/2’ t = (Oa t)a te (0, a]‘

Using the Young inequality at the rh.s. of (3.21) and applying the
Gronwall lemma, we get

3.22 LEMMA.
)

1
(5 oo 167124 (1 + py) In(1 +pm)) dx

t

= [, (370 ol + 1+ pu) (1 4.0 )

¢t
+j (7", 7)) de <kg,  kg>0.
0
This implies that we can continue with « to T. For more detailed proof see

for example [9].

IV. THE LiMIT PROCESS

4.1 LEMMA. Let B be Banach space, B;(i=0,1) separable reflexive
Banach spaces. Let Bycc B B, (cc denotes compact imbedding), 1<
pi< . Let W= {v,ve L™(I, B,), dv/0te L*\(I, B,)}. Then W =< L*(1, B).

For proof we refer to Lions [5].
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MAIN THEOREM. Let (2.2), (2.7), (3.10), (3.16) be satisfied. Then there
exists

peL°(LL,(Q)), p>0ae.inQy, (4.2)
ve LI, W22, RY)n WL(Q, RY)), (43)

%’;—E LZ(I, W73‘2(Q)), (4.4)

2 (ov)e L2, W@, RY) (45)

satisfying (2.3), (2.10) in the sense of distributions and such that (2.18) holds.
In addition

ol Lo L@y S J‘ oo dx, (4.6)
2
5 ”P Mz“ L= eyt ol ZLZu, w22(Q, RV))
+ B supess j (I1+p)In(1+p)dx
1 Q,

N 2
<ko(1+ T IFdsusian) . k>0 (@7)

i=1

Proof. Let 0<k<2 and let W**(Q), W&?(22) be the usual Sobolev
spaces with fractional derivatives; see, e.g, [3]. Let V*= ¥, where the
closure is taken in W*2(Q, R"); of course the traces are zero only for
k> 5. Because

WiQ) o W5h3(Q) o W 3(R) € Co(R) < Co (),
for N2<k,<k,<?2, (4.8)
we have
Ly, (Q)=Ly,(2)c Wk 2(Qyce W 2(Q)ac W22Q). (49)

Of course W**(Q)c C,(R2); hence L,(2)c (W 2(Q))* ((N2)<k). Tt
follows from the interpolation theorem that

sup Pt peagrn <kios  kio>0  (0<Kk<2)  (4.10)
ve vk
el Wk~2(0‘,/RN) <1
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and

sup  [|Pholl prys <k, ki1 >0 (0<£k<2) (4.11)
ve ky*
HV”(I;C‘)/‘)SI

(P¥ is the dual operator to P,,).

4.12. LeMMA. Let 0<k<2. Then for every ¢>0, I, exists such that for
l? lO “u - P,u“ Wk'Z(Q,RN) <& provided ”u“ WZ'Z(Q,RN) S 1.

Proof. Let us suppose the contrary. Then there exist P,/ — o0
and |ully220 rvy <1 such that [lu,— P ull o ryy> 6o > ¢ Because
W2Q, RV)cc Wk (2, R"), we can suppose u,—u strongly in
W 2(Q, R"); hence P,u, — u strongly in W**(Q, RY), 'which is contradic-
tory.

Let p,,, v™ be an approximative solution from Section III. There exist
subsequences (denoted {p,}:>,, {v"}}>, again) such that p,,—p

m=1

s-weakly in L2(I, L,(2)) = LY, (Co(2))*);

m m

0 o %
2o
" Ox

v —,———
; Ox; 0x;0x; 0x;0x,

-0

(i, j=1,..,N)
weakly in L3(Q ), v — v *-weakly in L*(I, Ly(R)), L*(1, Ly,(R2)).
Due to Lemma 3.22 and Eq. (4.9)
12wl Lo, w-r2ay) S K12, k>0, (N/2)<k<2. (4.13)
For N=2,3
1071l goz, vy S k1a 0™ w2z, vy K13 >0; (4.14)
hence

1Pm V™ | L2t, Ly, R¥)) S K14 ki4>0. (4.15)
It follows from (3.9)

%P
ot

<kys,  kys>0. (4.16)

LZ([’ W*lz(.(), RN))
Due to Lemma 4.1 p,, — p strongly in L*(I, W ~>2%(2)); hence due to (4.15)
Pm™ — pv x-weakly in L*(I, L,(2)).

By (4.9), (4.15) we get

”pmvm”LZ(I,W”‘VZ(.Q,RN))<k16’ k>0 (N2)<k<2); (417)
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hence by (4.11)
WP3PmO™ M 2, w-k2c, m¥y) Skiz, ki >0 (4.18)
According to Lemma 3.22 p,, |v™|? is bounded in L™(I, L'(R)); therefore
1om 10120 20 w222, kv Shigs  Kig>0. (4.19)

By (3.14), (3.8), Lemma 3.22, (4.13), and (4.19),

<k19’ k19>0 (420)

LYI, W ~3%2, RY))

0
—(P* m
5 (Prp,0")

holds. So by Lemma 4.1 PX(p,,v™)— a strongly in L*(I, W ~2%(Q, R"))
(eventually for a subsequence).
Let we L*(I, W2%(£2, R")). Because of Lemma 4.12 for m large enough

7 t
jo 1P = Wik d <8 | w300, am) s (421)
0
hence for {§ [|w[| %220 v @t < 1, it follows uniformly with respect to w
. T
lim j f (PX(p,0™) — p,,0™) w, dx d = 0. (422)
m-— o0 vQ 2

Therefore p,,v™ is a Cauchy sequence in L*(J, W *2(2, RY)) and
p,,0™ = a strongly in L*(I, W ~2%(Q, R")). But p,,v™ — pv in 2'(Q,) in the
sense of distributions; hence a = pv. Therefore, due to (4.19)

DU — pv,v, weakly in L3I, W~ 22(Q, RV)). (4.23)

Due to estimate (g |p,, 0™ udx <(fg p,, 1012 dX)"? (Jg p,,u” dx)"* which
holds for every ue L, (£2) and due to (4.14), we get

10m0707 1 201, 1y, 20 S K205 ks> 0. (4.24)

Therefore p,,v7v}" — pv,v, +-weakly in L*(I, L, (Q)).
It follows from (3.14) that for every @ e €=(Q ,, R") satisfying o(t)e V,,
for every te [0, T] and o(T)=0,

o

;—dx dt v, /
fQTpv 3 X +jQTpv,vj

dxdt+ﬁJ‘QTpgx—j

09,
Ox;

=K«%WWF£fE%ﬁm“&%%%W
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holds. Due to the density arguments (2.18) holds and (2.10) is satisfied in
the sense of distributions. The continuity equation is obviously satisfied in
the sense of distributions.

V. HIGHER POLARITY AND QUALITATIVE PROPERTIES
OF THE SOLUTIONS

In the case of a bipolar gas, we found for the limit density p > 0 only; i.e.,
in general, there can be a set of positive measures in Q, such that p=0
here. This means that there is a strong cavitation. For this reason and also
because of uniqueness of the solution, it is worth considering k-polar gas
(k=3,4,..). We refer the reader to [8].

In our situation we consider on V=W*%(Q, R¥)n W3R, RY) a
symmetric V-coercive bilinear form

o'v; o'w,
((u,w))—[ ZA,M QYR oy ot o e

JI

where A/, . are constants. For /=1 there are only combinations of

Giy - di g
e, (v), ,,(w) we supposc that A4’ G- ..., are symmetric under the per-

mutation of indexes (i, ---4,), (J; - ) Of course we suppose for ve V

(0, 0))Zay vl hrxgryy  21>0. (52)

This follows for example from the conditions

ov; Ov,

! —L >oz2e,j(v)e,](v) a, >0, (5.3)

it a 6

k
i i
z uu AL i J qux

za, Y Ji . Ji..,  foreveryreal vector (J: )
=2

iiy,mi;=1, .., N. (5.4)
In our situation

k aZIU'
dy _ 04l j
4 ,g,( ) G- iy 0x;, -~ 0x, 0x, - 0x

JI
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We consider v =0 on (0, T) x 0Q and unstable boundary conditions given
by

k -1 I+s
z Zf (—1)x+lAf'jil~--i1j1-~-jl d U Viers
[=15=0"22 Oy -+ 0x; 0x;, -+ 0X,
81—371‘4)~
X————a’ ds=0
6xis+2"' X,

for every we €=(Q, RV)~n W5*(R2, RM).

5.5 THEOREM. Let k=3 and (2.2), (3.10), (3.16), (5.1), and (5.2) be
satisfied. Then there exist p, v

pel™(Q7), p2y>0 inQp (5.6)
ve L¥(I, W**(Q, RY)n W (Q, RY)), (5.7)
a—peLZ(I, w=12(Qy), (5.8)
or
ﬁ (pv)e LA(I, W >4, RY)) (5.9)

ot

such that (2.3) is satisfied in the sense of distributions and also in the sense
of duality in L*(I, W ~"*(Q)) and (2.10) in the sense of distributions and also
in the weak sense; Le., (2.18) is fulfilled. Besides (4.6), (4.7) hold and
mgn po(x) exp( —kzt"?) < p(t, x)
<m§x po(x) exp(+kyt'?),  ky>0, tel (5.10)

5.11 THEOREM. Let k=4 and (2.2), (3.10), (3.17), (5.1), and (5.2) be
satisfied. Let p,e €*~>(2). Then there exist p, v

as
— P __e1(Q,) for 0<s<k—3, s=s'+ .5 (5.12)
Oxy +--0x%
o° op .,
— 7 P, L>(Q)) for 0<s<k-—4, (5.13)
Ox3 ---dxy ot

ve LA(I, W52, RM)n W (82, RM)), (5.14)

g(PU)ELz(I, w-53(Q, RY)) (5.15)
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such that (2.3), (2.10) are satisfied in the sense of distributions, (2.3) also
almost everywhere, and (2.10) in the weak sense; i.e., (2.18) holds.

Proof of 5.5 and 5.11. We take w* (k=1, 2, ...) from (3.4). We define P,
by (3.6). We get p,,, v™ as before. Of course (3.21) and Lemma 3.22 hold.
Due to

o™ () gr -2z, a3y < K21 107 () e, m%)» (5.16)

it follows from (3.13) that
(min po())exp = [ oy (0 e, ) <70, )

< (mélx po(x)) exp ( + Jo koy 107 () wrae, zv) dT)- (5.17)

Using (3.11), Lemma 3.22, (5.16), and the Gronwall lemma, we obtain

s .
max d
QT

— y)’ <k,,, (5.18)
oy -0y

where 0<s<k—3, k>0 and (s, .., s") is any multiindex such that
s=s'+ ...s" Due to

0x;
ooty x(1, y)) det (5—) —pol(y) (5.19)
Vi
and also
°y;
max | ———— (1, x)| <k, k3 >0,  s<k-3. (5.20)

It follows from (5.20) and (3.13) that

”Pm”gﬂ(i,@sm))skzm k>0 (5.21)

provided s <k — 3. Now from (3.3) one gets

)
(ﬁ Skys, k>0  (s<k—3,k=4) (522)
5! LZ(I,%’:_K(.Q))
or
“% < ks for k=3.
ot L2, w120, RY))
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In any case, we can suppose p,, — p weakly in L*(Q ) and p,, — p strongly
in L3I, W~ %(Q)). We have

10m0™" |l 12(07, rY) < K26 k6> 0; (5.23)

therefore p,,v" — pv weakly in L*(Q7, RY) at least for a chosen sub-
sequence. It follows from (3.14) with §™ =v™

<ka, ky7 >0, (5.24)

LY1,V*)

d
*
dtP (P, 0™)

hence for a subsequence if necessary PX(p,v™)—a strongly in
L3I, W "}, R")). But we have for every ¢>0 |P,w—wl|l 2q v <E
provided we W} 3(Q, R”) Wil wr2g r¥ < 1, and m is large enough (see
Lemma 4.12); so p,,v™ — a = pv strongly in L>(I, W ~ (2, R")). We have
the estimate

om0 r207) Skag, kyg>0; (5.25)

therefore p,,v7v} — pv,v; weakly in L*(Q;) at least for a chosen sub-
sequence. The other is obvious. The proof of Theorems 5.5 and 5.11 is
finished.

5.26 THEOREM. Let k= 4. Let the conditions of Theorem 5.5 be satisfied
and further let vye V. Then for the solution it holds

I,

a” d di+50p [0(0) s,y oo k>0, (527)
ve LA, W2(Q, RY)). (5.28)
Equation (2.10) is fulfilled a.e. in Q 1.

Proof. For 9"™=v™, we use in (3.14) dv™/0t for the test function.
Because of Lemma 3.22 and (5.17), [, [0™|? dx < k3o (ko> 0); hence using
(5.12), Lemma 3.22, (5.16), and the Holder and Young inequality, we get

L LI3

ot

2
dxdt+Sup ”Um(t)“ WkZ(_Q Rh)\k31, (k31>0) (5 29

m

Now, (5.28) follows from the regularity to the elliptic systems ({v, w))=
{2 gw, dx, where ge L*(2, RY) (see Eq. (6.1)).

5.30 THEOREM. Let the conditions of Theorems 5.11 and 5.26 be satisfied.

Then in the set of solutions satisfying Theorems 5.11 and 5.23 there exists at
most one solution to the problem (2.3), (2.10).

409°162/1-16
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Proof. Let (p,v), (g, ) be two solutions to the problem. Then for
(¢, w)=(p—p, v—17) it holds

o ow, & o
—5 g%, P, (531)
a " ox 6xj ox, K ox; 7
_0w;
| 5t oidx+ (0w )
Q, t
ov; du, _ Ov; __ 0w,
“L,(‘Ea gy +”wfaxj+’”’faxj>‘°"dx
+{ £9% g 4 [ eFipax (532)
2, 5xj (o

for every oV ae. in L
We multiply (5.31) by ¢ and integrate over L. After some computation

we get the estimate

d 1
& (€D 22))* S as () 1€ 220 +3 ((w, w)), (5.33)

where a; <k3,{((v, v)) + (18] L2y + 1] W‘-z([)))z}’ ks, > 0; hence a, € L'(J).
We put ¢ =w in (5.32). We get

d; 1._
1L 38 w2 det (w2, w(0))
50, a z — 6W,~
__jnt<atwé+évw,a + pw;w ’8 jaxjw,-)dx
1op, ., .
J‘ (é 3%, +2 o [w] ) a.e. in L (5.34)

Using Holder and Young inequalities, r.h.s. of (5.34) can be estimated by
a ()W) Sag, rmy + 1€ T2@y) + 3((w(2), w(2))),

where

ov

2
PP + o]l weq, z¥y + 171 W"'Z(Q,RN)>

a,<ks; {(1+

L2(52,RN)

d
X (llﬁl'L“(ﬂ)+ ‘ 2

2
61 + uﬁ" Wl.Z(Q) + 1) }, k33 > 0.

L(82)
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From (5.27), (5.12), (2.3) we have dp/dt e L*(Q); hence a, e L'(I). Due to
(5.6)

kg Wl iz(Q,RN) < JiQ P |W|2 dx <kss [|w] iz(g,RN) (0 <kjy<kss).
Hence from (5.34)
d
- ||W(t)||iZ(Q,RN) Saz(l‘)(||V"(t)||§‘2(§2,1e/")'*' 4¢3 20(9))- (5.35)
dt

We add (5.33), (5.35), and apply the Gronwall lemma. Because of £(0) =0,
w(0)=0, £=0, and w=0 a.e. in Q. The proof is finished.

VI. APPENDIX

For the construction of the basis for the Galerkin method we have used
the following regularity property to the weak solution of the elliptic
problem

weV, feL¥Q,RM), ((v, u))=j v.f,dx  forevery veV. (6.1)
Q2

6.2 THEOREM. Let ueV be a solution to (6.1). Then ue W*2(Q, RY)
and

lull wazq, zhy < € | f Nl 120, r¥)s c>0. (6.3)

The detailed proof can be constructed according to the procedure from
J. Netas [6]. We restrict ourselves to the case 2=RY = {xe R", x>0}
provided the solution ue W?**(RY, R"). For exact proof one must use
differences instead of derivatives. For general domain € < R" one uses in
the usual way the partition of unity to replace the original problem by the
problem in RY.

Idea of the proof. We proceed by induction. Let us suppose that for
2k— 1212k we have

flll whARY | gy <cllf ”LZ(R’j, RNy (6.4)

First, let ve V. W**"?(RY, RY). Then dv/dx;eV, j=1,2,.,N—1. So
from (6.1) it follows that

ou ov;
(&)L e

J
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Especially for v = du/0x;

Oou Ou 8 ou,
hence
0
= s¢ ||f||L2(R” RY)- (6.7)
0x; || wha(rY | gy i

Let o € 2(RY, RY). We have

@_ _ 2o,
_ ((<p, 6xN>> - Lz o s (68)

Put (0, ..,0,¥,0,..,0), where  is on the j-th position in the vector; of
course ¥ € 2(RY ). So by the theorem about negative norms [6], we obtain

Therefore in virtue of (5.4),

ak+lu_

A~ R
GN NN N 5 kFI
e Xy

k-times  k-times

<c  (j=1,2,.,N) (6.9)

N
LYRY)

det(Afﬁ-N,..N N~~»N)9é0

o Sr—
k-times  k-times

and we have
ltllnzem? oy < S loar?, amy. (6.10)

Let ¢'*!'~*/ox, -- - 0x
Then we have as before

6l+l_ku al+l~ku
<<axi1 o 'axilﬂ—k’ axil o .axil+lAk)>

4.1, b€ some derivative for iy, ., i, (<N—L

= (=1 T (6.11)
RY axi...ax;x‘m i @A -
Hence
al+1~ku
ax,., ”'axi/n-k Wk'2(Rﬁ’RN)<C ||f||L2(R’i‘RN).
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Let
Al+1—k
with i <N—1(s=1,.,[-k).
Oxy0x, ---0x,_,
Then we get from (6.1) for o e o{ DN pNy
IV 4 AV E\-l\ 1w \U-l_’ 1ul (’Jcaﬂ\l\+, FAN }
I+1—k I+1—k
(i) e
k] 7
\ \6YI‘V ﬁxil axq-k /7 RZ axzv axil a’(l/ k
So we get as before
PIE
4t ¢4 <elfi
C RN RNy,
NN J e
PN N xR oy 0y || iR gy (R R
k-times  k-times +
hence
6l+lu
I Py . k41 <clfi LARY | gN)- (6.12)
UXj -t Oy VAN HLART RN

The next step is to comsider &'*'/dx, ---@  0xiT2. By the same

reasoning we get

’IA

I+1
H 't u
J d Oxh+2 . Sl fllpurh gmy.
.0x. e
0%, Xi_wor OXN Tl L2RY | go)
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