Global Solution to the Compressible Isothermal Multipolar Fluid

J. Nečas
Math. Phys. Faculty, Charles University, Sokolovská 83, 18600 Praha 8, Czechoslovakia

A. Novotny
Institute of Physics of the Atmosphere Cz. Acad. Sci., Bočni II, 1401, 14131 Praha 4, Czechoslovakia

AND
M. Šilhavý

Math. Institute Cz. Acad. Sci., Žitná 25, 11567
Praha 1, Czechoslovakia
Submitted by Avner Friedman
Received October 27, 1989

The global existence of weak solutions of the initial boundary value problem in bounded domains to the system of partial differential equations for viscous compressible isothermal bipolar and multipolar fluids is proved. Some other properties as cavitation, regularity up to the strong solution and uniqueness are discussed. (C) 1991 Academic Press, Inc.

I. Introduction

The paper of M. Padula [10] concerns the same topics of the classical ideal gas and two-dimensional space domains. Padula's paper is pioneer, especially in its use of Orlicz spaces characterizing the finite entropy and theorems of the compensated compactness type. Nevertheless, the main existence theorem is false, cf. [11].
In this paper we follow the ideas presented in the work by M. Feistauer, J. Nečas, and V. Šverák [1] inspired by [10]. The main topic is the study of multipolar fluids. The physical background is studied in the paper by J. Nečas and M. Silhavý [8], where higher stress tensors to constitution laws are introduced. There it is proved that it is possible (as we corroborate) to satisfy all thermodynamical laws. Higher stress tensors
imply the use of higher derivatives of the velocity field. This point of view expresses some space nonlocality and also seems to better describe the turbulence phenomena. It is interesting that the proof of the existence of the central manifold to the incompressible fluid requires in fact higher stress tensors; see C. Foias, G. R. Sell, and R. Temam [2].

We prove a global existence of Hopf solutions to the bipolar fluid under general initial data and volume forces in the time cylinder $(0, T) \times \Omega$ with $T>0$ and $\Omega \subset R^{N}, N=2$ or 3 provided the temperature $\theta=\theta_{0}=$ const. >0. In the same spirit, the general multipolar gas can be treated. We are also concerned with the problem of cavitation, regularity up to the strong solution, and uniqueness. In all these studies we look for the lowest multipolarity.

In the present case only one new stress tensor is needed such that the momentum equations are of the fourth order. So we handle a bipolar fluid. The corresponding stress-strain relations are supposed to be linear.

II. Formulation of the Problem

We suppose the classical state equation

$$
\begin{equation*}
p=R \rho \theta \tag{2.1}
\end{equation*}
$$

where p, ρ, θ are pressure, density, and temperature, respectively, and R is the universal gas constant. The isothermal process implies

$$
\begin{equation*}
p=\beta \rho, \quad \beta=\text { const. }>0 . \tag{2.2}
\end{equation*}
$$

We denote, as usual, the velocity vector by v; hence the continuity equation has its standard form

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\rho v_{j}\right)=0 \tag{2.3}
\end{equation*}
$$

In (2.3) as well as throughout the paper we use summation convention.
A standard symmetric stress tensor $\tau_{i j}$ is considered such that

$$
\begin{equation*}
\tau_{i j}=-p \delta_{i j}+\tau_{i j}^{d} \tag{2.4}
\end{equation*}
$$

its power on an elementary surface $d S$ with outer normal v is

$$
\begin{equation*}
\tau_{i j} v_{i} v_{j} d S \tag{2.5}
\end{equation*}
$$

We consider a further 3-order stress tensor $\tau_{i j k}^{d}$, whose power on an elementary surface $d S$ with outer normal v is

$$
\begin{equation*}
\tau_{i j k}^{d} \frac{\partial v_{i}}{\partial x_{j}} v_{k} d S \tag{2.6}
\end{equation*}
$$

The general linear form for $\tau_{i j}^{d}$ (with coefficients depending on the temperature θ only and therefore constant in our case), provided $\tau_{i j}^{d}$ is symmetric, reads

$$
\begin{align*}
\tau_{i j}^{d}(v)= & \gamma \frac{\partial v_{l}}{\partial x_{l}} \delta_{i j}+2 \mu e_{i j}-\gamma_{1} \Delta \frac{\partial v_{l}}{\partial x_{l}} \delta_{i j} \\
& -2 \mu_{1} \Delta e_{i j}+\gamma_{2} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\frac{\partial v_{l}}{\partial x_{l}}\right) \tag{2.7}
\end{align*}
$$

see [8] (4 denotes as usual the Laplace operator). We suppose $\gamma \geqslant\left(-\frac{2}{3}\right) \mu$, $\mu>0, \gamma_{1}>\left(-\frac{2}{3}\right) \mu_{1}, \mu_{1}>0, \gamma_{2}=0,2 e_{i j}=\partial v_{i} / \partial x_{j}+\partial v_{j} / \partial x_{i}$.

For the stress tensor $\tau_{i j k}^{d}$ we require the symmetry in i, j; then the general form, according to [8], is

$$
\begin{align*}
\tau_{i j k}^{d}(v)= & 2 \mu_{1} \frac{\partial}{\partial x_{k}} e_{i j}+\gamma_{1} \delta_{i j} \frac{\partial}{\partial x_{k}} e_{l l}+\gamma_{3} \delta_{i j} \Delta v_{k} \\
& +\gamma_{4} \delta_{i k} \Delta v_{j}+\gamma_{4} \delta_{j k} \Delta v_{i}+\gamma_{5} \delta_{i k} \frac{\partial}{\partial x_{j}} e_{l l} \\
& +\gamma_{5} \delta_{j k} \frac{\partial}{\partial x_{i}} e_{l l}+\gamma_{6} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} v_{k}+\gamma_{7} \frac{\partial^{2}}{\partial x_{j} \partial x_{k}} v_{i} \\
& +\gamma_{7} \frac{\partial^{2}}{\partial x_{i} \partial x_{k}} v_{j} . \tag{2.8}
\end{align*}
$$

We restrict ourselves to the case $\gamma_{3}=\gamma_{4}=\gamma_{5}=\gamma_{6}=\gamma_{7}=0$. The Clasius-Duhem inequality implies (see [8])

$$
\begin{equation*}
\tau_{i j}^{d}(v) e_{i j}+\tau_{i j k}^{d}(v) \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{k}}+\frac{\partial}{\partial x_{k}}\left(\tau_{i j k}^{d}(v)\right) \frac{\partial v_{i}}{\partial x_{j}} \geqslant 0 ; \tag{2.9}
\end{equation*}
$$

this is satisfied in our example, which work with and we also show that the corresponding Korn's inequality will be satisfied.

Let $\Omega \subset R^{N}, N=2$ or 3 be a bounded domain with a boundary smooth enough and let $I=(0, T), Q_{T}=I \times \Omega$ be the time cylinder. Let F be the density of volume forces. The momentum equation combined with (2.3) give

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho v_{i}\right)+\frac{\partial}{\partial x_{j}}\left(\rho v_{i} v_{j}+\beta \rho \delta_{i j}-\tau_{i j}^{d}(v)\right)=\rho F_{i} . \tag{2.10}
\end{equation*}
$$

In addition to initial conditions for v and ρ we suppose $v=0$ on $(0, T) \times \Omega$. The further boundary condition is in the general case

$$
\begin{equation*}
\tau_{i j k}^{d}(v) v_{j} v_{k}=0 \quad \text { on } \quad(0, T) \times \Omega . \tag{2.11}
\end{equation*}
$$

First let us suppose that we consider a solution smooth enough and $\rho>0$ in \bar{Q}_{T}. Then we get
2.12 Theorem.

$$
\begin{gathered}
\int_{\Omega_{t}} \rho d x-\int_{\Omega_{0}} \rho d x=0 \\
\frac{1}{2} \int_{\Omega_{t}} \rho|v|^{2} d x-\frac{1}{2} \int_{\Omega_{0}} \rho|v|^{2} d x+\int_{Q_{t}}\left(\gamma\left(e_{l l}\right)^{2}+2 \mu e_{i j} e_{i j}\right. \\
\left.+\gamma_{1} \frac{\partial}{\partial x_{k}}\left(e_{l l}\right) \frac{\partial}{\partial x_{k}}\left(e_{l l}\right)+2 \mu_{1} \frac{\partial}{\partial x_{k}}\left(e_{i j}\right) \frac{\partial}{\partial x_{k}}\left(e_{i j}\right)\right) d \tau d x \\
+\beta \int_{\Omega_{t}} \rho \ln \rho d x-\beta \int_{\Omega_{0}} \rho \ln \rho d x \\
=\int_{Q_{t}} \rho F_{i} v_{i} d x d \tau, \quad t \in(0, T\rangle, Q_{t}=(0, t) x \Omega .
\end{gathered}
$$

For usual notation for Sobolev, Orlicz, and Bochner spaces see, for example, A. Kufner, O. John, S. Fučík [3]. The equalities in Theorem 2.12 show the function spaces that we work in:

$$
\begin{align*}
& v \in L^{2}\left(I, W^{2,2}\left(\Omega, R^{N}\right)\right) \tag{2.13}\\
& \rho \in L_{\infty}\left(I, L_{\psi}(\Omega)\right), \quad \rho \geqslant 0 . \tag{2.14}
\end{align*}
$$

We denote by $\psi(t)=(1+t) \ln (1+t)-t, \Phi(t)=e^{t}-t-1$ resp. $\psi_{1 / 2}(t)$, $\Phi_{2}(t)=e^{t^{2}}-1$ the pairs of Young complementary functions and by $L_{\psi}(\Omega), L_{\phi}(\Omega)$ resp. $L_{\psi_{1 / \Omega}}(\Omega), L_{\Phi_{2}}(\Omega)$ the Orlicz spaces of functions for which the Luxemburg norm

$$
\begin{equation*}
\|u\|_{L_{f}}(\Omega)=\inf _{h}\left\{h>0 ; \int_{\Omega} f\left(\frac{|u(x)|}{h}\right) d x \leqslant 1\right\}<+\infty \tag{2.15}
\end{equation*}
$$

where f stands for $\psi, \Phi, \psi_{1 / 2}, \Phi_{2}$.
Let $\mathscr{B}(\Omega)$ be the set of all bounded measurable functions defined on Ω. Let us denote further by $C_{f}(\Omega)$ the closure of $\mathscr{B}(\Omega)$ in $L_{f}(\Omega)$. We have (see [3])

$$
\begin{align*}
\left(C_{\Phi}(\Omega)\right)^{*}=L_{\psi}(\Omega), & & \left(C_{\Phi_{2}}(\Omega)\right)^{*}=L_{\psi_{1 / 2}}(\Omega) \tag{2.16}\\
\left(C_{\psi}(\Omega)\right)^{*}=L_{\Phi}(\Omega), & & \left(C_{\psi_{1 / 2}}(\Omega)\right)^{*}=L_{\Phi_{2}}(\Omega)
\end{align*}
$$

Of course, $C_{f}(\Omega)$ are separable Banach spaces and $\mathscr{C}_{0}^{\infty}(\Omega)$ is dense in every $C_{f}(\Omega)$. We realize that $\psi, \psi_{1 / 2}$ satisfy the Δ_{2} condition; hence

$$
\begin{equation*}
C_{\psi}(\Omega)=L_{\psi}(\Omega), C_{\psi_{1 / 2}}(\Omega)=L_{\psi_{1,2}}(\Omega) \tag{2.17}
\end{equation*}
$$

The weak formulation to Eq. (2.10) is also useful. It reads

$$
\begin{align*}
&-\int_{Q_{T}} v_{i} \frac{\partial w_{i}}{\partial t} d x d t-\int_{\Omega} \rho_{0} v_{o i} w_{i}(0) d x \\
& \quad+\int_{0}^{T}((v, w)) d t-\int_{Q_{T}}\left(\rho v_{i} v_{j}+\beta \rho \delta_{i j}\right) \frac{\partial w_{i}}{\partial x_{j}} d x d t \\
&= \int_{Q_{T}} \rho F_{i} w_{i} d x d t \tag{2.18}
\end{align*}
$$

for every $w \in \mathscr{C}^{\infty}\left(\bar{Q}_{T}, R^{N}\right), w(t) \in W_{0}^{1,2}\left(\Omega, R^{N}\right), t \in I, w(T)=0 ; v_{0}$ is the initial condition for v. In our situation, for $v, w \in V=W^{2,2}\left(\Omega, R^{N}\right) \cap$ $W_{0}^{1.2}\left(\Omega, R^{N}\right),((v, w))$ is defined by (3.1) in the following section.

III. A Modified Galerkin Method

Let us denote $V=W^{2.2}\left(\Omega, R^{N}\right) \cap W_{0}^{1.2}\left(\Omega, R^{N}\right)$ and for $v, w \in V$ let

$$
\begin{align*}
((v, w))= & \int_{\Omega}\left(\gamma e_{l l}(v) e_{k k}(w)+2 \mu e_{i j}(v) e_{i j}(w)\right. \\
& +\gamma_{1} \frac{\partial}{\partial x_{k}} e_{l l}(v) \frac{\partial}{\partial x_{k}} e_{s s}(w) \\
& \left.+2 \mu_{1} \frac{\partial}{\partial x_{k}} e_{i j}(v) \frac{\partial}{\partial x_{k}} e_{i j}(w)\right) d x . \tag{3.1}
\end{align*}
$$

From the coerciveness of deformations (see, e.g., J. Nečas, I. Hlavaček [7]) and from the very strong ellipticity of the bilinear form $((v, w))$ it follows for $v \in V$

$$
\begin{equation*}
((v, v)) \geqslant k_{2} \int_{\Omega}\left(|v|^{2}+|\nabla v|^{2}+\left|\nabla_{2} v\right|^{2}\right) d x, \quad k_{2}>0 \tag{3.2}
\end{equation*}
$$

(as usual ∇ resp. ∇_{2} denotes first resp. second gradient). Let $\left\{w^{k}\right\}_{k=1}^{+\infty}$ be a complete orthonormal system of eigenfunctions in V, solutions to the following eigenproblem in V

$$
\begin{equation*}
((v, w))=\lambda(v, w) \quad \text { for every } \quad v \in V, \quad w \in V, \tag{3.3}
\end{equation*}
$$

where $(v, w)=\int_{\Omega} v_{i} w_{i} d x$. We have

$$
\begin{align*}
\left(\left(v, w^{k}\right)\right) & =\lambda_{k}\left(v, w^{k}\right) ; \quad k=1,2, \ldots ; \quad 0<\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots, \tag{3.4}\\
\left(\left(w^{k}, w^{\prime}\right)\right) & =\delta_{k l} .
\end{align*}
$$

From the regularity of solutions to the linear elliptic problem (6.1) (see Appendix) we get

$$
\begin{equation*}
w^{k} \in C^{\infty}\left(\bar{\Omega}, R^{N}\right) \tag{3.5}
\end{equation*}
$$

Let us put for $w \in L^{2}\left(\Omega, R^{N}\right)$

$$
\begin{equation*}
P_{m} w=\sum_{k=1}^{m} \lambda_{k}\left(w^{k}, w\right) w^{k} . \tag{3.6}
\end{equation*}
$$

If $L_{m}^{2}=\operatorname{span}\left\{w^{1}, \ldots, w^{m}\right\}$ in $L^{2}\left(\Omega, R^{N}\right), V_{m}=\operatorname{span}\left\{w^{1}, \ldots, w^{m}\right\}$ in V, then P_{m} is an orthogonal projector of L^{2} onto L_{m}^{2} and of V onto V_{m}.

By (6.1) one defines the operator $\mathscr{A}:((v, w))=(\mathscr{A} v, w)$ for every $w \in V$. Its definition domain is denoted by $D(\mathscr{A})$ and of course $W_{0}^{4.2}\left(\Omega, R^{N}\right) \subset$ $D(\mathscr{A})$. It is the consequence of Theorem 6.1 (see Appendix) that

$$
\begin{equation*}
\|v\|_{W^{4},\left(\Omega, R^{N}\right)} \leqslant k_{3}\|\mathscr{A} v\|_{L^{2}\left(\Omega, R^{N}\right)} \quad\left(k_{3}>0\right) \tag{3.7}
\end{equation*}
$$

for every $v \in D(\mathscr{A})$; hence

$$
\begin{aligned}
& \left\|P_{m} v\right\|_{W^{4,2}\left(\Omega, R^{N}\right)} \leqslant k_{3}\left\|\mathscr{A} P_{m} v\right\|_{L^{2}\left(\Omega, R^{N}\right)} \\
& \leqslant
\end{aligned}
$$

Thus, due to the interpolation theorem it holds for every $v \in W_{0}^{3,2}\left(\Omega, R^{N}\right)$

$$
\begin{equation*}
\left\|P_{m} v\right\|_{W^{3,2}\left(\Delta \Omega, R^{v}\right)} \leqslant k_{5}\|v\|_{W^{3,2}\left(\Omega, K^{N}\right)} \quad\left(k_{5}>0\right) . \tag{3.8}
\end{equation*}
$$

Let $c_{i} \in \mathscr{C}^{1}(\bar{I})$ and let us put $v^{m}(t, x)=\sum_{i=1}^{m} c_{i}(t) w^{i}(x)$. Let us look for $\rho_{m} \in \mathscr{C}^{1}\left(\bar{Q}_{T}\right)$ such that

$$
\begin{equation*}
\frac{\partial \rho_{m}}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho_{m} v_{i}^{m}\right)=0 \tag{3.9}
\end{equation*}
$$

We suppose throughout the paper

$$
\begin{equation*}
\rho_{m}(0, x)=\rho_{0}(x) \in \mathscr{C}^{1}(\bar{\Omega}), \quad \rho_{0}(x)>0 \text { in } \bar{\Omega} . \tag{3.10}
\end{equation*}
$$

Let

$$
\begin{equation*}
\dot{x}^{m}(t)=v^{m}\left(t, x^{m}(t)\right), \quad x^{m}(0)=y, \quad y \in \bar{\Omega} . \tag{3.11}
\end{equation*}
$$

For every $t \in \bar{I}, y \rightarrow x^{m}(t)$ is a diffeomorphism of $\bar{\Omega}$ onto $\bar{\Omega}$. For $\sigma_{m}=\ln \rho_{m}$ we have

$$
\begin{equation*}
\frac{d}{d t}\left(\sigma_{m}\left(t, x^{m}(t)\right)\right)=-\frac{\partial}{\partial x_{i}} v_{i}^{m}\left(t, x^{m}\right) \tag{3.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\rho_{m}(t, x)=\rho_{0}(y) \exp \left(-\int_{0}^{t} \frac{\partial}{\partial x_{i}} v_{i}^{m}\left(\tau, x^{m}(\tau)\right) d \tau\right), \tag{3.13}
\end{equation*}
$$

where $x=x^{m}(t), y=x^{m}(0)$. Let us look now for \bar{v}^{m} such that for every $t \in I$

$$
\begin{gather*}
\int_{\Omega}\left(\rho_{m} \frac{\partial \bar{v}_{i}^{m}}{\partial t}+\rho_{m} v_{j}^{m} \frac{\partial \bar{v}_{i}^{m}}{\partial x_{j}}+\beta \frac{\partial \rho_{m}}{\partial x_{i}}-\rho_{m} F_{i}\right) w_{i}^{k} d x \\
=-\left(\left(\bar{v}^{m}, w^{k}\right)\right), \quad k=1,2, \ldots, m . \tag{3.14}
\end{gather*}
$$

Let the initial conditions be given by

$$
\begin{equation*}
\int_{\Omega} \bar{c}_{j}(0) w_{k}^{j} w_{k}^{i} d x=\int_{\Omega} \bar{v}_{k}(0, x) w_{k}^{i}(x) d x \tag{3.15}
\end{equation*}
$$

We suppose in the sequel

$$
\begin{equation*}
v_{0}(x)=\bar{v}(0, x) \in L^{2}\left(\Omega, R^{N}\right), \quad F_{i} \in L^{2}\left(I, L^{\infty}(\Omega)\right) . \tag{3.16}
\end{equation*}
$$

Because $\operatorname{det}\left(\int_{\Omega} \rho_{m} w_{i}^{k} w_{i}^{r} d x\right) \neq 0$, we can solve (3.14), (3.15) uniquely in I. We get the standard estimate

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega_{t}} \rho_{m}\left|\bar{v}^{m}\right|^{2} d x-\frac{1}{2} \int_{\Omega} \rho_{0}\left|\bar{v}_{0}^{m}\right|^{2} d x-\beta \int_{Q_{t}} \rho_{m} \frac{\partial}{\partial x_{i}} \bar{v}_{i}^{m} d x d \tau \\
& \quad-\int_{Q_{t}} \rho F_{i} \bar{v}_{i}^{m} d \tau d x+\int_{0}^{t}\left(\left(\bar{v}^{m}, \bar{v}^{m}\right)\right) d \tau=0, \quad \bar{v}_{0}^{m}=\bar{v}^{m}(0) \tag{3.17}
\end{align*}
$$

If we start with $c_{i}(t)$ in the ball

$$
\begin{equation*}
\max _{[0, \alpha]}\left|c_{i}(t)-c_{i}(0)\right| \leqslant 1 ; \quad i=1,2, \ldots, m, \tag{3.18}
\end{equation*}
$$

we get

$$
\begin{array}{rlr}
\max _{[0, \alpha]}\left|\bar{c}_{i}(t)-c_{i}(0)\right| \leqslant 1, & i=1, \ldots, m ; \\
\max _{[0, \alpha]} \dot{\bar{c}}_{i} \mid \leqslant k_{6}(\alpha), & k_{6}>0 \tag{3.20}
\end{array}
$$

provided α is small enough. So applying the Schauder fixed point theorem, we get on $[0, \alpha], \bar{c}_{i}=c_{i}$. But for this solution we get

$$
\begin{gather*}
\int_{\Omega_{t}} \rho_{m} d x-\int_{\Omega} \rho_{0} d x=0 \\
\frac{1}{2} \int_{\Omega_{t}} \rho_{m}\left|\bar{v}^{m}\right|^{2} d x-\frac{1}{2} \int_{\Omega} \rho_{0}\left|\bar{v}_{0}^{m}\right|^{2} d x+\int_{0}^{t}\left(\left(\bar{v}^{m}, \bar{v}^{m}\right)\right) d \tau \\
+\beta \int_{\Omega_{t}}\left(1+\rho_{m}\right) \ln \left(1+\rho_{m}\right) d x-\beta \int_{\Omega}\left(1+\rho_{0}\right) \ln \left(1+\rho_{0}\right) d x \\
=\int_{Q_{t}} \rho_{m} F_{i} \bar{v}_{i}^{m} d x d \tau+\beta \int_{Q_{t}} \ln \left(1+\rho_{m}\right) \frac{\partial \bar{v}_{j}^{m}}{\partial x_{j}} d x d \tau \tag{3.21}
\end{gather*}
$$

We have

$$
\begin{gathered}
\int_{Q_{t}} \rho_{m} F_{i} \bar{v}_{i}^{m} d x d \tau \leqslant k_{7}\left\|F_{i}\right\|_{L^{2}\left(I_{t}, L^{\infty}(\Omega)\right)}\left\|\bar{v}^{m}\right\|_{L^{2}\left(I_{t}, V\right)}\left\|\rho^{m}\right\|_{L^{\infty}\left(I_{t}, L^{1}(\Omega)\right)} \\
\int_{Q_{i}} \ln \left(1+\rho_{m}\right) \frac{\partial \bar{v}_{i}^{m}}{\partial x_{j}} d x d \tau \leqslant k_{7}\left(\int_{Q_{t}}\left(1+\rho_{m}\right) \ln \left(1+\rho_{m}\right)\right)^{1 / 2}\left\|\bar{v}^{m}\right\|_{L^{2}\left(I_{t}, V\right)}, k_{7}>0 \\
\left\|\|_{V}=((,))^{1 / 2}, \quad I_{t}=(0, t), \quad t \in(0, \alpha]\right.
\end{gathered}
$$

Using the Young inequality at the r.h.s. of (3.21) and applying the Gronwall lemma, we get
3.22 Lemma.

$$
\begin{aligned}
\int_{\Omega_{t}}(& \left.\frac{1}{2} \rho_{m}\left|\bar{v}^{m}\right|^{2}+\left(1+\rho_{m}\right) \ln \left(1+\rho_{m}\right)\right) d x \\
& -\int_{\Omega}\left(\frac{1}{2} \rho_{0}\left|v_{0}\right|^{2}+\left(1+\rho_{0}\right) \ln \left(1+\rho_{0}\right)\right) d x \\
& +\int_{0}^{t}\left(\left(\bar{v}^{m}, \bar{v}^{m}\right)\right) d \tau \leqslant k_{8}, \quad k_{8}>0
\end{aligned}
$$

This implies that we can continue with α to T. For more detailed proof see for example [9].

IV. The Limit Process

4.1 Lemma. Let B be Banach space, $B_{i}(i=0,1)$ separable reflexive Banach spaces. Let $B_{0} \subset \subset B \subset B_{1}$ ($\subset \subset$ denotes compact imbedding), $1<$ $p_{i}<\infty$. Let $W=\left\{v, v \in L^{p_{0}}\left(I, B_{0}\right), \partial v / \partial t \in L^{p_{1}}\left(I, B_{1}\right)\right\}$. Then $W \subset \subset L^{p_{0}}(I, B)$.

For proof we refer to Lions [5].

Main Theorem. Let (2.2), (2.7), (3.10), (3.16) be satisfied. Then there exists

$$
\begin{align*}
\rho & \in L^{\infty}\left(I, L_{\psi}(\Omega)\right), \quad \rho>0 \text { a.e. in } Q_{T}, \tag{4.2}\\
v & \in L^{2}\left(I, W^{2,2}\left(\Omega, R^{N}\right) \cap W_{0}^{1.2}\left(\Omega, R^{N}\right)\right), \tag{4.3}\\
\frac{\partial \rho}{\partial t} & \in L^{2}\left(I, W^{-3,2}(\Omega)\right), \tag{4.4}\\
\frac{\partial}{\partial t}(\rho v) & \in L^{2}\left(I, W^{-3,2}\left(\Omega, R^{N}\right)\right) \tag{4.5}
\end{align*}
$$

satisfying (2.3), (2.10) in the sense of distributions and such that (2.18) holds. In addition

$$
\begin{gather*}
\|\rho\|_{L^{\infty}\left(I, L_{1}(\Omega)\right)} \leqslant \int_{\Omega_{0}} \rho_{0} d x, \tag{4.6}\\
\frac{1}{2}\left\|\rho|v|^{2}\right\|_{\left.L^{\infty_{(I, L}}(\Omega)\right)}+\|v\|_{L^{2}\left(I, W^{2,2}\left(\Omega, R^{N}\right)\right]}^{2} \\
+\beta \operatorname{supess} \int_{I}(1+\rho) \ln (1+\rho) d x \\
\leqslant k_{9}\left(1+\sum_{i=1}^{N}\left\|F_{i}\right\|_{L^{2}\left(I, L_{x}(\Omega)\right)}\right)^{2}, \quad k_{9}>0 . \tag{4.7}
\end{gather*}
$$

Proof. Let $0 \leqslant k \leqslant 2$ and let $W^{k, 2}(\Omega), W_{0}^{k, 2}(\Omega)$ be the usual Sobolev spaces with fractional derivatives; see, e.g., [3]. Let $V^{k}=\bar{V}$, where the closure is taken in $W^{k, 2}\left(\Omega, R^{N}\right)$; of course the traces are zero only for $k>\frac{1}{2}$. Because

$$
\begin{gather*}
W_{0}^{2}(\Omega) \subset \subset W_{0}^{k_{1}, 2}(\Omega) \subset \subset W_{0}^{k_{2}, 2}(\Omega) \subset C_{\Phi}(\Omega) \subset C_{\Phi_{2}}(\Omega), \\
\text { for } \quad N / 2<k_{2}<k_{1}<2, \tag{4.8}
\end{gather*}
$$

we have

$$
\begin{equation*}
L_{\psi_{1 / 2}}(\Omega) \subset L_{\psi}(\Omega) \subset W^{-k_{2}, 2}(\Omega) \subset \subset W^{-k_{1}, 2}(\Omega) \subset \subset W^{-2,2}(\Omega) \tag{4.9}
\end{equation*}
$$

Of course $W^{k, 2}(\Omega) \subset C_{\psi}(\Omega)$; hence $L_{\psi}(\Omega) \subset\left(W^{k, 2}(\Omega)\right)^{*}((N / 2)<k)$. It follows from the interpolation theorem that

$$
\begin{equation*}
\sup _{\substack{v \in V^{k} \\ W^{k}, 2\left(\Omega, R^{N}\right)}}\left\|P_{m} v\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)} \leqslant k_{10}, \quad k_{10}>0 \quad(0 \leqslant k \leqslant 2) \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\substack{v \in\left(V^{k}\right)^{*} \\\|v\|_{\left(k^{k}\right)^{*} \leqslant 1}}}\left\|P_{m}^{*} v\right\|_{\left(V^{k}\right)^{*}} \leqslant k_{11}, \quad k_{11}>0 \quad(0 \leqslant k \leqslant 2) \tag{4.11}
\end{equation*}
$$

(P_{m}^{*} is the dual operator to P_{m}).
4.12. Lemma. Let $0 \leqslant k \leqslant 2$. Then for every $\varepsilon>0, l_{0}$ exists such that for $l \geqslant l_{0}\left\|u-P_{l} u\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)}<\varepsilon$ provided $\|u\|_{W^{2,2}\left(\Omega, R^{N}\right)} \leqslant 1$.

Proof. Let us suppose the contrary. Then there exist $P_{l_{j}}, l_{j} \rightarrow \infty$ and $\left\|u_{i_{i}}\right\|_{w^{2,2}\left(\Omega \Omega, R^{N}\right)} \leqslant 1$ such that $\left\|u_{l_{j}}-P_{l_{i}} u_{i_{i}}\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)} \geqslant \varepsilon_{0} \geqslant c$. Because $W^{2,2}\left(\Omega, R^{N}\right) \subset \subset W^{k, 2}\left(\Omega, R^{N}\right)$, we can suppose $u_{l_{j} \rightarrow u}$ strongly in $W^{k, 2}\left(\Omega, R^{N}\right)$; hence $P_{l_{j}} u_{l_{j}} \rightarrow u$ strongly in $W^{k, 2}\left(\Omega, R^{N}\right)$, which is contradictory.

Let ρ_{m}, v^{m} be an approximative solution from Section III. There exist subsequences (denoted $\left\{\rho_{m}\right\}_{m=1}^{+\infty},\left\{v^{m}\right\}_{m=1}^{+\infty}$ again) such that $\rho_{m} \rightarrow \rho$ *-weakly in $L^{2}\left(I, L_{\psi}(\Omega)\right)=L^{2}\left(I,\left(C_{\Phi}(\Omega)\right)^{*}\right)$;

$$
v^{m} \rightarrow v, \frac{\partial}{\partial x_{i}} v^{m} \rightarrow \frac{\partial}{\partial x_{i}} v, \frac{\partial^{2} v^{m}}{\partial x_{i} \partial x_{j}} \rightarrow \frac{\partial^{2} v}{\partial x_{j} \partial x_{i}} \quad(i, j=1, \ldots, N)
$$

weakly in $L^{2}\left(Q_{T}\right), v^{m} \rightarrow v$ *-weakly in $L^{2}\left(I, L_{\Phi}(\Omega)\right), L^{2}\left(I, L_{\Phi_{2}}(\Omega)\right)$.
Due to Lemma 3.22 and Eq. (4.9)

$$
\begin{equation*}
\left\|\rho_{m}\right\|_{L^{\infty}\left(I, W^{-k, 2}(\Omega)\right)} \leqslant k_{12}, \quad k_{12}>0, \quad(N / 2)<k \leqslant 2 . \tag{4.13}
\end{equation*}
$$

For $N=2,3$

$$
\begin{equation*}
\left\|v^{m}\right\|_{\mathscr{C}^{0}\left(\Omega, R^{N}\right)} \leqslant k_{13}\left\|v^{m}\right\|_{W^{2,2}\left(\Omega, R^{N}\right)}, \quad k_{13}>0 \tag{4.14}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\|\rho_{m} v^{m}\right\|_{L^{2}\left(I, L \psi\left(\Omega, R^{N}\right)\right)} \leqslant k_{14}, \quad k_{14}>0 \tag{4.15}
\end{equation*}
$$

It follows from (3.9)

$$
\begin{equation*}
\left\|\frac{\partial \rho_{m}}{\partial t}\right\|_{L^{2}\left(I, W^{-3.2}\left(\Omega, R^{N}\right)\right)} \leqslant k_{15}, \quad k_{15}>0 \tag{4.16}
\end{equation*}
$$

Due to Lemma $4.1 \rho_{m} \rightarrow \rho$ strongly in $L^{2}\left(I, W^{-2,2}(\Omega)\right.$); hence due to (4.15) $\rho_{m} v^{m} \rightarrow \rho v$ *-weakly in $L^{2}\left(I, L_{\psi}(\Omega)\right)$.

By (4.9), (4.15) we get

$$
\begin{equation*}
\left\|\rho_{m} v^{m}\right\|_{L^{2}\left(I, W^{-k, 2}\left(\Omega, R^{N}\right)\right)} \leqslant k_{16}, \quad k_{16}>0 \quad((N / 2)<k \leqslant 2) \tag{4.17}
\end{equation*}
$$

hence by (4.11)

$$
\begin{equation*}
\left\|P_{m}^{*}\left(\rho_{m} v^{m}\right)\right\|_{L^{2}\left(I, W^{-k, 2}\left(\Omega \Omega, R^{N}\right)\right)} \leqslant k_{17}, \quad k_{17}>0 \tag{4.18}
\end{equation*}
$$

According to Lemma $3.22 \rho_{m}\left|v^{m}\right|^{2}$ is bounded in $L^{\infty}\left(I, L^{1}(\Omega)\right)$; therefore

$$
\begin{equation*}
\left\|\rho_{m}\left|v^{m}\right|^{2}\right\|_{L^{2}\left(I, W^{-2,2}\left(\Omega, R^{N}\right)\right)} \leqslant k_{18}, \quad k_{18}>0 \tag{4.19}
\end{equation*}
$$

By (3.14), (3.8), Lemma 3.22, (4.13), and (4.19),

$$
\begin{equation*}
\left\|\frac{\partial}{\partial t}\left(P_{m}^{*} \rho_{m} v^{m}\right)\right\|_{L^{2}\left(I, W^{-3,2}\left(\Omega, R^{v}\right)\right)} \leqslant k_{19}, \quad k_{19}>0 \tag{4.20}
\end{equation*}
$$

holds. So by Lemma $4.1 P_{m}^{*}\left(\rho_{m} v^{m}\right) \rightarrow a$ strongly in $L^{2}\left(I, W^{-2,2}\left(\Omega, R^{N}\right)\right)$ (eventually for a subsequence).

Let $w \in L^{2}\left(I, W_{0}^{2,2}\left(\Omega, R^{N}\right)\right)$. Because of Lemma 4.12 for m large enough

$$
\begin{equation*}
\int_{0}^{t}\left\|P_{m} w-w\right\|_{W^{k .2}\left(\Omega, R^{N)}\right.}^{2} d \tau \leqslant \varepsilon^{2} \int_{0}^{t}\|w\|_{W^{22}\left(\Omega, R^{N}\right)}^{2} d \tau \tag{4.21}
\end{equation*}
$$

hence for $\int_{0}^{t}\|w\|_{W^{2,2}\left(\Omega, R^{N}\right)}^{2} d \tau \leqslant 1$, it follows uniformly with respect to w

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{0}^{T} \int_{\Omega}\left(P_{m}^{*}\left(\rho_{m} v_{i}^{m}\right)-\rho_{m} v_{i}^{m}\right) w_{i} d x d \tau=0 \tag{4.22}
\end{equation*}
$$

Therefore $\rho_{m} v^{m}$ is a Cauchy sequence in $L^{2}\left(I, W^{-2,2}\left(\Omega, R^{N}\right)\right)$ and $\rho_{m} v^{m} \rightarrow a$ strongly in $L^{2}\left(I, W^{2,2}\left(\Omega, R^{N}\right)\right)$. But $\rho_{m} v^{m} \rightarrow \rho v$ in $\mathscr{D}^{\prime}\left(Q_{T}\right)$ in the sense of distributions; hence $a=\rho v$. Therefore, due to (4.19)

$$
\begin{equation*}
\rho_{m} v_{i}^{m} v_{j}^{m} \rightarrow \rho v_{i} v_{j} \text { weakly in } L^{2}\left(I, W^{-2,2}\left(\Omega, R^{N}\right)\right) \tag{4.23}
\end{equation*}
$$

Due to estimate $\int_{\Omega}\left|\rho_{m} v^{m}\right| u d x \leqslant\left(\int_{\Omega} \rho_{m}\left|v^{m}\right|^{2} d x\right)^{1 / 2}\left(\int_{\Omega} \rho_{m} u^{2} d x\right)^{1 / 2}$ which holds for every $u \in L_{\Phi_{2}}(\Omega)$ and due to (4.14), we get

$$
\begin{equation*}
\left\|\rho_{m} v_{i}^{m} v_{j}^{m}\right\|_{L^{2}\left(l, L_{\left.\psi_{1,2}(\Omega)\right)}\right.} \leqslant k_{20}, \quad k_{20}>0 \tag{4.24}
\end{equation*}
$$

Therefore $\rho_{m} v_{i}^{m} v_{j}^{m} \rightarrow \rho v_{i} v_{j} *$-weakly in $L^{2}\left(I, L_{\psi_{[2}}(\Omega)\right)$.
It follows from (3.14) that for every $\varphi \in \mathscr{C}^{\infty}\left(\bar{Q}_{T}, R^{N}\right)$ satisfying $\varphi(t) \in V_{m}$ for every $t \in[0, T]$ and $\varphi(T)=0$,

$$
\begin{aligned}
& \int_{Q_{T}} \rho v_{i} \frac{\partial \varphi_{i}}{\partial t} d x d t+\int_{Q_{T}} \rho v_{i} v_{j} \frac{\partial \varphi_{j}}{\partial x_{j}} d x d t+\beta \int_{Q_{T}} \rho \frac{\partial \varphi_{i}}{\partial x_{j}} \\
& \quad=\int_{0}^{T}((v, \varphi)) d t-\int_{Q_{T}} \rho F_{i} \varphi_{i} d x d t-\int_{\Omega} \rho_{0} v_{0 i} \varphi_{i} d x
\end{aligned}
$$

holds. Due to the density arguments (2.18) holds and (2.10) is satisfied in the sense of distributions. The continuity equation is obviously satisfied in the sense of distributions.

V. Higher Polarity and Qualitative Properties of the Solutions

In the case of a bipolar gas, we found for the limit density $\rho \geqslant 0$ only; i.e., in general, there can be a set of positive measures in Q_{T} such that $\rho=0$ here. This means that there is a strong cavitation. For this reason and also because of uniqueness of the solution, it is worth considering k-polar gas ($k=3,4, \ldots$). We refer the reader to [8].

In our situation we consider on $V=W^{k, 2}\left(\Omega, R^{N}\right) \cap W_{0}^{1,2}\left(\Omega, R^{N}\right)$ a symmetric V-coercive bilinear form

$$
\begin{equation*}
((v, w))=\int_{\Omega} \sum_{l=1}^{k} A_{i j i_{1} \cdots i i j j_{1} \cdots j l}^{l} \frac{\partial^{\prime} v_{i}}{\partial x_{i_{1}} \cdots \partial x_{i t}} \frac{\partial^{\prime} w_{j}}{\partial x_{j_{1}} \cdots \partial x_{j l}} d x, \tag{5.1}
\end{equation*}
$$

where $A_{i j_{1} \cdots i j_{1} \cdots j_{j}}^{l}$ are constants. For $l=1$ there are only combinations of $e_{i j}(v), e_{i j}(w)$; we suppose that $A_{i j j_{1} \ldots i j_{1} \cdots j_{i}}^{l}$ are symmetric under the permutation of indexes ($\left.i_{1} \cdots i_{l}\right),\left(j_{1} \cdots j_{l}\right)$. Of course, we suppose for $v \in V$

$$
\begin{equation*}
((v, v)) \geqslant \alpha_{1}\|v\|_{W^{k^{2}}\left(\Omega, R^{R^{N}}\right)}^{2}, \quad \alpha_{1}>0 . \tag{5.}
\end{equation*}
$$

This follows for example from the conditions

$$
\begin{align*}
& \quad A_{i j i_{1} j_{1}}^{1} \frac{\partial v_{i}}{\partial x_{i_{1}}} \frac{\partial v_{j}}{\partial x_{j_{1}}} \geqslant \alpha_{2} e_{i j}(v) e_{i j}(v), \quad \alpha_{2}>0, \tag{5.3}\\
& \sum_{l=2}^{k} A_{i j i_{1} \ldots i i_{1} \ldots j_{i}}^{i} J_{i_{1} \ldots i i_{j}}^{i} J_{j_{1} \ldots j_{l}}^{i} \\
& \geqslant \alpha_{2} \sum_{l=2}^{k} J_{i_{1} \ldots i_{l}}^{i} J_{i_{1} \ldots i_{i}}^{i} \quad \text { for every real vector }\left(J_{i_{1} \ldots i_{l}}^{i}\right) \\
& \quad i, i_{1}, \ldots, i_{l}=1, \ldots, N . \tag{5.4}
\end{align*}
$$

In our situation

$$
\left(\tau_{i j}^{d}\right)_{, j}=\sum_{l=1}^{k}(-1)^{i+1} A_{i j i_{1} \cdots i i j h \cdots i l}^{l} \frac{\partial^{2 /} v_{j}}{\partial x_{i_{1}} \cdots \partial x_{i l} \partial x_{j 1} \cdots \partial x_{j i}} .
$$

We consider $v=0$ on $(0, T) x \partial \Omega$ and unstable boundary conditions given by

$$
\begin{aligned}
& \sum_{l=1}^{k} \sum_{s=0}^{l-1} \int_{\partial \Omega}(-1)^{s+1} A_{i j i_{1} \cdots i_{j 1} \cdots j l}^{l} \frac{\partial^{l+s} v_{j}}{\partial x_{i_{1}} \cdots \partial x_{i_{l}} \partial x_{j_{1}} \cdots \partial x_{j_{s}}} v_{j_{s+1}} \\
& \quad \times \frac{\partial^{l-s-1} w_{j}}{\partial x_{j_{s}+2} \cdots \partial x_{j_{l}}} d S=0
\end{aligned}
$$

for every $w \in \mathscr{C}^{\infty}\left(\bar{\Omega}, R^{N}\right) \cap W_{0}^{1,2}\left(\Omega, R^{N}\right)$.
5.5 ThEOREM. Let $k=3$ and (2.2), (3.10), (3.16), (5.1), and (5.2) be satisfied. Then there exist ρ, v

$$
\begin{gather*}
\rho \in L^{\infty}\left(Q_{T}\right), \quad \rho \geqslant \gamma>0 \quad \text { in } Q_{T}, \tag{5.6}\\
v \in L^{2}\left(I, W^{3,2}\left(\Omega, R^{N}\right) \cap W_{0}^{1,2}\left(\Omega, R^{N}\right)\right), \tag{5.7}\\
\frac{\partial \rho}{\partial t} \in L^{2}\left(I, W^{-1,2}(\Omega)\right), \tag{5.8}\\
\frac{\partial}{\partial t}(\rho v) \in L^{2}\left(I, W^{-3,2}\left(\Omega, R^{N}\right)\right) \tag{5.9}
\end{gather*}
$$

such that (2.3) is satisfied in the sense of distributions and also in the sense of duality in $L^{2}\left(I, W^{-1,2}(\Omega)\right)$ and (2.10) in the sense of distributions and also in the weak sense; i.e., (2.18) is fulfilled. Besides (4.6), (4.7) hold and

$$
\begin{align*}
& \min _{\Omega} \rho_{0}(x) \exp \left(-k_{20} t^{1 / 2}\right) \leqslant \rho(t, x) \\
& \quad \leqslant \max _{\bar{\Omega}} \rho_{0}(x) \exp \left(+k_{20} t^{1 / 2}\right), \quad k_{20}>0, \quad t \in I . \tag{5.10}
\end{align*}
$$

5.11 Theorem. Let $k \geqslant 4$ and (2.2), (3.10), (3.17), (5.1), and (5.2) be satisfied. Let $\rho_{0} \in \mathscr{C}^{k-3}(\bar{\Omega})$. Then there exist ρ, v

$$
\begin{align*}
& \frac{\partial^{s} \rho}{\partial x_{1}^{s^{1}} \cdots \partial x_{N}^{s^{N}}} \in L^{\infty}\left(Q_{T}\right) \quad \text { for } \quad 0 \leqslant s \leqslant k-3, \quad s=s^{1}+\cdots s^{N}, \tag{5.12}\\
& \frac{\partial^{s}}{\partial x_{1}^{s^{1}} \cdots \partial x_{N}^{s_{N}^{N}}} \frac{\partial \rho}{\partial t} \in L^{2}\left(I, L^{\infty}(\Omega)\right) \quad \text { for } \quad 0 \leqslant s \leqslant k-4 \text {, } \tag{5.13}\\
& v \in L^{2}\left(I, W^{k, 2}\left(\Omega, R^{N}\right) \cap W_{0}^{1,2}\left(\Omega, R^{N}\right)\right), \tag{5.14}\\
& \frac{\partial}{\partial t}(\rho v) \in L^{2}\left(I, W^{-k, 2}\left(\Omega, R^{N}\right)\right) \tag{5.15}
\end{align*}
$$

such that (2.3), (2.10) are satisfied in the sense of distributions, (2.3) also almost everywhere, and (2.10) in the weak sense; i.e., (2.18) holds.

Proof of 5.5 and 5.11. We take $w^{k}(k=1,2, \ldots)$ from (3.4). We define P_{m} by (3.6). We get ρ_{m}, v^{m} as before. Of course (3.21) and Lemma 3.22 hold. Due to

$$
\begin{equation*}
\left\|v^{m}(t)\right\|_{\mathscr{Q}^{k-2}\left(\bar{\Omega}, R^{N}\right)} \leqslant k_{21}\left\|v^{m}(t)\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)} \tag{5.16}
\end{equation*}
$$

it follows from (3.13) that

$$
\begin{align*}
& \left(\min _{\bar{\Omega}} \rho_{0}(x)\right) \exp \left(-\int_{0}^{t} k_{21}\left\|v^{m}(\tau)\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)} d \tau\right) \leqslant \rho^{m}(t, x) \\
& \quad \leqslant\left(\max _{\bar{\Omega}} \rho_{0}(x)\right) \exp \left(+\int_{0}^{t} k_{21}\left\|v^{m}(\tau)\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)} d \tau\right) \tag{5.17}
\end{align*}
$$

Using (3.11), Lemma 3.22, (5.16), and the Gronwall lemma, we obtain

$$
\begin{equation*}
\max _{\varrho_{T}}\left|\frac{\partial^{s} x_{i}}{\partial y_{1}^{s^{1}} \cdots \partial y_{N}^{s_{N}^{N}}}(t, y)\right| \leqslant k_{22} \tag{5.18}
\end{equation*}
$$

where $0 \leqslant s \leqslant k-3, k_{22}>0$ and $\left(s^{1}, \ldots, s^{N}\right)$ is any multiindex such that $s=s^{1}+\cdots s^{N}$. Due to

$$
\begin{equation*}
\rho_{m}(t, x(t, y)) \operatorname{det}\left(\frac{\partial x_{i}}{\partial y_{j}}\right)=\rho_{0}(y) \tag{5.19}
\end{equation*}
$$

and also

$$
\begin{equation*}
\max _{\bar{Q}_{T}}\left|\frac{\partial^{s} y_{i}}{\partial x_{1}^{s^{1}} \cdots \partial x_{N}^{s^{N}}}(t, x)\right| \leqslant k_{23}, k_{23}>0, \quad s \leqslant k-3 \tag{5.20}
\end{equation*}
$$

It follows from (5.20) and (3.13) that

$$
\begin{equation*}
\left\|\rho_{m}\right\|_{\mathscr{C}_{\left(I, \mathscr{母}^{s}(\Omega)\right)}} \leqslant k_{24}, k_{24}>0 \tag{5.21}
\end{equation*}
$$

provided $s \leqslant k-3$. Now from (3.3) one gets

$$
\begin{equation*}
\left\|\frac{\partial \rho_{m}}{\partial t}\right\|_{L^{2}\left(I, \mathscr{C}^{s-1}(\Omega)\right)} \leqslant k_{25}, \quad k_{25}>0 \quad(s \leqslant k-3, k \geqslant 4) \tag{5.22}
\end{equation*}
$$

or

$$
\left\|\frac{\partial \rho_{m}}{\partial t}\right\|_{L^{2}\left(I, W^{-1,2}\left(\Omega, R^{N}\right)\right)} \leqslant k_{25} \quad \text { for } \quad k=3
$$

In any case, we can suppose $\rho_{m_{l}} \rightarrow \rho$ weakly in $L^{2}\left(Q_{T}\right)$ and $\rho_{m_{l}} \rightarrow \rho$ strongly in $L^{2}\left(I, W^{-1,2}(\Omega)\right)$. We have

$$
\begin{equation*}
\left\|\rho_{m} v^{m}\right\|_{L^{2}\left(Q_{T}, R^{N}\right)} \leqslant k_{26}, \quad k_{26}>0 \tag{5.23}
\end{equation*}
$$

therefore $\rho_{m} \nu^{m} \rightarrow \rho v$ weakly in $L^{2}\left(Q_{T}, R^{N}\right)$ at least for a chosen subsequence. It follows from (3.14) with $\bar{v}^{m}=v^{m}$

$$
\begin{equation*}
\left\|\frac{d}{d t} P_{m}^{*}\left(\rho_{m} v^{m}\right)\right\|_{L^{2}\left(I, V^{*}\right)} \leqslant k_{27}, \quad k_{27}>0 \tag{5.24}
\end{equation*}
$$

hence for a subsequence if necessary $P_{m}^{*}\left(\rho_{m} \nu^{m}\right) \rightarrow a$ strongly in $L^{2}\left(I, W^{-1,2}\left(\Omega, R^{N}\right)\right)$. But we have for every $\varepsilon>0\left\|P_{m} w-w\right\|_{L^{2}\left(\Omega, R^{N}\right)} \leqslant \varepsilon$ provided $w \in W_{0}^{1,2}\left(\Omega, R^{N}\right),\|w\|_{w_{1,2}^{1,\left(\Omega, R^{N}\right)}} \leqslant 1$, and m is large enough (see Lemma 4.12); so $\rho_{m} v^{m} \rightarrow a=\rho v$ strongly in $L^{2}\left(I, W^{-1.2}\left(\Omega, R^{N}\right)\right.$). We have the estimate

$$
\begin{equation*}
\left\|\rho_{m}\left|v^{m}\right|^{2}\right\|_{L^{2}\left(Q_{T}\right)} \leqslant k_{28}, \quad k_{28}>0 \tag{5.25}
\end{equation*}
$$

therefore $\rho_{m} v_{i}^{m} v_{j}^{m} \rightarrow \rho v_{i} v_{j}$ weakly in $L^{2}\left(Q_{T}\right)$ at least for a chosen subsequence. The other is obvious. The proof of Theorems 5.5 and 5.11 is finished.
5.26 Theorem. Let $k \geqslant 4$. Let the conditions of Theorem 5.5 be satisfied and further let $v_{0} \in V$. Then for the solution it holds

$$
\begin{gather*}
\int_{0}^{T} \int_{\Omega 2}\left|\frac{\partial v}{\partial t}\right|^{2} d x d t+\sup _{I}\|v(t)\|_{W^{k}, 2}^{2}\left(\Omega, R^{N}\right) \leqslant k_{29}, \quad k_{29}>0, \tag{5.27}\\
v \in L^{2}\left(I, W^{2 k, 2}\left(\Omega, R^{N}\right)\right) . \tag{5.28}
\end{gather*}
$$

Equation (2.10) is fulfilled a.e. in Q_{T}.
Proof. For $\bar{v}^{m}=v^{m}$, we use in (3.14) $\partial v^{m} / \partial t$ for the test function. Because of Lemma 3.22 and (5.17), $\int_{\Omega_{1}}\left|v^{m}\right|^{2} d x \leqslant k_{30}\left(k_{30}>0\right)$; hence using (5.12), Lemma 3.22, (5.16), and the Hölder and Young inequality, we get

$$
\begin{equation*}
\int_{0}^{T} \int_{\Omega}\left|\frac{\partial v^{m}}{\partial t}\right|^{2} d x d t+\sup _{I}\left\|v^{m}(t)\right\|_{W^{k, 2}\left(\Omega, R^{N}\right)}^{2} \leqslant k_{31}, \quad\left(k_{31}>0\right) . \tag{5.29}
\end{equation*}
$$

Now, (5.28) follows from the regularity to the elliptic systems $((v, w))=$ $\int_{\Omega} g_{i} w_{i} d x$, where $g \in L^{2}\left(\Omega, R^{N}\right)$ (see Eq. (6.1)).
5.30 Theorem. Let the conditions of Theorems 5.11 and 5.26 be satisfied. Then in the set of solutions satisfying Theorems 5.11 and 5.23 there exists at most one solution to the problem (2.3), (2.10).

Proof. Let $(\rho, v),(\bar{\rho}, \bar{v})$ be two solutions to the problem. Then for $(\xi, w)=(\rho-\bar{\rho}, v-\bar{v})$ it holds

$$
\begin{gather*}
\frac{\partial \xi}{\partial t}=-\xi \frac{\partial v_{j}}{\partial x_{j}}-\bar{\rho} \frac{\partial w_{j}}{\partial x_{j}}-\frac{\partial \xi}{\partial x_{j}} v_{j}-\frac{\partial \bar{\rho}}{\partial x_{j}} w_{j} \tag{5.31}\\
\int_{\Omega_{t}} \bar{\rho} \frac{\partial w_{i}}{\partial t} \varphi_{i} d x+((w, \varphi)) \\
=-\int_{\Omega_{t}}\left(\xi \frac{\partial v_{i}}{\partial t}+\xi v_{j} \frac{\partial v_{i}}{\partial x_{j}}+\bar{\rho} w_{j} \frac{\partial v_{i}}{\partial x_{j}}+\bar{\rho} \bar{v}_{j} \frac{\partial w_{i}}{\partial x_{j}}\right) \varphi_{i} d x \\
+\int_{\Omega_{t}} \xi \frac{\partial \varphi_{j}}{\delta x_{j}} d x+\int_{\Omega_{i}} \xi F_{i} \varphi_{i} d x \tag{5.32}
\end{gather*}
$$

for every $\varphi \in V$ a.e. in I.
We multiply (5.31) by ξ and integrate over Ω. After some computation we get the estimate

$$
\begin{equation*}
\frac{d}{d t}\left(\|\xi(t)\|_{L^{2}(\Omega)}\right)^{2} \leqslant a_{1}(t)\|\xi(t)\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}((w, w)) \tag{5.33}
\end{equation*}
$$

where $a_{1} \leqslant k_{32}\left\{((v, v))+\left(\|\bar{\rho}\|_{L^{\infty}(\Omega)}+\|\bar{\rho}\|_{W^{1^{1},(\Omega)}}\right)^{2}\right\}, k_{32}>0$; hence $a_{1} \in L^{1}(I)$.
We put $\varphi=w$ in (5.32). We get

$$
\begin{align*}
& \frac{d}{d t} \int_{\Omega_{i}} \frac{1}{2} \bar{\rho}|w|^{2} d x+((w(t), w(t))) \\
&=-\int_{\Omega_{i}}\left(\frac{\partial v_{i}}{\partial t} w_{i} \xi+\xi v_{j} w_{i} \frac{\partial v_{i}}{\partial x_{j}}+\bar{\rho} w_{i} w_{j} \frac{\partial v_{i}}{\partial x_{j}}+\bar{\rho} \bar{v}_{j} \frac{\partial w_{i}}{\partial x_{j}} w_{i}\right) d x \\
&+\int_{\Omega_{i}}\left(\xi \frac{\partial w_{j}}{\partial x_{j}}+\frac{1}{2} \frac{\partial \bar{\rho}}{\partial t}|w|^{2}\right) d x \quad \text { a.e. in } I . \tag{5.34}
\end{align*}
$$

Using Holder and Young inequalities, r.h.s. of (5.34) can be estimated by

$$
a_{2}(t)\left(\|w(t)\|_{L^{2}\left(\Omega, R^{N}\right)}^{2}+\|\xi(t)\|_{L^{2}(\Omega)}^{2}\right)+\frac{1}{2}((w(t), w(t))),
$$

where

$$
\begin{aligned}
a_{2} \leqslant & k_{33}\left\{\left(1+\left\|\frac{\partial v}{\partial t}\right\|_{L^{2}\left(\Omega, R^{v}\right)}+\|v\|_{W^{k, 2}\left(\Omega, R^{v}\right)}+\|\bar{v}\|_{W^{k, 2}\left(\Omega, R^{v}\right)}\right)^{2}\right. \\
& \left.\times\left(\|\bar{\rho}\|_{L^{\infty}(\Omega)}+\left\|\frac{\partial \bar{\rho}}{\partial t}\right\|_{L^{\infty}(\Omega)}+\|\bar{\rho}\|_{W^{1} \cdot 2(\Omega)}+1\right)^{2}\right\}, \quad k_{33}>0 .
\end{aligned}
$$

From (5.27), (5.12), (2.3) we have $\partial \bar{\rho} / \partial t \in L^{\infty}\left(Q_{T}\right)$; hence $a_{2} \in L^{1}(I)$. Due to (5.6)

$$
k_{34}\|w\|_{L^{2}\left(\Omega, R^{N}\right)}^{2} \leqslant \int_{\Omega} \bar{\rho}|w|^{2} d x \leqslant k_{35}\|w\|_{L^{2}\left(\Omega, R^{N}\right)}^{2} \quad\left(0<k_{34}<k_{35}\right) .
$$

Hence from (5.34)

$$
\begin{equation*}
\frac{d}{d t}\|w(t)\|_{L^{2}\left(\Omega, R^{v}\right)}^{2} \leqslant a_{2}(t)\left(\|w(t)\|_{L^{2}\left(\Omega, R^{v}\right)}^{2}+\|\xi(t)\|_{L^{2}(\Omega)}^{2}\right) . \tag{5.35}
\end{equation*}
$$

We add (5.33), (5.35), and apply the Gronwall lemma. Because of $\xi(0)=0$, $w(0)=0, \xi=0$, and $w=0$ a.e. in Q_{T}. The proof is finished.

VI. Appendix

For the construction of the basis for the Galerkin method we have used the following regularity property to the weak solution of the elliptic problem

$$
\begin{equation*}
u \in V, \quad f \in L^{2}\left(\Omega, R^{N}\right),((v, u))=\int_{\Omega} v_{i} f_{i} d x \quad \text { for every } v \in V \tag{6.1}
\end{equation*}
$$

6.2 Theorem. Let $u \in V$ be a solution to (6.1). Then $u \in W^{2 k, 2}\left(\Omega, R^{N}\right)$ and

$$
\begin{equation*}
\|u\|_{W^{2 L, 2}\left(\Omega, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(\Omega, R^{N}\right)}, \quad c>0 . \tag{6.3}
\end{equation*}
$$

The detailed proof can be constructed according to the procedure from J. Nečas [6]. We restrict ourselves to the case $\Omega=R_{+}^{N}=\left\{x \in R^{N}, x_{N}>0\right\}$ provided the solution $u \in W^{2 k, 2}\left(R_{+}^{N}, R^{N}\right)$. For exact proof one must use differences instead of derivatives. For general domain $\Omega \subset R^{N}$ one uses in the usual way the partition of unity to replace the original problem by the problem in R_{+}^{N}.
Idea of the proof. We proceed by induction. Let us suppose that for $2 k-1 \geqslant l \geqslant k$ we have

$$
\begin{equation*}
\|u\|_{\boldsymbol{W}^{\prime 2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} . \tag{6.4}
\end{equation*}
$$

First, let $v \in V \cap W^{k+1,2}\left(R_{+}^{N}, R^{N}\right)$. Then $\partial v / \partial x_{j} \in V, j=1,2, \ldots, N-1$. So from (6.1) it follows that

$$
\begin{equation*}
-\left(\left(v, \frac{\partial u}{\partial x_{j}}\right)\right)=\int_{R^{N}} \frac{\partial v_{i}}{\partial x_{j}} f_{i} d x \tag{6.5}
\end{equation*}
$$

Especially for $v=\partial u / \partial x_{j}$

$$
\begin{equation*}
\left(\left(\frac{\partial u}{\partial x_{j}}, \frac{\partial u}{\partial x_{j}}\right)\right)=\int_{R_{+}^{N}} \frac{\partial}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{j}} f_{i} d x \tag{6.6}
\end{equation*}
$$

hence

$$
\begin{equation*}
\left\|\frac{\partial u}{\partial x_{j}}\right\|_{W^{k, 2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} \tag{6.7}
\end{equation*}
$$

Let $\varphi \in \mathscr{D}\left(R_{+}^{N}, R^{N}\right)$. We have

$$
\begin{equation*}
-\left(\left(\varphi, \frac{\partial u}{\partial x_{N}}\right)\right)=\int_{R_{+}^{N}} \frac{\partial \varphi_{i}}{\partial x_{N}} f_{i} d x \tag{6.8}
\end{equation*}
$$

Put $(0, \ldots, 0, \psi, 0, \ldots, 0)$, where ψ is on the j-th position in the vector; of course $\psi \in \mathscr{D}\left(R_{+}^{N}\right)$. So by the theorem about negative norms [6], we obtain

$$
\begin{equation*}
\|A_{i j}^{k} \underbrace{N \cdots N}_{k \text {-imes }} \underbrace{N \cdots N}_{k \text {-imes }} \frac{\partial^{k+1} u_{i}}{\partial x_{N}^{k+1}}\|_{L^{2}\left(R_{+}^{N}\right)} \leqslant c \quad(j=1,2, \ldots, N) . \tag{6.9}
\end{equation*}
$$

Therefore in virtue of (5.4),

$$
\operatorname{det}(A_{i j}^{k} \underbrace{N \cdots N}_{k-\text { times }} \underbrace{N \cdots N}_{k \text {-imes }}) \neq 0
$$

and we have

$$
\begin{equation*}
\|u\|_{W^{k+1,2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} \tag{6.10}
\end{equation*}
$$

Let $\partial^{l+1-k} / \partial x_{i_{1}} \cdots \partial x_{i_{+1-k}}$ be some derivative for $i_{1}, \ldots, i_{l+1-k} \leqslant N-1$. Then we have as before

$$
\begin{align*}
& \left(\left(\frac{\partial^{l+1-k} u}{\partial x_{i_{1}} \cdots \partial x_{i_{+1-k}}}, \frac{\partial^{l+1-k} u}{\partial x_{i_{1}} \cdots \partial x_{i_{+1-k}}}\right)\right) \\
& \quad=(-1)^{l+1} \int_{R_{+}^{N}} \frac{\partial^{2(l+1-k)} u_{i}}{\partial x_{i_{1}}^{2} \cdots \partial x_{\partial x_{i+1}}^{2}} f_{i} d x \tag{6.11}
\end{align*}
$$

Hence

$$
\left\|\frac{\partial^{l+1-k} u}{\partial x_{i_{1}} \cdots \partial x_{i_{+1}-k}}\right\|_{W^{k, 2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{I^{2}\left(R_{+}^{N}, R^{N}\right)}
$$

Let

$$
\frac{\partial^{l+1-k}}{\partial x_{N} \partial x_{i_{1}} \cdots \partial x_{i_{l-k}}} \quad \text { with } \quad i_{s} \leqslant N-1(s=1, \ldots, l-k) .
$$

Then we get from (6.1) for $\varphi \in \mathscr{D}\left(R_{+}^{N}, R^{N}\right)$

$$
\left(\left(\frac{\partial^{l+1-k} u}{\partial x_{N} \partial x_{i_{1}} \cdots \partial x_{i_{--k}}}, \varphi\right)\right)=(-1)^{I+1} \int_{R_{+}^{N}} \frac{\partial^{l+1-k} \varphi_{i}}{\partial x_{N} \partial x_{i_{1}} \cdots \partial x_{i_{-k}}} f_{i} d x
$$

So we get as before

$$
\|A_{i j}^{k} \underbrace{N \ldots N}_{k \text {-times }} \underbrace{N \ldots N}_{k \text {-times }} \frac{\partial^{i+1} u_{i}}{\partial x_{N}^{k+1} \partial x_{i_{1}} \cdots \partial x_{i_{-k}}}\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)}
$$

hence

$$
\begin{equation*}
\left\|\frac{\partial^{l+1} u}{\partial x_{i_{1}} \cdots \partial x_{i_{1 / k}} \partial x_{N}^{k+1}}\right\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} \tag{6.12}
\end{equation*}
$$

The next step is to consider $\partial^{l+1} / \partial x_{i_{1}} \cdots \partial x_{i_{1-k-1}} \partial x_{N}^{k+2}$. By the same reasoning we get

$$
\left\|\frac{\partial^{l+1} u}{\partial x_{i_{1}} \cdots \partial x_{i_{-k-1}} \partial x_{N}^{k+2}}\right\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)} \leqslant c\|f\|_{L^{2}\left(R_{+}^{N}, R^{N}\right)}
$$

References

1. M. Feistaler, J. Neट̌as, and V. Švirák, On the weak compactness of the equations of compressible flow, Appl. Anal. 34 (1989).
2. C. Foias, G. R. Sell, and R. Temam, Inertial manifolds for nonlinear evolution equations, preprint series No. 234, Inst. Math. Appl., Univ. Minnesota, 1986.
3. A. Kufner, O. John, and S. Fučí, "Functional Spaces," Academia, Prague, 1977.
4. J. L. Lions and E. Magenes, "Problèmes aux limites non-homogènes et application," Dunod, Paris, 1968.
5. J. L. LIons, "Quelques méthodes de résolution des problèmes aux limites non-linéaires," Dunod, Paris, 1969.
6. J. Nectas, "Les méthodes directes en la theorie des équations elliptiques," Academia, Prague, 1967.
7. J. Nečas and I. Hlaváček, "Introduction to the Theory of Elastic and Elastoplastic Bodies," SNTL, Prague, 1983. [in Czech]
8. J. Neट̌as and M. Sllhavý, Viscous multipolar fluids, to appear.
9. J. Neustupa and A. Novotný, Global weak solvability to the regularized viscous heat conductive flow, to appear.
10. M. Padula, Existence of global solutions for 2 -dimensional viscous compressible flow, J. Funct. Anal. 69 (1986).
11. M. Padula, Erratum, J. Funct. Anal. 76 (1988), and 77 (1988).
