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Abstract

We define the coarse Ricci curvature of metric spaces in terms of how much small balls are closer
(in Wasserstein transportation distance) than their centers are. This definition naturally extends to any
Markov chain on a metric space. For a Riemannian manifold this gives back, after scaling, the value of Ricci
curvature of a tangent vector. Examples of positively curved spaces for this definition include the discrete
cube and discrete versions of the Ornstein–Uhlenbeck process. Moreover this generalization is consistent
with the Bakry–Émery Ricci curvature for Brownian motion with a drift on a Riemannian manifold.

Positive Ricci curvature is shown to imply a spectral gap, a Lévy–Gromov–like Gaussian concentration
theorem and a kind of modified logarithmic Sobolev inequality. The bounds obtained are sharp in a variety
of examples.
© 2008 Elsevier Inc. All rights reserved.
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0. Introduction

In Riemannian geometry, positively curved spaces in the sense of Ricci curvature enjoy nu-
merous properties, some of them with very natural probabilistic interpretations. A basic result
involving positive Ricci curvature is the Bonnet–Myers theorem bounding the diameter of the
space via curvature; let us also mention Lichnerowicz’s theorem for the spectral gap of the
Laplacian (Theorem 181 in [7]), hence a control on mixing properties of Brownian motion;
and the Lévy–Gromov theorem for isoperimetric inequalities and concentration of measure [27].
The scope of these theorems has been noticeably extended by Bakry–Émery theory [5,6], which
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highlights the analytic and probabilistic significance of Ricci curvature; in particular, they show
that in positive Ricci curvature, a logarithmic Sobolev inequality holds. We refer to the nice sur-
vey [30] and the references therein for a discussion of the geometric interest of lower bounds
on Ricci curvature and the need for a generalized notion of positive Ricci curvature for metric
measure spaces.

Here we define a notion of Ricci curvature which makes sense for a metric space equipped
with a Markov chain (or with a measure), and allows to extend the results above. Namely, we
compare the transportation distance between the measures issuing from two given points to the
distance between these points (Definition 3), so that Ricci curvature is positive if and only if
the random walk operator is contracting on the space of probability measures equipped with
this transportation distance (Proposition 20). Thus, the techniques presented here are a metric
version of the usual coupling method; namely, Ricci curvature appears as a refined version of
Dobrushin’s classical ergodic coefficient ([16,17], or e.g. Section 6.7.1 in [9]) using the metric
structure of the underlying space.

Our definition is very easy to implement on concrete examples. Especially, in ε-geodesic
spaces, positive curvature is a local property (Proposition 19), as can be expected of a notion of
curvature. As a result, we can test our notion in discrete spaces such as graphs. An example is
the discrete cube {0,1}N , which from the point of view of concentration of measure or convex
geometry [29,35] behaves very much like the sphere SN , and is thus expected to somehow have
positive curvature.

Our notion enjoys the following properties: when applied to a Riemannian manifold equipped
with (a discrete-time approximation of) Brownian motion, it gives back the usual value of the
Ricci curvature of a tangent vector. It is consistent with the Bakry–Émery extension, and pro-
vides a visual explanation for the curvature contribution −∇symb of the drift term b in this theory.
We are able to prove generalizations of the Bonnet–Myers theorem, of the Lichnerowicz spectral
gap theorem and of the Lévy–Gromov isoperimetry theorem, as well as a kind of modified loga-
rithmic Sobolev inequality. As a by-product, we get a new proof for Gaussian concentration and
the logarithmic Sobolev inequality in the Lévy–Gromov or Bakry–Émery context (although with
some loss in the numerical constants). We refer to Section 1.3 for an overview of the results.

Some of the results of this text have been announced in a short note [40].

Historical remarks and related work. In the respective context of Riemannian manifolds or
of discrete Markov chains, our techniques reduce, respectively, to Bakry–Émery theory or to a
metric version of the coupling method. As far as I know, it had not been observed that these can
actually be viewed as the same phenomenon.

From the discrete Markov chain point of view, the techniques presented here are just a ver-
sion of the usual coupling method using the metric structure of the underlying space. Usually
the coupling method involves total variation distance (see e.g. Section 6.7.1 in [9]), which can
be seen as a transportation distance with respect to the trivial metric. The coupling method
is especially powerful in product or product-like spaces, such as spin systems. The work of
Marton [32,33] emphasized the relationship between couplings and concentration of measure in
product-like situations, so it is not surprising that we are able to get the same kind of results. The
relationship between couplings and spectral gap is thoroughly explored in the works of Chen
(e.g. [11,13,14]).

The contraction property of Markov chains in transportation distance seems to make its ap-
pearance in Dobrushin’s paper [18] (in which the current wide interest in transportation distances
originates), and is implicit in the widely used “Dobrushin criterion” for spin systems [18,20].
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It later appears sporadically in the literature, as in Chen and Wang [14] (Theorem 1.9, as a tool
for spectral gap estimates, using the coupling by reflection); at the very end of Dobrushin’s notes
[19] (Dobrushin’s study of the topic was stopped by his death); in Bubley and Dyer [4] for the
particular case of product spaces, after Dobrushin; in the second edition of [12, Section 5.3]; in
Djellout, Guillin and Wu [15] in the context of dependent sequences of random variables to get
Gaussian concentration results; in lecture notes by Peres [42] and in [44, p. 94]. See also the
related work mentioned below. However, the theorems exposed in our work are new.

From the Riemannian point of view, our approach boils down to contraction of the Lipschitz
norm by the heat equation, which is one of the results of Bakry and Émery ([5,6], see also [1]
and [43]). This latter property was suggested in [43] as a possible definition of a lower bound on
Ricci curvature for diffusion operators in general spaces, though it does not provide an explicit
value for Ricci curvature at a given point.

Another notion of lower bound on Ricci curvature, valid for length spaces equipped with a
measure, has been simultaneously introduced by Sturm [46], Lott and Villani [31], and Ohta [37]
(see also [43] and [41]). It relies on ideas from optimal transportation theory and analysis of paths
in the space of probability measures. Their definition keeps a lot of the properties traditionally
associated with positive Ricci curvature, and is compatible with the Bakry–Émery extension.
However, it has two main drawbacks. First, the definition is rather involved and difficult to check
on concrete examples. Second, it is infinitesimal, and difficult to adapt to discrete settings [10].

Related work. After having written a first version of this text, we learned that related ideas
appear in some recent papers. Joulin [28] uses contraction of the Lipschitz constant (under the
name “Wasserstein curvature”) to get a Poisson-type concentration result for continuous-time
Markov chains on a countable space, at least in the bounded, one-dimensional case. Oliveira [38]
considers Kac’s random walk on SO(n); in our language, his result is that this random walk has
positive coarse Ricci curvature, which allows him to improve mixing time estimates significantly.

Notation. We use the symbol ≈ to denote equality up to a multiplicative universal constant
(typically 2 or 4); the symbol ∼ denotes usual asymptotic equivalence. The word “distribution”
is used as a synonym for “probability measure”.

Here for simplicity we will mainly consider discrete-time processes. Similar definitions and
results can be given for continuous time (see e.g. Section 3.3.4).

1. Definitions and statements

1.1. Coarse Ricci curvature

In Riemannian geometry, positive Ricci curvature is characterized [43] by the fact that “small
spheres are closer (in transportation distance) than their centers are.” More precisely, consider
two very close points x, y in a Riemannian manifold, defining a tangent vector (xy). Let w be
another tangent vector at x; let w′ be the tangent vector at y obtained by parallel transport of
w from x to y. Now if we follow the two geodesics issuing from x,w and y,w′, in positive
curvature the geodesics will get closer, and will part away in negative curvature. Ricci curvature
along (xy) is this phenomenon, averaged on all directions w at x. If we think of a direction w

at x as a point on a small sphere Sx centered at x, this shows that, on average, Ricci curvature
controls whether the distance between a point of Sx and the corresponding point of Sy is smaller
or larger than the distance d(x, y).
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In a more general context, we will use a probability measure mx depending on x as an ana-
logue for the sphere (or ball) Sx centered at x.

Definition 1. Let (X,d) be a Polish metric space, equipped with its Borel σ -algebra.
A random walk m on X is a family of probability measures mx(·) on X for each x ∈ X,

satisfying the following two technical assumptions: (i) the measure mx depends measurably on
the point x ∈ X; (ii) each measure mx has finite first moment, i.e. for some (hence any) o ∈ X,
for any x ∈ X one has

∫
d(o, y)dmx(y) < ∞.

Instead of “corresponding points” between two close spheres Sx and Sy , we will use trans-
portation distances between measures. We refer to [47] for an introduction to the topic. This
distance is usually associated with the names of Kantorovich, Rubinstein, Wasserstein, Ornstein,
Monge, and others (see [36] for a historical account); we stick to the simpler and more descriptive
“transportation distance.”

Definition 2. Let (X,d) be a metric space and let ν1, ν2 be two probability measures on X. The
L1 transportation distance between ν1 and ν2 is

W1(ν1, ν2) := inf
ξ∈Π(ν1,ν2)

∫
(x,y)∈X×X

d(x, y)dξ(x, y)

where Π(ν1, ν2) is the set of measures on X × X projecting to ν1 and ν2.

Intuitively, dξ(x, y) represents the mass that travels from x to y, hence the constraint on the
projections of ξ , ensuring that the initial measure is ν1 and the final measure is ν2. The infimum
is actually attained (Theorem 1.3 in [47]), but the optimal coupling is generally not unique. In
what follows, it is enough to choose one such coupling.

The data (mx)x∈X allow to define a notion of curvature as follows: as in the Riemannian case,
we will ask whether the measures mx and my are closer or further apart than the points x and y

are, in which case Ricci curvature will be, respectively, positive or negative.

Definition 3 (Coarse Ricci curvature). Let (X,d) be a metric space with a random walk m. Let
x, y ∈ X be two distinct points. The coarse Ricci curvature of (X,d,m) along (xy) is

κ(x, y) := 1 − W1(mx,my)

d(x, y)
.
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We will see below (Proposition 19) that in geodesic spaces, it is enough to know κ(x, y) for
close points x, y.

Geometers will think of mx as a replacement for the notion of ball around x. Probabilists will
rather think of this data as defining a Markov chain whose transition probability from x to y in n

steps is

dm∗n
x (y) :=

∫
z∈X

dm∗(n−1)
x (z)dmz(y)

where of course m∗1
x := mx . Recall that a measure ν on X is invariant for this random

walk if dν(x) = ∫
y

dν(y)dmy(x). It is reversible if moreover, the detailed balance condi-
tion dν(x)dmx(y) = dν(y)dmy(x) holds.

Other generalizations of Ricci curvature start with a metric measure space [31,46]. Here, as
in Bakry–Émery theory, the measure appears as the invariant distribution of some process on the
space (e.g. Brownian motion on a Riemannian manifold), which can be chosen in any convenient
way. The following remark produces a random walk from a metric measure space, and allows to
define the “Ricci curvature at scale ε” for any metric space.

Example 4 (ε-step random walk). Let (X,d,μ) be a metric measure space, and assume that
balls in X have finite measure and that Suppμ = X. Choose some ε > 0. The ε-step random
walk on X, starting at a point x, consists in randomly jumping in the ball of radius ε around x,
with probability proportional to μ; namely, mx = μ|B(x,ε)/μ(B(x, ε)). (One can also use other
functions of the distance, such as Gaussian kernels.)

As explained above, when (X,d) is a Riemannian manifold and mx is the ε-step random walk
with small ε, for close enough x, y this definition captures the Ricci curvature in the direction xy

(up to some scaling factor depending on ε, see Example 7). In general there is no need for ε to
be small: for example if X is a graph, ε = 1 is a natural choice.

If a continuous-time Markov kernel is given, one can also define a continuous-time version of
coarse Ricci curvature by setting

κ(x, y) := − d

dt

W1(m
t
x,m

t
y)

d(x, y)

when this derivative exists (or take a lim inf), but for simplicity we will mainly work with the
discrete-time version here. Indeed, for continuous-time Markov chains, existence of the process
is already a non-trivial issue, even in the case of jump processes [12]. We will sometimes use our
results on concrete continuous-time examples (e.g. M/M/∞ queues in Section 3.3.4), but only
when they appear as an obvious limit of a discrete-time approximation.

One could use the Lp transportation distance instead of the L1 one in the definition; however,
this will make positive curvature a stronger assumption, and is never needed in our theorems.

Notation. In analogy with the Riemannian case, when computing the transportation distance
between measures mx and my , we will think of X × X equipped with the coupling measure as a
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tangent space, and for z ∈ X × X we will write x + z and y + z for the two projections to X. So
in this notation we have

κ(x, y) = 1

d(x, y)

∫ (
d(x, y) − d(x + z, y + z)

)
dz

where implicitly dz is the optimal coupling between mx and my .

1.2. Examples

Example 5 (ZN and R
N ). Let m be the simple random walk on the graph of the grid Z

N equipped
with its graph metric. Then for any two points x, y ∈ Z

d , the coarse Ricci curvature along (xy)

is 0.

Indeed, we can transport the measure mx around x to the measure my by a translation of vector
y − x (and this is optimal), so that the distance between mx and my is exactly that between x

and y.
This example generalizes to the case of Z

N or R
N equipped with any distance and random

walk which are translation-invariant (consistently with [31]). For example, the triangular tiling
of the plane has 0 curvature.

We now justify the terminology by showing that, in the case of the ε-step random walk on a
Riemannian manifold, we get back the usual Ricci curvature (up to some scaling factor).

Proposition 6. Let (X,d) be a smooth complete Riemannian manifold. Let v,w be unit tangent
vectors at x ∈ X. Let ε, δ > 0. Let y = expx δv and let w′ be the tangent vector at y obtained by
parallel transport of w along the geodesic expx tv. Then

d(expx εw, expy εw′) = δ

(
1 − ε2

2
K(v,w) + O

(
ε3 + ε2δ

))

as (ε, δ) → 0. Here K(v,w) is the sectional curvature in the tangent plane (v,w).

Example 7 (Riemannian manifold). Let (X,d) be a smooth complete N -dimensional Rieman-
nian manifold. For some ε > 0, let the Markov chain mε be defined by

dmε
x(y) := 1

vol(B(x, ε))
d vol(y)

if y ∈ B(x, ε), and 0 otherwise.
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Let x ∈ X and let v be a unit tangent vector at x. Let y be a point on the geodesic issuing
from v, with d(x, y) small enough. Then

κ(x, y) = ε2 Ric(v, v)

2(N + 2)
+ O

(
ε3 + ε2d(x, y)

)
.

The proof is postponed to Section 8; it is a refinement of Theorem 1.5 (condition (xii)) in [43],
except that therein, the infimum of Ricci curvature is used instead of its value along a tangent
vector. Basically, the value of κ(x, y) is obtained by averaging Proposition 6 for w in the unit
ball of the tangent space at x, which provides an upper bound for κ . The lower bound requires
use of the dual characterization of transportation distance (Theorem 1.14 in [47]).

Example 8 (Discrete cube). Let X = {0,1}N be the discrete cube equipped with the Hamming
metric (each edge is of length 1). Let m be the lazy random walk on the graph X, i.e. mx(x) = 1/2
and mx(y) = 1/2N if y is a neighbor of x.

Let x, y ∈ X be neighbors. Then κ(x, y) = 1/N .

This examples generalizes to arbitrary binomial distributions (see Section 3.3.3).
Here laziness is necessary to avoid parity problems: if no laziness is introduced, points at odd

distance never meet under the random walk; in this case one would have to consider coarse Ricci
curvature for points at even distance only.

Actually, since the discrete cube is a 1-geodesic space, one has κ(x, y) � 1/N for any pair
x, y ∈ X, not only neighbors (see Proposition 19).

Proof. We can suppose that x = 00 . . .0 and y = 10 . . .0. For z ∈ X and 1 � i � N , let us denote
by zi the neighbor of z in which the ith bit is switched. An optimal coupling between mx and
my is as follows: for i � 2, move xi to yi (both have mass 1/2N under mx and my respectively).
Now mx(x) = 1/2 and my(x) = 1/2N , and likewise for y. So it is enough to move a mass
1/2 − 1/2N from x to y. All points are moved over a distance 1 by this coupling, except for a
mass 1/2N which remains at x and a mass 1/2N which remains at y, and so the coarse Ricci
curvature is at least 1/N .

Optimality of this coupling is obtained as follows: consider the function f : X → {0,1} which
sends a point of X to its first bit. This is a 1-Lipschitz function, with f (x) = 0 and f (y) = 1.
The expectations of f under mx and my are 1/2N and 1 − 1/2N respectively, so that 1 − 1/N

is a lower bound on W1(mx,my).
A very short but less visual proof can be obtained with the L1 tensorization property (Propo-

sition 27). �
Example 9 (Ornstein–Uhlenbeck process). Let s � 0, α > 0 and consider the Ornstein–
Uhlenbeck process in R

N given by the stochastic differential equation

dXt = −αXt dt + s dBt

where Bt is a standard N -dimensional Brownian motion. The invariant distribution is Gaussian,
of variance s2/2α.
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Let δt > 0 and let the random walk m be the flow at time δt of the process. Explicitly, mx is
a Gaussian probability measure centered at e−αδtx, of variance s2(1 − e−2αδt )/2α ∼ s2δt for
small δt .

Then the coarse Ricci curvature κ(x, y) of this random walk is 1 − e−αδt , for any two
x, y ∈ R

N .

Proof. The transportation distance between two Gaussian distributions with the same variance

is the distance between their centers, so that κ(x, y) = 1 − |e−αδt x−e−αδt y|
|x−y| . �

Example 10 (Discrete Ornstein–Uhlenbeck). Let X = {−N,−N + 1, . . . ,N − 1,N} and let m

be the random walk on X given by

mk(k) = 1/2, mk(k + 1) = 1/4 − k/4N, mk(k − 1) = 1/4 + k/4N

which is a lazy random walk with linear drift towards 0. The binomial distribution 1
22N

( 2N
N+k

)
is

reversible for this random walk.
Then, for any two neighbors x, y in X, one has κ(x, y) = 1/2N .

Proof. Exercise. �
Example 11 (Bakry–Émery). Let X be an N -dimensional Riemannian manifold and F be a
tangent vector field. Consider the differential operator

L := 1

2

 + F.∇

associated with the stochastic differential equation

dXt = F dt + dBt

where Bt is the Brownian motion in X. The Ricci curvature (in the Bakry–Émery sense) of this
operator is 1

2 Ric−∇symF where ∇symF ij := 1
2 (∇ iF j + ∇jF i) is the symmetrized of ∇F .

Consider the Euler approximation scheme at time δt for this stochastic equation, which con-
sists in following the flow of F for a time δt and then randomly jumping in a ball of radius√

(N + 2)δt .
Let x ∈ X and let v be a unit tangent vector at x. Let y be a point on the geodesic issuing

from v, with d(x, y) small enough. Then

κ(x, y) = δt

(
1

2
Ric(v, v) − ∇symF(v, v) + O

(
d(x, y)

) + O(
√

δt)

)
.
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Proof. First let us explain the normalization: jumping in a ball of radius ε generates a variance
ε2 1

N+2 in a given direction. On the other hand, the N -dimensional Brownian motion has, by
definition, a variance dt per unit of time dt in a given direction, so a proper discretization of
Brownian motion at time δt requires jumping in a ball of radius ε = √

(N + 2)δt . Also, as noted
in [6], the generator of Brownian motion is 1

2
 instead of 
, hence the 1
2 factor for the Ricci

part.
Now the discrete-time process begins by following the flow F for some time δt . Starting

at points x and y, using elementary Euclidean geometry, it is easy to see that after this, the
distance between the endpoints behaves like d(x, y)(1+δt v.∇vF +O(δt2)). Note that v.∇vF =
∇symF(v, v).

Now, just as in Example 7, randomly jumping in a ball of radius ε results in a gain of

d(x, y) ε2

2(N+2)
Ric(v, v) on transportation distances. Here ε2 = (N + 2)δt . So after the two steps

of the process, the distance between the endpoints is

d(x, y)

(
1 − δt

2
Ric(v, v) + δt ∇symF(v, v)

)

as needed, up to higher-order terms. �
Maybe the reason for the additional −∇symF in Ricci curvature à la Bakry–Émery is made

clearer in this context: it is simply the quantity by which the flow of X modifies distances between
two starting points.

It is clear on this example why reversibility is not fundamental in this theory: the antisym-
metric part of the force F generates an infinitesimal isometric displacement. With our definition,
combining the Markov chain with an isometry of the space has no effect whatsoever on curvature.

Example 12 (Multinomial distribution). Consider the set X = {(x0, x1, . . . , xd), xi ∈ N,∑
xi = N} viewed as the configuration set of N balls in d + 1 boxes. Consider the process

which consists in taking a ball at random among the N balls, removing it from its box, and
putting it back at random in one of the d + 1 boxes. More precisely, the transition probability
from (x0, . . . , xd) to (x0, . . . , xi − 1, . . . , xj + 1, . . . , xd) (with maybe i = j ) is xi/N(d + 1).
The multinomial distribution N !

N
∏ is reversible for this Markov chain.
(d+1) xi !
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Equip this configuration space with the metric d((xi), (x
′
i )) := 1

2

∑ |xi − x′
i | which is the

graph distance w.r.t. the moves above. The coarse Ricci curvature of this Markov chain is 1/N .

Proof. Exercise (see also the discussion after Proposition 27). �
Example 13 (Geometric distribution). Let the random walk on N be defined by the transition
probabilities pn,n+1 = 1/3, pn+1,n = 2/3 and p0,0 = 2/3. This random walk is reversible with
respect to the geometric distribution 2−(n+1). Then for n � 1 one has κ(n,n + 1) = 0.

Proof. The transition kernel is translation-invariant except at 0. �
Section 5 contains more material about this latter example and how non-negative coarse Ricci

curvature sometimes implies exponential concentration.

Example 14 (Geometric distribution, 2). Let the random walk on N be defined by the transi-
tion probabilities pn,0 = α and pn,n+1 = 1 − α for some 0 < α < 1. The geometric distribution
α(1 − α)n is invariant (but not reversible) for this random walk. The coarse Ricci curvature of
this random walk is α.

Proof. Exercise. �
Example 15 (δ-hyperbolic groups). Let X be the Cayley graph of a non-elementary δ-hyperbolic
group with respect to some finite generating set. Let k be a large enough integer (depending on
the group) and consider the random walk on X which consists in performing k steps of the simple
random walk. Let x, y ∈ X. Then κ(x, y) = −2k/d(x, y) (1 + o(1)) when d(x, y) and k tend to
infinity.

Note that −2k/d(x, y) is the smallest possible value for κ(x, y), knowing that the steps of the
random walk are bounded by k.

Proof. For z in the ball of radius k around x, and z′ in the ball of radius k around y, elementary
δ-hyperbolic geometry yields d(z, z′) = d(x, y) + d(x, z) + d(y, z′) − (y, z)x − (x, z′)y up to
some multiple of δ, where (·,·) denotes the Gromov product with respect to some basepoint [24].
Since this decomposes as the sum of a term depending on z only and a term depending on z′
only, to compute the transportation distance it is enough to know the expectation of (y, z)x for
z in the ball around x, and likewise for (x, z′)y . Using that balls have exponential growth, it is
not difficult (see Proposition 21 in [39]) to see that the expectation of (y, z)x is bounded by a
constant, whatever k, hence the conclusion.

The same argument applies to trees or discrete δ-hyperbolic spaces with a uniform lower
bound on the exponential growth rate of balls. �
Example 16 (Kac’s random walk on orthogonal matrices, after [38]). Consider the following
random walk on the set of N × N orthogonal matrices: at each step, a pair of indices 1 � i <

j � N is selected at random, an angle θ ∈ [0;2π) is picked at random, and a rotation of angle θ

is performed in the coordinate plane i, j . Equip SO(N) with the Riemannian metric induced by
the Hilbert–Schmidt inner product Tr(a∗b) on its tangent space. It is proven in a preprint by
Oliveira [38] that this random walk has coarse Ricci curvature 1 − √

1 − 2/N(N − 1) ∼ 1/N2.
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This is consistent with the fact that SO(N) has, as a Riemannian manifold, a positive Ricci
curvature in the usual sense. However, from the computational point of view, Kac’s random walk
above is much nicer than either the Brownian motion or the ε-step random walk of Example 7.
Oliveira uses his result to prove a new estimate O(N2 lnN) for the mixing time of this ran-
dom walk, neatly improving on previous estimates O(N4 lnN) by Diaconis–Saloff-Coste and
O(N2.5 lnN) by Pak–Sidenko; Ω(N2) is an easy lower bound, see [38].

Example 17 (Glauber dynamics for the Ising model). Let G be a finite graph. Consider the
configuration space X := {−1,1}G together with the energy function

U(S) := −
∑

x∼y∈G

S(x)S(y) − h
∑
x

S(x) for S ∈ X,

where h ∈ R is the external magnetic field. For some β � 0, equip X with the Gibbs distribu-
tion μ := e−βU/Z where as usual Z := ∑

S e−βU(S). The distance between two states is defined
as the number of vertices of G at which their values differ.

For S ∈ X and x ∈ G, denote by Sx+ and Sx− the states obtained from S by setting
Sx+(x) = +1 and Sx−(x) = −1, respectively. Consider the following random walk on X (known
as the Glauber dynamics): at each step, a vertex x ∈ G is chosen at random, and a new value for
S(x) is picked according to local equilibrium, i.e. S(x) is set to 1 or −1 with probabilities pro-
portional to e−βU(Sx+) and e−βU(Sx−) respectively (note that only the neighbors of x influence
the ratio of these probabilities). The Gibbs distribution is reversible for this Markov chain.

Then the coarse Ricci curvature of this Markov chain is at least

1

|G|
(

1 − vmax
eβ − e−β

eβ + e−β

)

where vmax is the maximal valency of a vertex of G. In particular, if

β <
1

2
ln

(
vmax + 1

vmax − 1

)

then curvature is positive. Consequently, the critical β is at least this quantity.

This estimate for the critical temperature coincides with the one derived in [26]. Actually,
our argument generalizes to different settings (such as non-constant/negative values of the cou-
pling Jxy between spins, or continuous spin spaces), and the positive curvature condition for the
Glauber dynamics exactly amounts to the well-known one-site Dobrushin criterion [18] (or to
G(β) < 1 in the notation of [26, Eq. (19]). By comparison, the exact value of the critical β for
the Ising model on the regular infinite tree of valency v is 1

2 ln( v
v−2 ), which shows asymptotic

optimality of this criterion. When block dynamics (see [34]) are used instead of single-site up-
dates, positive coarse Ricci curvature of the block dynamics Markov chain is equivalent to the
Dobrushin–Shlosman criterion [20].

As shown in the rest of this paper, positive curvature implies several properties, especially,
exponential convergence to equilibrium, concentration inequalities and a modified logarithmic
Sobolev inequality. For the Glauber dynamics, the constants we get in these inequalities are es-
sentially the same as in the infinite-temperature (independent) case, up to some factor depending
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on temperature which diverges when positive curvature ceases to hold. This is more or less equiv-
alent to the main results of the literature under the Dobrushin–Shlosman criterion (see e.g. the
review [34]). Note however that in our setting we do not need the underlying graph to be Z

N .

Proof. Using Proposition 19, it is enough to bound coarse Ricci curvature for pairs of states at
distance 1. Let S, S′ be two states differing only at x ∈ G. We can suppose that S(x) = −1 and
S′(x) = 1. Let mS and mS′ be the law of the step of the random walk issuing from S and S′
respectively. We have to prove that the transportation distance between mS and mS′ is at most
1 − 1

|G| (1 − vmax
eβ−e−β

eβ+e−β ).

The measure mS decomposes as mS = 1
|G|

∑
y∈G m

y
S , according to the vertex y ∈ G which is

modified by the random walk, and likewise for mS′ . To evaluate the transportation distance, we
will compare m

y
S to m

y

S′ .
If the step of the random walk consists in modifying the value of S at x (which occurs with

probability 1
|G| ), then the resulting state has the same law for S and S′, i.e. mx

S = mx
S′ . Thus in

this case the transportation distance is 0 and the contribution to coarse Ricci curvature is 1 × 1
|G| .

If the step consists in modifying the value of S at some point y in G not adjacent to x, then
the value at x does not influence local equilibrium at y, and so m

y
S and m

y

S′ are identical except
at x. So in this case the distance is 1 and the contribution to coarse Ricci curvature is 0.

Now if the step consists in modifying the value of S at some point y ∈ G adjacent to x (which
occurs with probability vx/|G| where vx is the valency of x), then the value at x does influence
the law of the new value at y, by some amount which we now evaluate. The final distance between
the two laws will be this amount plus 1 (1 accounts for the difference at x), and the contribution
to coarse Ricci curvature will be negative.

Let us now evaluate this amount more precisely. Let y ∈ G be adjacent to x. Set a =
e−βU(Sy+)/e−βU(Sy−). The step of the random walk consists in setting S(y) to 1 with proba-

bility a
a+1 , and to −1 with probability 1

a+1 . Setting likewise a′ = e−βU(S′
y+)/e−βU(S′

y−) for S′,
we are left to evaluate the distance between the distributions on {−1,1} given by ( a

a+1 ; 1
a+1 )

and ( a′
a′+1 ; 1

a′+1 ). It is immediate to check, using the definition of the energy U , that a′ = e4βa.
Then, a simple computation shows that the distance between these two distributions is at most
eβ−e−β

eβ+e−β . This value is actually achieved when y has odd valency, h = 0 and switching the value at
x changes the majority of spin signs around y. (Our argument is suboptimal here when valency
is even—a more precise estimation yields the absence of a phase transition on Z.)

Combining these different cases yields the desired curvature evaluation. To convert this into
an evaluation of the critical β , reason as follows: magnetization, defined as 1

|G|
∑

x∈G S(x), is a
1

|G| -Lipschitz function of the state. Now let μ0 be the Gibbs measure without magnetic field, and
μh the Gibbs measure with external magnetic field h. Use the Glauber dynamics with magnetic
field h, but starting with an initial state picked under μ0; Corollary 22 yields that the magneti-
zation under μh is controlled by 1

|G| W1(μ0,μ0 ∗ m)/κ where κ is the coarse Ricci curvature,
and W1(μ0,μ0 ∗ m) is the transportation distance between the Gibbs measure μ0 and the mea-
sure obtained from it after one step of the Glauber dynamics with magnetic field h; reasoning

as above this transportation distance is easily bounded by 1
|G|

eβh−e−βh

eβh+e−βh , so that the derivative of
magnetization w.r.t. h stays bounded when |G| → ∞, which is the classical criterion used to
define critical temperature. (Compare Eq. (22) in [26].) �
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Further examples. More examples can be found in Sections 3.3.3 (binomial and Poisson dis-
tributions), 3.3.4 (M/M/∞ queues and generalizations), 3.3.5 (exponential tails), 3.3.6 (heavy
tails) and 5 (geometric distributions on N, exponential distributions on R

N ).

1.3. Overview of the results

Notation for random walks. Before we present the main results, we need to define some
quantities related to the local behavior of the random walk: the jump, which will help control the
diameter of the space, and the coarse diffusion constant, which controls concentration proper-
ties. Moreover, we define a notion of local dimension. The larger the dimension, the better for
concentration of measure.

Definition 18 (Jump, diffusion constant, dimension). Let the jump of the random walk at x be

J (x) := Emx d(x, ·) = W1(δx,mx).

Let the (coarse) diffusion constant of the random walk at x be

σ(x) :=
(

1

2

∫ ∫
d(y, z)2 dmx(y)dmx(z)

)1/2

and, if ν is an invariant distribution, let

σ := ∥∥σ(x)
∥∥

L2(X,ν)

be the average diffusion constant.
Let also σ∞(x) := 1

2 diam Suppmx and σ∞ := supσ∞(x).
Let the local dimension at x be

nx := σ(x)2

sup{Varmx f,f : Suppmx → R 1-Lipschitz}
and finally n := infx nx .

About this definition of dimension. Obviously nx � 1. For the discrete-time Brownian motion
on a N -dimensional Riemannian manifold, one has nx ≈ N (see the end of Section 8). For the
simple random walk on a graph, nx ≈ 1. This definition of dimension amounts to saying that in
a space of dimension n, the typical variations of a (1-dimensional) Lipschitz function are 1/

√
n

times the typical distance between two points. This is the case in the sphere Sn, in the Gaussian
measure on R

n, and in the discrete cube {0,1}n. So generally one could define the “statistical
dimension” of a metric measure space (X,d,μ) by this formula i.e.

StatDim(X,d,μ) :=
1
2

∫∫
d(x, y)2 dμ(x)dμ(y)

sup{Varμ f,f 1-Lipschitz}
so that for each x ∈ X the local dimension of X at x is nx = StatDim(X,d,mx). With this
definition, R

N equipped with a Gaussian measure has statistical dimension N and local dimen-
sion ≈ N , whereas the discrete cube {0,1}N has statistical dimension ≈ N and local dimen-
sion ≈ 1.

We now turn to the description of the main results of the paper.
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Elementary properties. In Section 2 are gathered some straightforward results.
First, we prove (Proposition 19) that in an ε-geodesic space, a lower bound on κ(x, y) for

points x, y with d(x, y) � ε implies the same lower bound for all pairs of points. This is simple
yet very useful: indeed in the various graphs given above as examples, it was enough to compute
the coarse Ricci curvature for neighbors.

Second, we prove equivalent characterizations of having coarse Ricci curvature uniformly
bounded below: a space satisfies κ(x, y) � κ if and only if the random walk operator is
(1 − κ)-contracting on the space of probability measures equipped with the transportation dis-
tance (Proposition 20), and if and only if the random walk operator acting on Lipschitz functions
contracts the Lipschitz norm by (1−κ) (Proposition 29). An immediate corollary is the existence
of a unique invariant distribution when κ > 0.

The property of contraction of the Lipschitz norm easily implies, in the reversible case, that
the spectral gap of the Laplacian operator associated with the random walk is at least κ (Propo-
sition 30); this can be seen as a generalization of Lichnerowicz’s theorem, and provides sharp
estimates of the spectral gap in several examples. (A similar result appears in [14].)

In analogy with the Bonnet–Myers theorem, we prove that if coarse Ricci curvature is bounded
below by κ > 0, then the diameter of the space is at most 2 supx J (x)/κ (Proposition 23). In case
J is unbounded, we can evaluate instead the average distance to a given point x0 under the
invariant distribution ν (Proposition 24); namely,

∫
d(x0, y)dν(y) � J (x0)/κ . In particular we

have
∫

d(x, y)dν(x)dν(y) � 2 infJ/κ . These are L1 versions of the Bonnet–Myers theorem
rather than generalizations: from the case of manifolds one would expect 1/

√
κ instead of 1/κ .

Actually this L1 version is sharp in all our examples except Riemannian manifolds; in Section 6
we investigate additional conditions for an L2 version of the Bonnet–Myers theorem to hold.

Let us also mention some elementary operations preserving positive curvature: composition,
superposition and L1 tensorization (Propositions 25–27).

Concentration results. Basically, if coarse Ricci curvature is bounded below by κ > 0, then
the invariant distribution satisfies concentration results with variance σ 2/nκ (up to some constant
factor). This estimate is often sharp, as discussed in Section 3.3 where we revisit some of the
examples.

However, the type of concentration (Gaussian, exponential, or 1/t2) depends on further local
assumptions: indeed, the tail behavior of the invariant measure cannot be better than that of the
local measures mx . Without further assumptions, one only gets that the variance of a 1-Lipschitz
function is at most σ 2/nκ , hence concentration like σ 2/nκt2 (Proposition 32). If we make the
further assumption that the support of the measures mx is uniformly bounded (i.e. σ∞ < ∞),
then we get mixed Gaussian-then-exponential concentration, with variance σ 2/nκ (Theorem 33).
The width of the Gaussian window depends on σ∞, and on the rate of variation of the diffusion
constant σ(x)2.

For the case of Riemannian manifolds, simply considering smaller and smaller steps for the
random walks makes the width of the Gaussian window tend to infinity, so that we recover full
Gaussian concentration as in the Lévy–Gromov or Bakry–Émery context. However, for lots of
discrete examples, the Gaussian-then-exponential behavior is genuine. Examples where tails are
Poisson-like (binomial distribution, M/M/∞ queues) or exponential are given in Sections 3.3.3
to 3.3.5. Examples of heavy tails (when σ∞ = ∞) are given in 3.3.6.

We also get concentration results for the finite-time distributions m∗k (Remark 35).
x
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Log-Sobolev inequality. Using a suitable non-local notion of norm of the gradient, we are able
to adapt the proof by Bakry and Émery of a logarithmic Sobolev inequality for the invariant dis-

tribution. The gradient we use (Definition 41) is (Df )(x) := supy,z
|f (y)−f (z)|

d(y,z)
exp(−λd(x, y) −

λd(y, z)). This is a kind of “semi-local” Lipschitz constant for f . Typically the value of λ can
be taken large at the “macroscopic” level; for Riemannian manifolds, taking smaller and smaller
steps for the random walk allows to take λ → ∞ so that we recover the usual gradient for smooth
functions.

The inequality takes the form Entf � C
∫
(Df )2/f dν (Theorem 45). The main tool of the

proof is the gradient contraction relation D(Mf ) � (1 − κ/2)M(Df ) where M is the random
walk operator (Theorem 44).

That the gradient is non-local, with a maximal possible value of λ, is consistent with the
possible occurrence of non-Gaussian tails.

Exponential concentration and non-negative curvature. The simplest example of a Markov
chain with zero coarse Ricci curvature is the simple random walk on N or Z, for which there
is no invariant distribution. However, we show that if furthermore there is a “locally attracting”
point, then non-negative coarse Ricci curvature implies exponential concentration. Examples are
the geometric distribution on N or the exponential distribution e−|x| on R

N associated with the
stochastic differential equation dXt = dBt − Xt|Xt | dt . In both cases we recover correct orders of
magnitude.

Gromov–Hausdorff topology. One advantage of our definition is that it involves only combi-
nations of the distance function, and no derivatives, so that it is more or less impervious to defor-
mations of the space. In Section 7 we show that coarse Ricci curvature is continuous for Gromov–
Hausdorff convergence of metric spaces (suitably reinforced, of course, so that the random walk
converges as well), so that having non-negative curvature is a closed property. We also suggest
a loosened definition of coarse Ricci curvature, requiring that W1(mx,my) � (1 − κ)d(x, y) + δ

instead of W1(mx,my) � (1 − κ)d(x, y). With this definition, positive curvature becomes an
open property, so that a space close to one with positive curvature has positive curvature.

2. Elementary properties

2.1. Geodesic spaces

The idea behind curvature is to use local properties to derive global ones. We give here a sim-
ple proposition expressing that in near-geodesic spaces such as graphs (with ε = 1) or manifolds
(for any ε), it is enough to check positivity of coarse Ricci curvature for nearby points.

Proposition 19 (Geodesic spaces). Suppose that (X,d) is ε-geodesic in the sense that for any
two points x, y ∈ X, there exists an integer n and a sequence x0 = x, x1, . . . , xn = y such that
d(x, y) = ∑

d(xi, xi+1) and d(xi, xi+1) � ε.
Then, if κ(x, y) � κ for any pair of points with d(x, y) � ε, then κ(x, y) � κ for any pair of

points x, y ∈ X.

Proof. Let (xi) be as above. Using the triangle inequality for W1, one has W1(mx,my) �∑
W1(mxi

,mxi+1) � (1 − κ)
∑

d(xi, xi+1) = (1 − κ)d(x, y). �
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2.2. Contraction on the space of probability measures

Let P (X) by the space of all probability measures μ on X with finite first moment, i.e. for
some (hence any) o ∈ X,

∫
d(o, x)dμ(x) < ∞. On P (X), the transportation distance W1 is finite,

so that it is actually a distance.
Let μ be a probability measure on X and define the measure

μ ∗ m :=
∫

x∈X

dμ(x)mx

which is the image of μ by the random walk. A priori, it may or may not belong to P (X).
The following proposition and its corollary can be seen as a particular case of Theorem 3

in [18] (viewing a Markov chain as a Markov field on N). Equivalent statements also appear
in [19, Proposition 14.3], in the second edition of [12, Theorem 5.22], in [15] (in the proof of
Proposition 2.10), in [42] and in [38].

Proposition 20 (W1 contraction). Let (X,d,m) be a metric space with a random walk. Let κ ∈ R.
Then we have κ(x, y) � κ for all x, y ∈ X, if and only if for any two probability distributions
μ,μ′ ∈ P (X) one has

W1(μ ∗ m,μ′ ∗ m) � (1 − κ)W1(μ,μ′).

Moreover in this case, if μ ∈ P (X) then μ ∗ m ∈ P (X).

Proof. First, suppose that convolution with m is contracting in W1 distance. For some x, y ∈ X,
let μ = δx and μ′ = δy be the Dirac measures at x and y. Then by definition δx ∗ m = mx and
likewise for y, so that W1(mx,my) � (1 − κ)W1(δx, δy) = (1 − κ)d(x, y) as required.

The converse is more difficult to write than to understand. For each pair (x, y) let ξxy be a
coupling (i.e. a measure on X × X) between mx and my witnessing for κ(x, y) � κ . According
to Corollary 5.22 in [48], we can choose ξxy to depend measurably on the pair (x, y).

Let Ξ be a coupling between μ and μ′ witnessing for W1(μ,μ′). Then
∫
X×X

dΞ(x,y) ξxy is
a coupling between μ ∗ m and μ′ ∗ m and so

W1(μ ∗ m,μ′ ∗ m) �
∫

x,y

d(x, y)d

{ ∫
x′,y′

dΞ(x′, y′) ξx′y′
}
(x, y)

=
∫

x,y,x′,y′
dΞ(x′, y′)dξx′y′(x, y) d(x, y)

�
∫

x′,y′
dΞ(x′, y′) d(x′, y′)

(
1 − κ(x′, y′)

)

� (1 − κ)W1(μ,μ′)

by the Fubini theorem applied to d(x, y)dΞ(x′, y′)dξx′,y′(x, y).



826 Y. Ollivier / Journal of Functional Analysis 256 (2009) 810–864
To see that in this situation P (X) is preserved by the random walk, fix some origin
o ∈ X and note that for any μ ∈ P (X), the first moment of μ ∗ m is W1(δo,μ ∗ m) �
W1(δo,mo) + W1(mo,μ ∗ m) � W1(δo,mo) + (1 − κ)W1(δo,μ). Now W1(δo,μ) < ∞ by as-
sumption, and W1(δo,mo) < ∞ by Definition 1. �

As an immediate consequence of this contracting property we get:

Corollary 21 (W1 convergence). Suppose that κ(x, y) � κ > 0 for any two distinct x, y ∈ X.
Then the random walk has a unique invariant distribution ν ∈ P (X).

Moreover, for any probability measure μ ∈ P (X), the sequence μ ∗ m∗n tends exponentially
fast to ν in W1 distance. Namely

W1
(
μ ∗ m∗n, ν

)
� (1 − κ)n W1(μ, ν)

and in particular

W1
(
m∗n

x , ν
)
� (1 − κ)nJ (x)/κ.

The last assertion follows by taking μ = δx and noting that J (x) = W1(δx,mx) so that
W1(δx, ν) � W1(δx,mx) + W1(mx, ν) � J (x) + (1 − κ)W1(δx, ν), hence W1(δx, ν) � J (x)/κ .

This is useful to provide bounds on mixing time. For example, suppose that X is a graph; since
the total variation distance between two measures μ,μ′ is the transportation distance with respect
to the trivial metric instead of the graph metric, we obviously have |μ − μ′|TV � W1(μ,μ′),
hence the corollary above yields the estimate |m∗t

x − ν|TV � (diamX)(1 − κ)t for any x ∈ X.
Applied for example to the discrete cube {0,1}N , with κ = 1/N and diameter N , this gives the
correct estimate O(N lnN) for mixing time in total variation distance, whereas the traditional
estimate based on spectral gap and passage from L2 to L1 norm gives O(N2). Also note that
the pointwise bound |m∗t

x − ν|TV � (1 − κ)tJ (x)/κ depends on local data only and requires no
knowledge of the invariant measure (compare [21]) or diameter; in particular it applies to infinite
graphs.

Another immediate interesting corollary is the following, which allows to estimate the average
of a Lipschitz function under the invariant measure, knowing some of its values. This is useful in
concentration theorems, to get bounds not only on the deviations from the average, but on what
the average actually is.

Corollary 22. Suppose that κ(x, y) � κ > 0 for any two distinct x, y ∈ X. Let ν be the invariant
distribution.

Let f be a 1-Lipschitz function. Then, for any distribution μ, one has |Eνf − Eμf | �
W1(μ,μ ∗ m)/κ .

In particular, for any x ∈ X one has |f (x) − Eνf | � J (x)/κ .

Proof. One has W1(μ ∗ m,ν) � (1 − κ)W1(μ, ν). Since by the triangle inequality,
W1(μ ∗ m,ν) � W1(μ, ν) − W1(μ,μ ∗ m), one gets W1(μ, ν) � W1(μ,μ ∗ m)/κ . Now if f

is a 1-Lipschitz function, for any two distributions μ, μ′ one has |Eμf − Eμ′f | � W1(μ,μ′)
hence the result.

The last assertion is simply the case when μ is the Dirac measure at x. �
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2.3. L1 Bonnet–Myers theorems

We now give a weak analogue of the Bonnet–Myers theorem. This result shows in particular
that positivity of coarse Ricci curvature is a much stronger property than a spectral gap bound:
there is no coarse Ricci curvature analogue of a family of expanders.

Proposition 23 (L1 Bonnet–Myers). Suppose that κ(x, y) � κ > 0 for all x, y ∈ X. Then for any
x, y ∈ X one has

d(x, y) � J (x) + J (y)

κ(x, y)

and in particular

diamX � 2 supx J (x)

κ
.

Proof. We have d(x, y) = W1(δx, δy) � W1(δx,mx) + W1(mx,my) + W1(my, δy) �
J (x) + (1 − κ)d(x, y) + J (y) hence the result. �

This estimate is not sharp at all for Brownian motion in Riemannian manifolds (since J ≈ ε

and κ ≈ ε2 Ric/N , it fails by a factor 1/ε compared to the Bonnet–Myers theorem!), but is sharp
in many other examples.

For the discrete cube X = {0,1}N (Example 8 above), one has J = 1/2 and κ = 1/N , so we
get diamX � N which is the exact value.

For the discrete Ornstein–Uhlenbeck process (Example 10 above) one has J = 1/2 and κ =
1/2N , so we get diamX � 2N which once more is the exact value.

For the continuous Ornstein–Uhlenbeck process on R (Example 9 with N = 1), the diameter
is infinite, consistently with the fact that J is unbounded. If we consider points x, y lying in
some large interval [−R;R] with R � s/

√
α, then supJ ∼ αRδt on this interval, and κ =

(1 − eαδt ) ∼ αδt so that the diameter bound is 2R, which is correct.
These examples show that one cannot replace J/κ with J/

√
κ in this result (as could be

expected from the example of Riemannian manifolds). In fact, Riemannian manifolds seem to be
the only simple example where there is a diameter bound behaving like 1/

√
κ . In Section 6 we

investigate conditions under which an L2 version of the Bonnet–Myers theorem holds.
In case J is not bounded, we can estimate instead the “average” diameter

∫
d(x, y)dν(x)dν(y)

under the invariant distribution ν. This estimate will prove very useful in several examples, to get
bounds on the average of σ(x) in cases where σ(x) is unbounded but controlled by the distance
to some “origin” (see e.g. Sections 3.3.4 and 3.3.5).

Proposition 24 (Average L1 Bonnet–Myers). Suppose that κ(x, y) � κ > 0 for any two distinct
x, y ∈ X. Then for any x ∈ X,

∫
d(x, y)dν(y) � J (x)

κ

X
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and so

∫
X×X

d(x, y)dν(x)dν(y) � 2 infx J (x)

κ
.

Proof. The first assertion follows from Corollary 22 with f = d(x, ·).
For the second assertion, choose an x0 with J (x0) arbitrarily close to infJ , and write

∫
X×X

d(y, z)dν(y)dν(z) �
∫

X×X

(
d(y, x0) + d(x0, z)

)
dν(y)dν(z)

= 2W1(δx0 , ν) � 2J (x0)/κ

which ends the proof. �
2.4. Three constructions

Here we describe three very simple operations which trivially preserve positive curvature,
namely, composition, superposition and L1 tensorization.

Proposition 25 (Composition). Let X be a metric space equipped with two random walks m =
(mx)x∈X , m′ = (m′

x)x∈X . Suppose that the coarse Ricci curvature of m (resp. m′) is at least κ

(resp. κ ′). Let m′′ be the composition of m and m′, i.e. the random walk which sends a probability
measure μ to μ ∗ m ∗ m′. Then the coarse Ricci curvature of m′′ is at least κ + κ ′ − κκ ′.

Proof. Trivial when (1 − κ) is seen as a contraction coefficient. �
Superposition states that if we are given two random walks on the same space and construct

a new one by, at each step, tossing a coin and deciding to follow either one random walk or the
other, then the coarse Ricci curvatures mix nicely.

Proposition 26 (Superposition). Let X be a metric space equipped with a family (m(i)) of random
walks. Suppose that for each i, the coarse Ricci curvature of m(i) is at least κi . Let (αi) be a
family of non-negative real numbers with

∑
αi = 1. Define a random walk m on X by mx :=∑

αim
(i)
x . Then the coarse Ricci curvature of m is at least

∑
αiκi .

Proof. Let x, y ∈ X and for each i let ξi be a coupling between m
(i)
x and m

(i)
y . Then

∑
αiξi is a

coupling between
∑

αim
(i)
x and

∑
αim

(i)
y , so that

W1(mx,my) �
∑

αiW1
(
m(i)

x ,m(i)
y

)
�

∑
αi(1 − κi)d(x, y)

=
(

1 −
∑

αiκi

)
d(x, y).
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Note that the coupling above, which consists in sending each m
(i)
x to m

(i)
y , has no reason to be

optimal, so that in general equality does not hold. �
Tensorization states that if we perform a random walk in a product space by deciding at

random, at each step, to move in one or the other component, then positive curvature is preserved.

Proposition 27 (L1 tensorization). Let ((Xi, di))i∈I be a finite family of metric spaces and sup-
pose that Xi is equipped with a random walk m(i). Let X be the product of the spaces Xi ,
equipped with the distance d := ∑

di . Let (αi) be a family of non-negative real numbers with∑
αi = 1. Consider the random walk m on X defined by

m(x1,...,xk) :=
∑

αiδx1 ⊗ · · · ⊗ mxi
⊗ · · · ⊗ δxk

.

Suppose that for each i, the coarse Ricci curvature of m(i) is at least κi . Then the coarse Ricci
curvature of m is at least infαiκi .

For example, this allows for a very short proof that the curvature of the lazy random walk on
the discrete cube {0,1}N is 1/N (Example 8). Indeed, it is the N -fold product of the random
walk on {0,1} which sends each point to the equilibrium distribution (1/2,1/2), hence is of
curvature 1.

Likewise, we can recover the coarse Ricci curvature for multinomial distributions (Exam-
ple 12) as follows: consider a finite set S of cardinal d +1, representing the boxes of Example 12,
endowed with an arbitrary probability distribution ν. Equip it with the trivial distance and the
Markov chain sending each point of S to ν, so that coarse Ricci curvature is 1. Now consider the
N -fold product of this random walk on SN . Each component represents a ball of Example 12,
and the product random walk consists in selecting a ball and putting it in a random box according
to ν, as in the example. By the proposition above, the coarse Ricci curvature of this N -fold prod-
uct is (at least) 1/N . This evaluation of curvature carries down to the “quotient” Markov chain
of Example 12, in which only the number of balls in each box is considered instead of the full
configuration space.

The case when some αi is equal to 0 shows why coarse Ricci curvature is given by an infimum:
indeed, if αi = 0 then the corresponding component never gets mixed, hence curvature cannot be
positive (unless this component is reduced to a single point). This is similar to what happens for
the spectral gap.

The statement above is restricted to a finite product for the following technical reasons: first,
to define the L1 product of an infinite family, a basepoint has to be chosen. Second, in order
for the formula above to define a random walk with finite first moment (see Definition 1), some
uniform assumption on the first moments of the m(i) is needed.

Proof. For x ∈ X let m̃
(i)
x stand for δx1 ⊗ · · · ⊗ mxi

⊗ · · · ⊗ δxk
.

Let x = (xi) and y = (yi) be two points in X. Then

W1(mx,my) �
∑

αiW1
(
m̃(i)

x , m̃(i)
y

)
�

∑
αi

(
W1

(
m(i)

x ,m(i)
y

) +
∑

dj (xj , yj )

)

j 
=i
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�
∑

αi

(
(1 − κi)di(xi, yi) +

∑
j 
=i

dj (xj , yj )

)

=
∑

αi

(
−κidi(xi, yi) +

∑
dj (xj , yj )

)

=
∑

di(xi, yi) −
∑

αiκidi(xi, yi)

� (1 − infαiκi)
∑

di(xi, yi)

= (1 − infαiκi)d(x, y). �
2.5. Lipschitz functions and spectral gap

Definition 28 (Averaging operator, Laplacian). For f ∈ L2(X, ν) let the averaging operator M
be

Mf (x) :=
∫
y

f (y)dmx(y)

and let 
 := M − Id.

(This is the layman’s convention for the sign of the Laplacian, i.e. 
 = d2

dx2 on R, so that on a
Riemannian manifold 
 is a negative operator.)

The following proposition also appears in [15] (in the proof of Proposition 2.10). For the
classical case of Riemannian manifolds, contraction of the norm of the gradient is one of the
main results of Bakry–Émery theory.

Proposition 29 (Lipschitz contraction). Let (X,d,m) be a random walk on a metric space.
Let κ ∈ R.

Then the coarse Ricci curvature of X is at least κ , if and only if, for every k-Lipschitz function
f : X → R, the function Mf is k(1 − κ)-Lipschitz.

Proof. First, suppose that the coarse Ricci curvature of X is at least κ . Then, using the notation
presented at the end of Section 1.1, we have

Mf (y) − Mf (x) =
∫
z

f (y + z) − f (x + z)

� k

∫
z

d(x + z, y + z)

= kd(x, y)
(
1 − κ(x, y)

)
.

Conversely, suppose that whenever f is 1-Lipschitz, Mf is (1 − κ)-Lipschitz. The duality
theorem for transportation distance (Theorem 1.14 in [47]) states that
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W1(mx,my) = sup
f 1-Lipschitz

∫
f d(mx − my)

= sup
f 1-Lipschitz

Mf (x) − Mf (y)

� (1 − κ)d(x, y). �
Let ν be an invariant distribution of the random walk. Consider the space L2(X, ν)/{const}

equipped with the norm

‖f ‖2
L2(X,ν)/{const} := ‖f − Eνf ‖2

L2(X,ν)
= Varν f = 1

2

∫
X×X

(
f (x) − f (y)

)2 dν(x)dν(y).

The operators M and 
 are self-adjoint in L2(X, ν) if and only if ν is reversible for the random
walk.

It is easy to check, using associativity of variances, that

Varν f =
∫

Varmx f dν(x) + Varν Mf

so that ‖Mf ‖2 � ‖f ‖2. It is also clear that ‖Mf ‖∞ � ‖f ‖∞.
Usually, spectral gap properties for 
 are expressed in the space L2. The proposition above

only implies that the spectral radius of the operator M acting on Lip(X)/{const} is at most
(1 − κ). In general it is not true that a bound for the spectral radius of an operator on a dense
subspace of a Hilbert space implies a bound for the spectral radius on the whole space. This
holds, however, when the operator is self-adjoint or when the Hilbert space is finite-dimensional.

Proposition 30 (Spectral gap). Let (X,d,m) be a metric space with random walk, with invariant
distribution ν. Suppose that the coarse Ricci curvature of X is at least κ > 0 and that σ < ∞.
Suppose that ν is reversible, or that X is finite.

Then the spectral radius of the averaging operator acting on L2(X, ν)/{const} is at most
1 − κ .

Compare Theorem 1.9 in [14] (Theorem 9.18 in [12]).

Proof. First, if X is finite then Lipschitz functions coincide with L2 functions, and the norms
are equivalent, so that there is nothing to prove. So we suppose that ν is reversible, i.e. M is
self-adjoint.

Let f be a k-Lipschitz function. Proposition 32 below implies that Lipschitz functions belong
to L2(X, ν)/{const} and that the Lipschitz norm controls the L2 norm (this is where we use
that σ < ∞). Since Mt f is k(1 − κ)t -Lipschitz one gets Var Mt f � Ck2(1 − κ)2t for some
constant C so that limt→∞(

√
Var Mt f )1/t � (1 − κ). So the spectral radius of M is at most

1 − κ on the subspace of Lipschitz functions.
Now Lipschitz functions are dense in L2(X, ν) (indeed, a probability measure on a metric

space is regular, so that indicator functions of measurable sets can be approximated by Lipschitz
functions). Since M is bounded and self-adjoint, its spectral radius is controlled by its value on a
dense subspace using the spectral decomposition. �
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Corollary 31 (Poincaré inequality). Let (X,d,m) be an ergodic random walk on a metric space,
with invariant distribution ν. Suppose that the coarse Ricci curvature of X is at least κ > 0 and
that σ < ∞. Suppose that ν is reversible.

Then the spectrum of −
 acting on L2(X, ν)/{const} is contained in [κ;∞). Moreover the
following discrete Poincaré inequalities are satisfied for f ∈ L2(X, ν):

Varν f � 1

κ(2 − κ)

∫
Varmx f dν(x)

and

Varν f � 1

2κ

∫ ∫ (
f (y) − f (x)

)2 dν(x)dmx(y).

Proof. These are rewritings of the inequalities Varν Mf � (1 − κ)2 Varν f and
〈f,Mf 〉L2(X,ν)/{const} � (1 − κ)Varν f , respectively. �

The quantities Varmx f and 1
2

∫
(f (y) − f (x))2 dmx(y) are two possible analogues of

‖∇f (x)‖2 in a discrete setting. Though the latter is more common, the former is preferable
when the support of mx can be far away from x because it cancels out the “drift.” Moreover one
always has Varmx f �

∫
(f (y) − f (x))2 dmx(y), so that the first form is generally sharper.

Reversibility is really needed here to turn an estimate of the spectral radius of M into an
inequality between the norms of Mf and f , using that M is self-adjoint. When the random walk
is not reversible, applying the above to MM∗ does not work since the coarse Ricci curvature of
the latter is unknown. However, a version of the Poincaré inequality with a non-local gradient
still holds (Theorem 45).

As proven by Gromov and Milman ([25], or Corollary 3.1 and Theorem 3.3 in [29]), in quite
a general setting a Poincaré inequality implies exponential concentration. Their argument adapts
well here, and provides a concentration bound of roughly exp(−t

√
κ σ∞). We do not include the

details, however, since Theorem 33 below is always more precise and covers the non-reversible
case as well.

Let us compare this result to Lichnerowicz’s theorem in the case of the ε-step random walk
on an N -dimensional Riemannian manifold with positive Ricci curvature. This theorem states
that the smallest eigenvalue of the usual Laplacian is N

N−1 inf Ric, where inf Ric is the largest
K such that Ric(v, v) � K for all unit tangent vectors v. On the other hand, the operator 


associated with the random walk is the difference between the mean value of a function on a ball
of radius ε, and its value at the center of the ball: when ε → 0 this behaves like ε2

2(N+2)
times the

usual Laplacian (take the average on the ball of the Taylor expansion of f ). We saw (Example 7)

that in this case κ ∼ ε2

2(N+2)
inf Ric. Note that both scaling factors are the same. So we miss the

N
N−1 factor, but otherwise get the correct order of magnitude.

Second, let us test this corollary for the discrete cube of Example 8. In this case the eigenbase
of the discrete Laplacian is well-known (characters, or Fourier/Walsh transform), and the spectral
gap of the discrete Laplacian associated with the lazy random walk is 1/N . Since the coarse Ricci
curvature κ is 1/N too, the value given in the proposition is sharp.

Third, consider the Ornstein–Uhlenbeck process on R, as in Example 9. Its infinitesimal gen-

erator is L = s2 d2

2 − αx d , and the eigenfunctions are known to be Hk(x
√

α/s2) where Hk is
2 dx dx
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the Hermite polynomial Hk(x) := (−1)kex2 dk

dxk e−x2
. The associated eigenvalue of L is −kα, so

that the spectral gap of L is α. Now the random walk we consider is the flow eδtL at time δt

of the process (with small δt), whose eigenvalues are e−kαδt . So the spectral gap of the discrete
Laplacian eδtL − Id is 1 − e−αδt . Since coarse Ricci curvature is 1 − e−αδt too, the corollary is
sharp again.

3. Concentration results

3.1. Variance of Lipschitz functions

We begin with the simplest kind of concentration, namely, an estimation of the variance of
Lipschitz functions. Contrary to Gaussian or exponential concentration, the only assumption
needed here is that the average diffusion constant σ is finite.

Since our Gaussian concentration result will yield basically the same variance σ 2/nκ , we
discuss sharpness of this estimate in various examples in Section 3.3.

Proposition 32. Let (X,d,m) be a random walk on a metric space, with coarse Ricci curvature
at least κ > 0. Let ν be the unique invariant distribution. Suppose that σ < ∞.

Then the variance of a 1-Lipschitz function is at most σ 2

nκ(2−κ)
.

Note that since κ � 1 one has σ 2

nκ(2−κ)
� σ 2

nκ
.

In particular, this implies that all Lipschitz functions are in L2/{const}; especially,∫
d(x, y)2 dν(x)dν(y) is finite. The fact that the Lipschitz norm controls the L2 norm was used

above in the discussion of spectral properties of the random walk operator.
The assumption σ < ∞ is necessary. As a counterexample, consider a random walk on N that

sends every x ∈ N to some fixed distribution ν on N with infinite second moment: coarse Ricci
curvature is 1, yet the identity function is not in L2.

Proof. Suppose for now that |f | is bounded by A ∈ R, so that Varf < ∞. We first prove
that Var Mt f tends to 0. Let Br be the ball of radius r in X centered at some basepoint. Us-
ing that Mt f is (1 − κ)t -Lipschitz on Br and bounded by A on X \ Br , we get Var Mt f =
1
2

∫∫
(Mt f (x) − Mt f (y))2 dν(x)dν(y) � 2(1 − κ)2t r2 + 2A2ν(X \ Br). Taking for example

r = 1/(1 − κ)t/2 shows that Var Mt f → 0.
As already mentioned, one has Varf = Var Mf + ∫

Varmx f dν(x). Since Var Mt f → 0, by
induction we get

Varf =
∞∑
t=0

∫
Varmx Mt f dν(x).

Now since f is 1-Lipschitz, by definition Varmx f � σ(x)2/nx . Since Mt f is (1−κ)t -Lipschitz,

we have Varmx Mt f � (1 − κ)2t σ (x)2/nx so that the sum above is at most σ 2

nκ(2−κ)
. The case of

unbounded f is treated by a simple limiting argument. �
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3.2. Gaussian concentration

As mentioned above, positive coarse Ricci curvature implies a Gaussian-then-exponential
concentration theorem. The estimated variance is σ 2/nκ as above, so that this is essentially a
more precise version of Proposition 32, with some loss in the constants. We will see in the dis-
cussion below (Section 3.3) that in the main examples, the order of magnitude is correct.

The fact that concentration is not always Gaussian far away from the mean is genuine, as
exemplified by binomial distributions on the cube (Section 3.3.3) or M/M/∞ queues (Sec-
tion 3.3.4). The width of the Gaussian window is controlled by two factors. First, variations of
the diffusion constant σ(x)2 can result in purely exponential behavior (Section 3.3.5); this leads
to the assumption that σ(x)2 is bounded by a Lipschitz function. Second, as Gaussian phenomena
only emerge as the result of a large number of small events, the “granularity” of the process must
be bounded, which leads to the (comfortable) assumption that σ∞ < ∞. Otherwise, a Markov
chain which sends every point x ∈ X to some fixed measure ν has coarse Ricci curvature 1 and
can have arbitrary bad concentration properties depending on ν.

In the case of Riemannian manifolds, simply letting the step of the random walk tend to 0
makes the width of the Gaussian window tend to infinity, so that we recover Gaussian concentra-
tion as in the Lévy–Gromov or Bakry–Émery theorems. For the uniform measure on the discrete
cube, the Gaussian width is equal to the diameter of the cube, so that we get full Gaussian con-
centration as well. In a series of other examples (such as Poisson measures), the transition from
Gaussian to non-Gaussian regime occurs roughly as predicted by the theorem.

Theorem 33 (Gaussian concentration). Let (X,d,m) be a random walk on a metric space, with
coarse Ricci curvature at least κ > 0. Let ν be the unique invariant distribution.

Let

D2
x := σ(x)2

nxκ

and

D2 := EνD
2
x.

Suppose that the function x �→ D2
x is C-Lipschitz. Set

tmax := D2

max(σ∞,2C/3)
.

Then for any 1-Lipschitz function f , for any t � tmax we have

ν
({

x,f (x) � t + Eνf
})

� exp − t2

6D2

and for t � tmax

ν
({

x,f (x) � t + Eνf
})

� exp

(
− t2

max

6D2
− t − tmax

max(3σ∞,2C)

)
.
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Remark 34. Proposition 24 or Corollary 22 often provide very sharp a priori bounds for EνD
2
x

even when no information on ν is available, as we shall see in the examples.

Remark 35. It is clear from the proof below that σ(x)2/nxκ itself need not be Lipschitz, only
bounded by some Lipschitz function. In particular, if σ(x)2 is bounded one can always set D2 =
supx

σ(x)2

nxκ
and C = 0.

Remark 36 (Continuous-time situations). If we replace the random walk m = (mx)x∈X with the
lazy random walk m′ whose transition probabilities are m′

x := (1 − α)δx + αmx , when α tends
to 0 this approximates the law at time α of the continuous-time random walk with transition
rates mx , so that the continuous-time random walk is obtained by taking the lazy random walk
m′ and speeding up time by 1/α when α → 0. Of course this does not change the invariant
distribution. The point is that when α → 0, both σ 2

x and κ scale like α (and nx tends to 1), so that
D2 has a finite limit. This means that we can apply Theorem 33 to continuous-time examples
that naturally appear as limits of a discrete-time, finite-space Markov chain, as illustrated in
Sections 3.3.4 to 3.3.6.

Remark 37. The condition that σ∞ is uniformly bounded can be replaced with a Gaussian-type
assumption, namely that for each measure mx there exists a number sx such that Emx eλf �
eλ2s2

x/2eλEmx f for any 1-Lipschitz function f . Then a similar theorem holds, with σ(x)2/nx

replaced with s2
x . (When s2

x is constant this is Proposition 2.10 in [15].) However, this is gen-
erally not well-suited to discrete settings, because when transition probabilities are small, the
best s2

x for which such an inequality is satisfied is usually much larger than the actual variance
σ(x)2: for example, if two points x and y are at distance 1 and mx(y) = ε, sx must satisfy
s2
x � 1/2 ln(1/ε) � ε. Thus making this assumption will provide extremely poor estimates of

the variance D2 when some transition probabilities are small (e.g. for binomial distributions on
the discrete cube), and in particular, this cannot extend to the continuous-time limit.

In Section 3.3.5, we give a simple example where the Lipschitz constant of σ(x)2 is large,
resulting in exponential rather than Gaussian behavior. In Section 3.3.6 we give two examples of
positively curved process with heavy tails: one in which σ∞ = 1 but with non-Lipschitz growth
of σ(x)2, and one with σ(x)2 � 1 but with unbounded σ∞(x). These show that the assumptions
cannot be relaxed.

Proof. This proof is a variation on standard martingale methods for concentration (see e.g.
Lemma 4.1 in [29], or [45]).

Lemma 38. Let ϕ : X → R be an α-Lipschitz function with α � 1. Assume λ � 1/3σ∞. Then for
x ∈ X we have

(
Meλϕ

)
(x) � eλMϕ(x)+λ2α2 σ(x)2

nx .

Note that the classical Proposition 1.16 in [29] would yield (Meλϕ)(x) � eλMϕ(x)+2λ2α2σ 2∞ ,
which is too weak to provide reasonable variance estimates.
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Proof of Lemma 38. For any smooth function g and any real-valued random variable Y , a Taylor
expansion with Lagrange remainder gives Eg(Y ) � g(EY)+ 1

2 (supg′′)VarY . Applying this with
g(Y ) = eλY we get

(
Meλϕ

)
(x) = Emx eλϕ � eλMϕ(x) + λ2

2

(
sup

Suppmx

eλϕ
)

Varmx ϕ

and note that since diam Suppmx � 2σ∞ and ϕ is 1-Lipschitz we have supSuppmx
ϕ �

Emx ϕ + 2σ∞, so that

(
Meλϕ

)
(x) � eλMϕ(x) + λ2

2
eλMϕ(x)+2λσ∞ Varmx ϕ.

Now, by definition we have Varmx ϕ � α2 σ(x)2

nx
. Moreover for λ � 1/3σ∞ we have e2λσ∞ � 2,

hence the result. �
Back to the proof of the theorem, let f be a 1-Lipschitz function and λ � 0. Define by induc-

tion f0 := f and fk+1(x) := Mfk(x) + λ
σ(x)2

nx
(1 − κ/2)2k .

Suppose that λ � 1/2C. Then λ
σ(x)2

nx
is κ/2-Lipschitz. Using Proposition 29, we can show by

induction that fk is (1 − κ/2)k-Lipschitz.
Consequently, the lemma yields

(
Meλfk

)
(x) � eλMfk(x)+λ2 σ(x)2

nx
(1−κ/2)2k = eλfk+1(x)

so that by induction (
Mkeλf

)
(x) � eλfk(x).

Now setting g(x) := σ(x)2

nx
and unwinding the definition of fk yields

fk(x) = (
Mkf

)
(x) + λ

k∑
i=1

(
Mk−ig

)
(x) (1 − κ/2)2(i−1)

so that

lim
k→∞fk(x) = Eνf + λ

∞∑
i=1

Eνg (1 − κ/2)2(i−1) � Eνf + λEνg
4

3κ
.

Meanwhile, (Mkeλf )(x) tends to Eνeλf , so that

Eνeλf � lim
k→∞ eλfk � eλEνf + 4λ2

3κ
Eν

σ(x)2
nx .

We can conclude by a standard Chebyshev inequality argument. The restrictions λ � 1/2C

and λ � 1/3σ∞ give the value of tmax. �
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Remark 39 (Finite-time concentration). The proof provides a similar concentration result for the
finite-time measures m∗k

x as well, with variance

D2
x,k =

k∑
i=1

(1 − κ/2)2(i−1)

(
Mk−i σ (y)2

ny

)
(x)

and D2
x,k instead of D2 in the expression for tmax.

3.3. Examples revisited

Let us test the sharpness of these estimates in some examples, beginning with the simplest
ones. In each case, we gather the relevant quantities in a table. Recall that ≈ denotes an equality
up to a multiplicative universal constant (typically � 4), while symbol ∼ denotes usual asymp-
totic equivalence (with sharp constant).

3.3.1. Riemannian manifolds
First, let X be a compact N -dimensional Riemannian manifold with positive Ricci cur-

vature. Equip this manifold with the ε-step random walk as in Example 7. The measure
volB(x,ε)

volBEucl(ε)
d vol(x) is reversible for this random walk. In particular, when ε → 0, the density

of this measure with respect to the Riemannian volume is 1 + O(ε2).
Let inf Ric denote the largest K > 0 such that Ric(v, v) � K for any unit tangent vector v.

The relevant quantities for this random walk are as follows (see Section 8 for the proofs).

Coarse Ricci curvature κ ∼ ε2

2(N+2)
inf Ric

Coarse diffusion constant σ(x)2 ∼ ε2 N
N+2 ∀x

Dimension n ≈ N

Variance (Lévy–Gromov thm.) ≈ 1/ inf Ric

Gaussian variance (Theorem 33) D2 ≈ 1/ inf Ric

Gaussian range tmax ≈ 1/(ε inf Ric) → ∞

So, up to some (small) numerical constants, we recover Gaussian concentration as in the
Lévy–Gromov theorem.

The same applies to diffusions with a drift on a Riemannian manifold, as considered by Bakry
and Émery. To be consistent with the notation of Example 11, in the table above ε has to be
replaced with

√
(N + 2)δt , and inf Ric with inf(Ric(v, v) − 2∇symF(v, v)) for v a unit tangent

vector. (In the non-compact case, care has to be taken since the solution of the stochastic differ-
ential equation of Example 11 on the manifold may not exist, and even if it does its Euler scheme
approximation at time δt may not converge uniformly on the manifold. In explicit examples such
as the Ornstein–Uhlenbeck process, however, this is not a problem.)

3.3.2. Discrete cube
Consider now the discrete cube {0,1}N equipped with its graph distance (Hamming metric)

and lazy random walk (Example 8).
For a random walk on a graph one always has σ ≈ 1, and n � 1 in full generality. The follow-

ing remark allows for more precise constants.
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Remark 40. Let m be a random walk on a graph. Then, for any vertex x one has σ(x)2/nx �
1 − mx({x}).

Proof. By definition σ(x)2/nx is the maximal variance, under mx , of a 1-Lipschitz function. So
let f be a 1-Lipschitz function on the graph. Since variance is invariant by adding a constant, we
can assume that f (x) = 0. Then |f (y)| � 1 for any neighbor y of x. The mass, under mx , of all
neighbors of x is 1 − mx({x}). Hence Varmx f = Emx f

2 − (Emx f )2 � Emx f
2 � 1 − mx({x}).

This value is achieved, for example, with a lazy simple random walk when x has an even
number of neighbors and when no two distinct neighbors of x are mutual neighbors; in this case
one can take f (x) = 0, f = 1 on half the neighbors of x and f = −1 on the remaining neighbors
of x. �

Applying this to the lazy random walk on the discrete cube, one gets:

Coarse Ricci curvature κ = 1/N

Coarse diffusion constant & dimension σ(x)2/nx � 1/2

Estimated variance (Proposition 32) σ 2/nκ(2 − κ) ∼ N/4

Actual variance N/4

Gaussian variance (Theorem 33) D2 � N/2

Gaussian range tmax = N/2

In particular, since N/2 is the maximal possible value for the deviation from average of a
1-Lipschitz function on the cube, we see that tmax has the largest possible value.

3.3.3. Binomial distributions
The occurrence of a finite range tmax for the Gaussian behavior of tails is genuine, as the

following example shows.
Let again X = {0,1}N equipped with its Hamming metric (each edge is of length 1). Consider

the following Markov chain on X: for some 0 < p < 1, at each step, choose a bit at random
among the N bits; if it is equal to 0, flip it to 1 with probability p; if it is equal to 1, flip it
to 0 with probability 1 − p. The binomial distribution ν((x1, . . . , xN)) = ∏

pxi (1 − p)1−xi is
reversible for this Markov chain.

The coarse Ricci curvature of this Markov chain is 1/N , as can easily be seen directly or using
the tensorization property (Proposition 27).

Let k be the number of bits of x ∈ X which are equal to 1. Then k follows a Markov chain
on {0,1, . . . ,N}, whose transition probabilities are:

pk,k+1 = p(1 − k/N),

pk,k−1 = (1 − p)k/N,

pk,k = pk/N + (1 − p)(1 − k/N).

The binomial distribution with parameters N and p, namely
(
N
k

)
pk(1 − p)N−k , is reversible

for this Markov chain. Moreover, the coarse Ricci curvature of this “quotient” Markov chain is
still 1/N .



Y. Ollivier / Journal of Functional Analysis 256 (2009) 810–864 839
Now, fix some λ > 0 and consider the case p = λ/N . Let N → ∞. It is well known that the
invariant distribution tends to the Poisson distribution e−λλk/k! on N.

Let us see how Theorem 33 performs on this example. The table below applies either to the
full space {0,1}N , with k the function “number of 1’s,” or to its projection on {0,1, . . . ,N}. Note
the use of Proposition 24 to estimate σ 2 a priori, without having to resort to explicit knowledge of
the invariant distribution. All constants implied in the O(1/N) notation are small and completely
explicit.

Coarse Ricci curvature κ = 1/N

Coarse diffusion constant σ(k)2 = (λ + k)/N + O(1/N2)

Estimated Ek (Proposition 24) Ek � J (0)/κ = λ

Actual Ek Ek = λ

Average diffusion constant σ 2 = Eσ(k)2 = 2λ/N + O(1/N2)

Dimension n � 1

Estimated variance (Proposition 32) σ 2/nκ(2 − κ) � λ + O(1/N)

Actual variance λ

Gaussian variance (Theorem 33) D2 � 2λ + O(1/N)

Lipschitz constant of D2
x C = 1 + O(1/N)

Gaussian range tmax = 4λ/3

The Poisson distribution has a roughly Gaussian behavior (with variance λ) in a range of size
approximately λ around the mean; further away, it decreases like e−k ln k which is not Gaussian.
This is in good accordance with tmax the table above, and shows that the Gaussian range cannot
be extended.

3.3.4. A continuous-time example: M/M/∞ queues
Here we show how to apply Theorem 33 to a continuous-time example, the M/M/∞ queue.

These queues were brought to my attention by D. Chafaï.
The M/M/∞ queue consists of an infinite number of “servers.” Each server can be free (0)

or busy (1). The state space consists of all sequences in {0,1}N with a finite number of 1’s.
The dynamics is at follows: fix two numbers λ > 0 and μ > 0. At a rate λ per unit of time, a
client arrives and the first free server becomes busy. At a rate μ per unit of time, each busy server
finishes its job (independently of the others) and becomes free. The number k ∈ N of busy servers
is a continuous-time Markov chain, whose transition probabilities at small times t are given by

pt
k,k+1 = λt + O

(
t2),

pt
k,k−1 = kμt + O

(
t2),

pt
k,k = 1 − (λ + kμ)t + O

(
t2).

This system is often presented as a discrete analogue of an Ornstein–Uhlenbeck process,
since asymptotically the drift is linear towards the origin. However, it is not symmetric around
the mean, and moreover the invariant (actually reversible) distribution ν is a Poisson distribution
with parameter λ/μ, rather than a Gaussian.
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This continuous-time Markov chain can be seen as a limit of the binomial Markov chain
above as follows: first, replace the binomial Markov chain with its continuous-time equivalent
(Remark 36); Then, set p = λ/N and let N → ∞, while speeding up time by a factor N . The
analogy is especially clear in the table below: if we replace λ with λ/N and μ with 1/N , we get
essentially the same table as for the binomial distribution.

It is easy to check that Proposition 32 (with σ 2/2nκ instead of σ 2/nκ(2 − κ)) and The-
orem 33 pass to the limit. In this continuous-time setting, the definitions become the fol-
lowing: κ(x, y) := − d

dt
W1(m

t
x,m

t
y)/d(x, y) (as mentioned in the introduction) and σ(x)2 :=

1
2

d
dt

∫∫
d(y, z)dmt

x(y)dmt
x(z), where mt

x is the law at time t of the process starting at x.
Then the relevant quantities are as follows.

Coarse Ricci curvature κ = μ

Coarse diffusion constant σ(k)2 = kμ + λ

Estimated Ek (Proposition 24) Ek � J (0)/κ = λ/μ

Actual Ek Ek = λ/μ

Average diffusion constant σ 2 = Eσ(k)2 = 2λ

Dimension n � 1

Estimated variance (Proposition 32) σ 2/2nκ = λ/μ

Actual variance λ/μ

Gaussian variance (Theorem 33) D2 � 2λ/μ

Lipschitz constant of D2
x C = 1

Gaussian range tmax = 4λ/3μ

So once more Theorem 33 is in good accordance with the behavior of the random walk, whose
invariant distribution is Poisson with mean and variance λ/μ, thus Gaussian-like only in some
interval around this value.

An advantage of this approach is that is can be generalized to situations where the rates of
the servers are not constant, but, say, bounded between μ0/10 and 10μ0, and clients go to the
first free server according to some predetermined scheme, e.g. the fastest free server. Indeed,
the M/M/∞ queue above can be seen as a Markov chain in the full configuration space of
the servers, namely the space of all sequences over the alphabet {free,busy} containing a finite
number of “busy.” It is easy to check that the coarse Ricci curvature is still equal to μ in this
configuration space. Now in the case of variable rates, the number of busy servers is generally
not Markovian, so one has to work in the configuration space. If the rate of the ith server is μi ,
the coarse Ricci curvature is infμi in the configuration space, whereas the diffusion constant
is controlled by supμi . So if the rates vary in a bounded range, coarse Ricci curvature still
provides a Gaussian-type control, though an explicit description of the invariant distribution is
not available.

Let us consider more realistic queue models, such as the M/M/k queue, i.e. the number of
servers is equal to k (with constant or variable rates). Then, on the part of the space where some
servers are free, coarse Ricci curvature is at least equal to the rate of the slowest server; whereas
on the part of the space where all servers are busy, coarse Ricci curvature is 0. If, as often, an
abandon rate for waiting clients is added to the model, then coarse Ricci curvature is equal to this
abandon rate on the part of the space where all servers are busy (and in particular, coarse Ricci
curvature is positive on the whole space).
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3.3.5. An example of exponential concentration
We give here a very simple example of a Markov chain which has positive curvature but

for which concentration is not Gaussian but exponential, due to large variations of the diffu-
sion constant, resulting in a large value of C. Compare Example 14 above where exponential
concentration was due to unbounded σ∞.

This is a continuous-time random walk on N defined as follows. Take 0 < α < β . For k ∈ N,
the transition rate from k to k + 1 is (k + 1)α, whereas the transition rate from k + 1 to k is
(k + 1)β . It is immediate to check that the geometric distribution with decay α/β is reversible
for this Markov chain.

The coarse Ricci curvature of this Markov chain is easily seen to be β − α. We have σ(k)2 =
(k + 1)α + kβ , so that σ(k)2 is (α + β)-Lipschitz and C = (α + β)/(β − α).

The expectation of k under the invariant distribution can be bounded by J (0)/κ = α/(β − α)

by Proposition 24, which is actually the exact value. So the expression above for σ(k)2 yields
σ 2 = 2αβ/(β − α). Consequently, the estimated variance σ 2/2nκ (obtained by the continuous-
time version of Proposition 32) is at most αβ/(β − α)2, which is the actual value.

Now consider the case when β − α is small. If the C factor in Theorem 33 is not taken
into account, we get blatantly false results since the invariant distribution is not Gaussian at all.
Indeed, in the regime where β − α → 0, the width of the Gaussian window in Theorem 33 is
D2/C ≈ α/(β − α). This is fine, as this is the decay distance of the invariant distribution, and in
this interval both the Gaussian and geometric estimates are close to 1 anyway. But without the C

factor, we would get D2/σ∞ = αβ/(β − α)2, which is much larger; the invariant distribution is
clearly not Gaussian on this interval.

Moreover, Theorem 33 predicts, in the exponential regime, a exp(−t/2C) behavior for con-
centration. Here the asymptotic behavior of the invariant distribution is (α/β)t ∼ (1 − 2/C)t ∼
e−2t/C when β − α is small. So we see that (up to a constant 4) the exponential decay rate
predicted by Theorem 33 is genuine.

3.3.6. Heavy tails
It is clear that a variance control alone does not imply any concentration bound beyond the

Bienaymé–Chebyshev inequality. We now show that this is still the case even under a positive
curvature assumption. Namely, in Theorem 33, neither the assumption that σ(x)2 is Lipschitz,
nor the assumption that σ∞ is bounded, can be removed (but see Remark 37).

Heavy tails with non-Lipschitz σ(x)2. Our next example shows that if the diffusion constant
σ(x)2 is not Lipschitz, then non-exponential tails may occur in spite of positive curvature.

Consider the continuous-time random walk on N defined as follows: the transition rate from
k to k + 1 is a(k + 1)2, whereas the transition rate from k to k − 1 is a(k + 1)2 + bk for k � 1.
Here a, b > 0 are fixed.

We have κ = b and σ(k)2 = 2a(k + 1)2 + bk, which is obviously not Lipschitz.
This Markov chain has a reversible measure ν, which satisfies ν(k)/ν(k − 1) =

ak2/(a(k + 1)2 + bk) = 1 − 1
k
(2 + b

a
) + O(1/k2). Consequently, asymptotically ν(k) behaves

like

k∏
i=1

(
1 − 1

i

(
2 + b

a

))
≈ e−(2+b/a)

∑k
i=1

1
i ≈ k−(2+b/a)

thus exhibiting heavy, non-exponential tails.
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This shows that the Lipschitz assumption for σ(x)2 cannot be removed, even though σ∞ = 1.
It would seem reasonable to expect a systematic correspondance between the asymptotic behav-
ior of σ(x)2 and the behavior of tails.

Heavy tails with unbounded σ∞. Consider the following random walk on N
∗: a number k

goes to 1 with probability 1 − 1/4k2 and to 2k with probability 1/4k2. One can check that
κ � 1/2. These probabilities are chosen so that σ(k)2 = (2k − 1)2 × 1/4k2 × (1 − 1/4k2) � 1,
so that the variance of the invariant distribution is small. However, let us evaluate the probability
that, starting at 1, the first i steps all consist in doing a multiplication by 2, so that we end
at 2i ; this probability is

∏i−1
j=0

1
4·(2j )2 = 4−1−i(i−1)/2. Setting i = log2 k, we see that the invariant

distribution ν satisfies

ν(k) � ν(1)

4
2− log2 k(log2 k−1)

for k a power of 2. This is clearly not Gaussian or exponential, though σ(k)2 is bounded.

4. Local control and logarithmic Sobolev inequality

We now turn to control of the gradient of Mf at some point, in terms of the gradient of f at
neighboring points. This is closer to classical Bakry–Émery theory, and allows to get a kind of
logarithmic Sobolev inequality.

Definition 41 (Norm of the gradient). Choose λ > 0 and, for any function f : X → R, define the
λ-range gradient of f by

(Df )(x) := sup
y,y′∈X

|f (y) − f (y′)|
d(y, y′)

e−λd(x,y)−λd(y,y′).

This is a kind of “mesoscopic” Lipschitz constant of f around x, since pairs of points y, y′
far away from x will not contribute much to Df (x). If f is a smooth function on a compact
Riemannian manifold, when λ → ∞ this quantity tends to |∇f (x)|.

It is important to note that log Df is λ-Lipschitz.
We will also need a control on negative curvature: in a Riemannian manifold, Ricci curvature

might be � 1 because there is a direction of curvature 1000 and a direction of curvature −999.
The next definition captures these variations.

Definition 42 (Unstability). Let

κ+(x, y) := 1

d(x, y)

∫
z

(
d(x, y) − d(x + z, y + z)

)
+

and

κ−(x, y) := 1

d(x, y)

∫ (
d(x, y) − d(x + z, y + z)

)
−

z
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where a+ and a− are the positive and negative part of a ∈ R, so that κ(x, y) = κ+(x, y) −
κ−(x, y). (The integration over z is under a coupling realizing the value of κ(x, y).)

The unstability U(x,y) is defined as

U(x,y) := κ−(x, y)

κ(x, y)
and U := sup

x,y∈X,x 
=y

U(x, y).

Remark 43. If X is ε-geodesic, then an upper bound for U(x,y) with d(x, y) � ε implies the
same upper bound for U .

In most discrete examples given in the introduction (Examples 8, 10, 12, 13, 14), unstability is
actually 0, meaning that the coupling between mx and my never increases distances. (This could
be a possible definition of non-negative sectional curvature for Markov chains.) In Riemannian
manifolds, unstability is controlled by the largest negative sectional curvature. Interestingly, in
Example 17 (Glauber dynamics), unstability depends on temperature.

Due to the use of the gradient D, the theorems below are interesting only if a reasonable
estimate for Df can be obtained depending on “local” data. This is not the case when f is
not λ-log-Lipschitz (compare the similar phenomenon in [8]). This is consistent with the fact
mentioned above, that Gaussian concentration of measure only occurs in a finite range, with
exponential concentration afterwards, which implies that no true logarithmic Sobolev inequality
can hold in general.

Theorem 44 (Gradient contraction). Suppose that coarse Ricci curvature is at least κ > 0. Let
λ � 1

20σ∞(1+U)
and consider the λ-range gradient D. Then for any function f : X → R with

Df < ∞ we have

D(Mf )(x) � (1 − κ/2)M(Df )(x)

for all x ∈ X.

Theorem 45 (Log-Sobolev inequality). Suppose that coarse Ricci curvature is at least κ > 0.
Let λ � 1

20σ∞(1+U)
and consider the λ-range gradient D. Then for any function f : x → R with

Df < ∞, we have

Varν f �
(

sup
x

4σ(x)2

κnx

)∫
(Df )2 dν

and for positive f ,

Entν f �
(

sup
x

4σ(x)2

κnx

)∫
(Df )2

f
dν

where ν is the invariant distribution.
If moreover the random walk is reversible with respect to ν, then

Varν f �
∫

V (x)Df (x)2 dν(x)
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and

Entν f �
∫

V (x)
Df (x)2

f (x)
dν(x)

where

V (x) = 2
∞∑
t=0

(1 − κ/2)2tMt+1
(

σ(x)2

nx

)
.

The form involving V (x) is motivated by the fact that, for reversible diffusions in R
N with

non-constant diffusion coefficients, the coefficients naturally appear in the formulation of func-
tional inequalities (see e.g. [2]). The quantity V (x)Df (x)2 is to be thought of as a crude version
of the Dirichlet form associated with the random walk. It would be more satisfying to obtain
inequalities involving the latter (compare Corollary 31), but I could not get a version of the
commutation property DM � (1 − κ/2)MD involving the Dirichlet form.

Remark 46. If σ(x)2

nxκ
is C-Lipschitz (as in Theorem 33), then V (x) � 4σ 2

κn
+ 2C

J(x)
κ

.

Examples. Let us compare this theorem to classical results.
In the case of a Riemannian manifold, for any smooth function f we can choose a random

walk with small enough steps, so that λ can be arbitrarily large and Df arbitrarily close to |∇f |.
Since moreover σ(x)2 does not depend on x for the Brownian motion, this theorem allows to
recover the logarithmic Sobolev inequality in the Bakry–Émery framework, with the correct
constant up to a factor 4.

Next, consider the two-point space {0,1}, equipped with the measure ν(0) = 1 − p

and ν(1) = p. This is the space on which modified logarithmic Sobolev inequalities were in-
troduced [8]. We endow this space with the Markov chain sending each point to the invariant
distribution. Here we have σ(x)2 = p(1 − p), nx = 1 and κ = 1, so that we get the inequality

Entν f � 4p(1 − p)
∫ (Df )2

f
dν, comparable to the known inequality [8] except for the factor 4.

The modified logarithmic Sobolev inequality for Bernoulli and Poisson measures is tra-
ditionally obtained by tensorizing this result [8]. If, instead, we directly apply the theorem
above to the Bernoulli measure on {0,1}N or the Poisson measure on N (see Sections 3.3.3
and 3.3.4), we get slightly worse results. Indeed, consider the M/M/∞ queue on N, which
is the limit when N → ∞ of the projection on N of the Markov chains on {0,1}N associated
with Bernoulli measures. Keeping the notation of Section 3.3.4, we get, in the continuous-time
version, σ(x)2 = xμ + λ, which is not bounded. So we have to use the version with V (x); Re-
mark 46 and the formulas in Section 3.3.4 yield V (x) � 8λ/μ + 2(λ + xμ)/μ so that we get the
inequality

Entν f � λ

μ

∫
Df (x)2

f (x)
(10 + 2xμ/λ)dν(x)

= λ
∫

Df (x)2 (
2 dν(x − 1) + 10 dν(x)

)

μ f (x)
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which is to be compared to the inequality

Entν f � λ

μ

∫
D+f (x)2

f (x)
dν(x)

obtained in [8], with D+f (x) = f (x + 1) − f (x). So asymptotically our version is worse by a
factor dν(x − 1)/dν(x) ≈ x. One could say that our general, non-local notion of gradient fails
to distinguish between a point and an immediate neighbor, and does not take advantage of the
particular directional structure of a random walk on N as the use of D+ does.

Yet being able to handle the configuration space directly rather than as a product of the two-
point space allows us to deal with more general, non-product situations. Consider for example
the queuing process with heterogeneous server rates mentioned at the end of Section 3.3.4, where
newly arrived clients go to the fastest free server (in which case the number of busy servers is
not Markovian). Then coarse Ricci curvature is equal to the infimum of the server rates, and
Theorem 45 still holds, though the constants are probably not optimal when the rates are very
different. I do not know if this result is new.

We now turn to the proof of Theorems 44 and 45. The proof of the former is specific to our
setting, but the passage from the former to the latter is essentially a copy of the Bakry–Émery
argument.

Lemma 47. Let x, y ∈ X with κ(x, y) > 0. Let (Z,μ) be a probability space equipped with
a map π : Z → Suppmx × Suppmy such that π sends μ to an optimal coupling between mx

and my . Let A be a positive function on Z such that supA/ infA � eρ with ρ � 1
2(1+U)

. Then

∫
z∈Z

A(z)
d(x + z, y + z)

d(x, y)
�

(
1 − κ(x, y)/2

) ∫
z

A(z)

and in particular

∫
z∈Z

A(z)
(
d(x + z, y + z) − d(x, y)

)
� 0

where, as usual, x + z and y + z denote the two projections from Z to Suppmx and Suppmy

respectively.

Proof. The idea is the following: when A is constant, the result obviously holds since by defi-
nition

∫
d(x + z, y + z)/d(x, y) = 1 − κ(x, y). Now when A is close enough to a constant, the

same holds with some numerical loss.
Set F = supz A(z). Then

∫
A(z)

d(x + z, y + z)

d(x, y)
=

∫
A(z) + F

∫
A(z)

F

(
d(x + z, y + z)

d(x, y)
− 1

)
.

z z z
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Let Z− = {z ∈ Z, d(x, y) < d(x + z, y + z)} and Z+ = Z \ Z−. Recall that by definition,
κ−(x, y) = ∫

Z−(d(x + z, y + z)/d(x, y) − 1) and κ+(x, y) = ∫
Z+(1 − d(x + z, y + z)/d(x, y)),

so that κ = κ+ − κ−. Using that A(z) � F on Z− and A(z) � e−ρF on Z+, we get∫
z

A(z)
d(x + z, y + z)

d(x, y)
�

∫
z

A(z) + F
(
κ−(x, y) − e−ρκ+(x, y)

)
.

Now by definition of U we have κ−(x, y) � Uκ(x, y). It is not difficult to check that ρ �
1

2(1+U)
is enough to ensure that e−ρκ+(x, y) − κ−(x, y) � κ(x, y)/2, hence

∫
z

A(z)
d(x + z, y + z)

d(x, y)
�

∫
z

A(z) − Fκ(x, y)/2

�
(
1 − κ(x, y)/2

) ∫
z

A(z)

as needed. �
Proof of Theorem 44. Let y, y′ ∈ X. Let ξxy and ξyy′ be optimal couplings between mx and my ,
my and my′ respectively. Apply the gluing lemma for couplings (Lemma 7.6 in [47]) to obtain
a measure μ on Z = Suppmx × Suppmy × Suppmy′ whose projections on Suppmx × Suppmy

and Suppmy × Suppmy′ are ξxy and ξyy′ respectively.
We have

|Mf (y) − Mf (y′)|
d(y, y′)

e−λ(d(x,y)+d(y,y′))

=
∣∣∣∣
∫

z∈Z

f (y + z) − f (y′ + z)

∣∣∣∣ e−λ(d(x,y)+d(y,y′))

d(y, y′)

�
∫

z∈Z

∣∣f (y + z) − f (y′ + z)
∣∣ e−λ(d(x,y)+d(y,y′))

d(y, y′)

�
∫

z∈Z

Df (x + z)
d(y + z, y′ + z)

e−λ(d(x+z,y+z)+d(y+z,y′+z))

e−λ(d(x,y)+d(y,y′))

d(y, y′)

=
∫

z∈Z

A(z)B(z)
d(y + z, y′ + z)

d(y, y′)

where A(z) = Df (x + z) and B(z) = eλ(d(x+z,y+z)−d(x,y)+d(y+z,y′+z)−d(y,y′)).
Since diam Suppmx � 2σ∞ and likewise for y, for any z, z′ we have

∣∣d(x + z, y + z) − d(x + z′, y + z′)
∣∣ � 4σ∞,∣∣d(y + z, y′ + z) − d(y + z′, y′ + z′)
∣∣ � 4σ∞
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so that B varies by a factor at most e8λσ∞ on Z. Likewise, since Df is λ-log-Lipschitz, A varies
by a factor at most e2λσ∞ . So the quantity A(z)B(z) varies by at most e10λσ∞ .

So if λ � 1
20σ∞(1+U)

, we can apply Lemma 47 and get

∫
z∈Z

A(z)B(z)
d(y + z, y′ + z)

d(y, y′)
� (1 − κ/2)

∫
z∈Z

A(z)B(z).

Now we have
∫
z
A(z)B(z) = ∫

z
A(z) + ∫

z
A(z)(B(z) − 1). Unwinding B(z) and using that

ea − 1 � aea for any a ∈ R, we get

∫
z

A(z)(B(z) − 1) � λ

∫
z

A(z)B(z)
(
d(x + z, y + z) − d(x, y) + d(y + z, y′ + z) − d(y, y′)

)

which decomposes as a sum of two terms λ
∫
z
A(z)B(z)(d(x + z, y + z) − d(x, y)) and

λ
∫
z
A(z)B(z)(d(y + z, y′ + z) − d(y, y′)), each of which is non-positive by Lemma 47. Hence∫

z
A(z)(B(z) − 1) � 0 and

∫
z
A(z)B(z) �

∫
z
A(z) = ∫

z
Df (x + z) = M(Df )(x). So we have

shown that for any y, y′ in X we have

|Mf (y) − Mf (y′)|
d(y, y′)

e−λ
(
d(x,y)+d(y,y′)) � (1 − κ/2)M(Df )(x)

as needed. �
Lemma 48. Let f be a function with Df < ∞. Let x ∈ X. Then f is e4λσ∞M(Df )(x)-Lipschitz
on Suppmx .

Proof. For any y, z ∈ Suppmx , by definition of D we have |f (y) − f (z)| �
Df (y)d(y, z)eλd(y,z) � Df (y)d(y, z)e2λσ∞ . Since moreover Df is λ-log-Lipschitz, we have
Df (y) � e2λσ∞ infSuppmx Df � e2λσ∞M(Df )(x), so that finally

∣∣f (y) − f (z)
∣∣ � d(y, z)M(Df )(x) e4λσ∞

as announced. �
Proof of Theorem 45. Let ν be the invariant distribution. Let f be a positive measur-
able function. Associativity of entropy (e.g. Theorem D.13 in [22] applied to the measure
f (y)dν(x)dmx(y) on X × X) states that

Entf =
∫
x

Entmx f dν(x) + Ent Mf

=
∑
t�0

∫
Entmx Mt f dν(x)
x
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by induction, and similarly

Varf =
∑
t�0

∫
x

Varmx Mt f dν(x).

Since by the lemma above, f is M(Df )(x) e4λσ∞ -Lipschitz on Suppmx and moreover
e8λσ∞ < 2, we have

Varmx f � 2(M(Df )(x))2 σ(x)2

nx

and, using that a loga � a2 − a, we get that Entmx f � 1
Mf (x)

Varmx f so

Entmx f � 2(M(Df )(x))2 σ(x)2

nx Mf (x)
.

Thus

Varf � 2
∑
t�0

∫
x

σ (x)2

nx

(
M

(
DMt f

)
(x)

)2 dν(x)

and

Entf � 2
∑
t�0

∫
x

σ (x)2

nx

(M(DMt f )(x))2

Mt+1f (x)
dν(x).

By Theorem 44, we have (DMt f )(y) � (1 − κ/2)tMt (Df )(y), so that

Varf � 2
∑
t�0

∫
x

σ (x)2

nx

(
Mt+1Df (x)

)2
(1 − κ/2)2t dν(x)

and

Entf � 2
∑
t�0

∫
x

σ (x)2

nx

(Mt+1Df (x))2

Mt+1f (x)
(1 − κ/2)2t dν(x).

Now, for variance, convexity of a �→ a2 yields

(
Mt+1Df

)2 � Mt+1((Df )2)
and for entropy, convexity of (a, b) �→ a2/b for a, b > 0 yields

(Mt+1Df (x))2

t+1
� Mt+1

(
(Df )2 )

(x).

M f (x) f
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Finally we get

Varf � 2
∑
t�0

(1 − κ/2)2t

∫
x

σ (x)2

nx

Mt+1((Df )2)(x)dν(x)

and

Entf � 2
∑
t�0

(1 − κ/2)2t

∫
x

σ (x)2

nx

Mt+1
(

(Df )2

f

)
(x)dν(x).

Now, in the non-reversible case, simply apply the identity∫
g(x)Mt+1h(x)dν(x) � (supg)

∫
Mt+1h(x)dν(x) = (supg)

∫
hdν

to the functions g(x) = σ(x)2

nx
and h(x) = (Df )(x)2 (for variance) or h(x) = (Df )(x)2/f (x) (for

entropy). For the reversible case, use the identity∫
g(x)Mt+1h(x)dν(x) =

∫
h(x)Mt+1g(x)dν(x)

instead. �
5. Exponential concentration in non-negative curvature

We have seen that positive coarse Ricci curvature implies a kind of Gaussian concentration.
We now show that non-negative coarse Ricci curvature and the existence of an “attracting point”
imply exponential concentration.

The basic example to keep in mind is the following. Let N be the set of non-negative integers
equipped with its standard distance. Let 0 < p < 1 and consider the nearest-neighbor random
walk on N that goes to the left with probability p and to the right with probability 1−p; explicitly
mk = pδk−1 + (1 − p)δk+1 for k � 1, and m0 = pδ0 + (1 − p)δ1.

Since for k � 1 the transition kernel is translation-invariant, it is immediate to check that
κ(k, k+1) = 0; besides, κ(0,1) = p. There exists an invariant distribution if and only if p > 1/2,
and it satisfies exponential concentration with decay distance 1/ log(p/(1−p)). For p = 1/2+ε

with small ε this behaves like 1/4ε. Of course, when p � 1/2, there is no invariant distribution
so that non-negative curvature alone does not imply concentration of measure.

Geometrically, what entails exponential concentration in this example is the fact that,
for p > 1/2, the point 0 “pulls” its neighbor, and the pulling is transmitted by non-negative
curvature. We now formalize this situation in the following theorem.

Theorem 49. Let (X,d, (mx)) be a metric space with random walk. Suppose that for some o ∈ X

and r > 0 one has:

• κ(x, y) � 0 for all x, y ∈ X,
• for all x ∈ X with r � d(o, x) < 2r , one has W1(mx, δo) < d(x, o),
• X is r-geodesic,
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• there exists s > 0 such that each measure mx satisfies the Gaussian-type Laplace transform
inequality

Emx eλf � eλ2s2/2eλEmx f

for any λ > 0 and any 1-Lipschitz function f : Suppmx → R.

Set ρ = inf{d(x, o) − W1(mx, δo), r � d(o, x) < 2r} and assume ρ > 0.
Then there exists an invariant distribution for the random walk. Moreover, setting D = s2/ρ

and m = r + 2s2/ρ + ρ(1 + J (o)2/4s2), for any invariant distribution ν we have

∫
ed(x,o)/D dν(x) �

(
4 + J (o)2/s2) em/D

and so for any 1-Lipschitz function f : X → R and t � 0 we have

Pr
(∣∣f − f (o)

∣∣ � t + m
)
�

(
8 + 2J (o)2/s2) e−t/D.

So we get exponential concentration with characteristic decay distance s2/ρ.
The last assumption is always satisfied with s = 2σ∞ (Proposition 1.16 in [29]).

Examples. Before proceeding to the proof, let us show how this applies to the geometric distri-
bution above on N. We take of course o = 0 and r = 1. We can take s = 2σ∞ = 2. Now there
is only one point x with r � d(o, x) < 2r , which is x = 1. It satisfies m1 = pδ0 + (1 − p)δ2, so
that W1(m1, δ0) = 2(1 − p), which is smaller than d(0,1) = 1 if and only if p > 1/2 as was to
be expected. So we can take ρ = 1 − 2(1 − p) = 2p − 1. Then we get exponential concentration
with characteristic distance 4/(2p − 1). When p is very close to 1 this is not so good (because
the discretization is too coarse), but when p is close to 1/2 this is within a factor 2 of the optimal
value.

Another example is the stochastic differential equation dXt = S dBt − α Xt|Xt | dt on R
n, for

which exp(−2|x|α/S2) is a reversible measure. Take as a Markov chain the Euler approxi-
mation scheme at time δt for this stochastic differential equation, as in Example 11. Taking
r = nS2/α yields that ρ � α δt/2 after some simple computation. Since we have s2 = S2δt for
Gaussian measures at time δt , we get exponential concentration with decay distance 2S2/α,
which is correct up to a factor 4. The additive constant in the deviation inequality is m =
r + ρ(1 + J (o)2/4s2) + 2s2/ρ which is equal to (n + 4)S2/α + O(δt) (note that J (o)2 ≈ ns2).
For comparison, the actual value for the average distance to the origin under the exponential
distribution e−2|x|α/S2

is nS2/2α, so that up to a constant the dependency on dimension is recov-
ered.

In general, the invariant distribution is not unique under the assumptions of the theorem. For
example, start with the random walk on N above with geometric invariant distribution; now
consider the disjoint union N∪ (N+ 1

2 ) where on N+ 1
2 we use the same random walk translated

by 1
2 : the assumptions are satisfied with r = 1 and o = 0, but clearly there are two disjoint

invariant distributions. However, if κ > 0 in some large enough ball around o, then the invariant
distribution will be unique.
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Proof of Theorem 49. Let us first prove a lemma which shows how non-negative curvature
transmits the “pulling.”

Lemma 50. Let x ∈ X with d(x, o) � r . Then W1(mx, o) � d(x, o) − ρ.

Proof. If d(o, x) < 2r then this is one of the assumptions. So we suppose that d(o, x) � 2r .
Since X is r-geodesic, let o = y0, y1, y2, . . . , yn = x be a sequence of points with

d(yi, yi+1) � r and
∑

d(yi, yi+1) = d(o, x). We can assume that d(o, y2) > r (otherwise, re-
move y1). Set z = y1 if d(o, y1) = r and z = y2 if d(o, y1) < r , so that r � d(o, z) < 2r . Now

W1(δo,mx) � W1(δo,mz) + W1(mz,mx)

� d(o, z) − ρ + d(z, x)

since κ(z, x) � 0. But d(o, z) + d(z, x) = d(o, x) by construction, hence the conclusion. �
We are now ready to prove the theorem. The idea is to consider the function eλd(x,o). For

points far away from the origin, since under the random walk the average distance to the origin
decreases by ρ by the previous lemma, we expect the function to be multiplied by e−λρ under
the random walk operator. Close to the origin, the evolution of the function is controlled by the
variance s2 and the jump J (o) of the origin. Since the integral of the function is preserved by the
random walk operator, and it is multiplied by a quantity < 1 far away, this shows that the weight
of faraway points cannot be too large.

More precisely, we need to tamper a little bit with what happens around the origin. Let
ϕ : R+ → R+ be defined by ϕ(x) = 0 if x < r ; ϕ(x) = (x − r)2/kr if r � x < r(k

2 + 1)

and ϕ(x) = x − r − kr/4 if x � r( k
2 + 1), for some k > 0 to be chosen later. Note that ϕ is

a 1-Lipschitz function and that ϕ′′ � 2/kr .
If Y is any random variable with values in R+, we have

Eϕ(Y ) � ϕ(EY) + 1

2
VarY supϕ′′ � ϕ(EY) + 1

kr
VarY.

Now choose some λ > 0 and consider the function f : X → R defined by f (x) = eλϕ(d(o,x)).
Note that ϕ(d(o, x)) is 1-Lipschitz, so that by the Laplace transform assumption we have

Mf (x) � eλ2s2/2eλMϕ(d(o,x)).

The Laplace transform assumption implies that the variance under mx of any 1-Lipschitz
function is at most s2. So by the remark above, we have

Mϕ
(
d(o, x)

)
� ϕ

(
Md(o, x)

) + s2

kr
= ϕ

(
W1(mx, δo)

) + s2

kr

so that finally

Mf (x) � eλ2s2/2+λs2/kreλϕ(W1(mx,δo))

for any x ∈ X.
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We will use different bounds on ϕ(W1(mx, δo)) according to d(o, x). First, if d(x, o) < r ,
then use non-negative curvature to write W1(mx, δo) � W1(mx,mo) + J (o) � d(x, o) + J (o) so
that ϕ(W1(mx, δo)) � ϕ(r + J (o)) � J (o)2/kr so that

Mf (x) � eλ2s2/2+λs2/kr+λJ (o)2/kr = eλ2s2/2+λs2/kr+λJ (o)2/krf (x)

since f (x) = 1.
Second, for any x with d(x, o) � r , Lemma 50 yields

Mf (x) � eλ2s2/2+λs2/kreλϕ(d(x,o)−ρ).

If d(x, o) � r( k
2 + 1) + ρ then ϕ(d(x, o) − ρ) = ϕ(d(x, o)) − ρ so that

Mf (x) � eλ2s2/2+λs2/kr−λρf (x).

If r � d(x, o) < r( k
2 + 1) + ρ, then ϕ(d(x, o) − ρ) � ϕ(d(x, o)) so that

Mf (x) � eλ2s2/2+λs2/krf (x).

Let ν be any probability measure such that
∫

f dν < ∞. Let X′ = {x ∈ X, d(x, o) < r( k
2 +1)}

and X′′ = X \ X′. Set A(ν) = ∫
X′ f dν and B(ν) = ∫

X′′ f dν. Combining the cases above, we
have shown that

A(ν ∗ m) + B(ν ∗ m) =
∫

f d(ν ∗ m) =
∫

Mf dν

=
∫
X′

Mf dν +
∫
X′′

Mf dν

� eλ2s2/2+λs2/kr+λJ (o)2/kr

∫
X′

f dν + eλ2s2/2+λs2/kr−λρ

∫
X′′

f dν

= αA(ν) + βB(ν)

with α = eλ2s2/2+λs2/kr+λJ (o)2/kr and β = eλ2s2/2+λs2/kr−λρ .
Choose λ small enough and k large enough (see below) so that β < 1. Using that A(ν) �

eλkr/4 for any probability measure ν, we get αA(ν)+βB(ν) � (α −β)eλkr/4 +β(A(ν)+B(ν)).

In particular, if A(ν)+B(ν) � (α−β)eλkr/4

1−β
, we get αA(ν)+βB(ν) � (α−β)eλkr/4

1−β
again. So setting

R = (α−β)eλkr/4

1−β
, we have just shown that the set C of probability measures ν such that

∫
f dν � R

is invariant under the random walk.
Moreover, if A(ν)+B(ν) > R then αA(ν)+βB(ν) < A(ν)+B(ν). Hence, if ν is an invariant

distribution, necessarily ν ∈ C. This, together with an evaluation of R given below, will provide
the bound for

∫
f dν stated in the theorem.

We now turn to existence of an invariant distribution. First, C is obviously closed and convex.
Moreover, C is tight: indeed if K is a compact, say included in a ball of radius a around o,
then for any ν ∈ C we have ν(X \ K) � Re−λa . So by Prokhorov’s theorem, C is compact in
the weak convergence topology. So C is compact convex in the topological vector space of all
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(signed) Borel measures on X, and is invariant by the random walk operator, which is an affine
map. By the Markov–Kakutani theorem (Theorem I.3.3.1 in [23]), it has a fixed point.

Let us finally evaluate R. We have

R = α/β − 1

1/β − 1
eλkr/4 = eλJ (o)2/kr+λρ − 1

eλρ−λs2/kr−λ2s2/2 − 1
eλkr/4

� ρ + J (o)2/kr

ρ − s2/kr − λs2/2
eλJ (o)2/kr+λρ+λkr/4

using ea − 1 � aea and ea − 1 � a.
Now take λ = ρ/s2 and k = 4s2/rρ. This yields

R �
(
4 + J (o)2/s2) eλ(s2/ρ+ρ(1+J (o)2/4s2)).

Let ν be some invariant distribution: it satisfies
∫

f dν � R. Since d(x, o) �
ϕ(d(x, o))+r(1+k/4) we have

∫
eλd(x,o) dν � eλr(1+k/4)

∫
f dν � Reλr(1+k/4), hence the result

in the theorem. �
6. L2 Bonnet–Myers theorems

As seen in Section 2.3, it is generally not possible to give a bound for the diameter of a
positively curved space similar to the usual Bonnet–Myers theorem involving the square root
of curvature, the simplest counterexample being the discrete cube. Here we describe additional
conditions which provide such a bound in two different kinds of situation.

We first give a bound on the average distance between two points rather than the diameter;
it holds when there is an “attractive point” and is relevant for examples such as the Ornstein–
Uhlenbeck process (Example 9) or its discrete analogue (Example 10).

Next, we give a direct generalization of the genuine Bonnet–Myers theorem for Riemannian
manifolds. Despite lack of further examples, we found it interesting to provide an axiomatization
of the Bonnet–Myers theorem in our language. This is done by reinforcing the positive curvature
assumption, which compares the transportation distance between the measures issuing from two
points x and y at a given time, by requiring a transportation distance inequality between the
measures issuing from two given points at different times.

6.1. Average L2 Bonnet–Myers

We now describe a Bonnet–Myers–like estimate on the average distance between two points,
provided there is some “attractive point.” The proof is somewhat similar to that of Theorem 49.

Proposition 51 (Average L2 Bonnet–Myers). Let (X,d, (mx)) be a metric space with random
walk, with coarse Ricci curvature at least κ > 0. Suppose that for some o ∈ X and r � 0, one
has

W1(δo,mx) � d(o, x)

for any x ∈ X with r � d(o, x) < 2r , and that moreover X is r-geodesic.
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Then

∫
d(o, x)dν(x) �

√
1

κ

∫
σ(x)2

nx

dν(x) + 5r

where as usual ν is the invariant distribution.

Note that the assumption
∫

d(o, y)dmx(y) � d(o, x) cannot hold for x in some ball around o

unless o is a fixed point. This is why the assumption is restricted to an annulus.
As in the Gaussian concentration theorem (Theorem 33), in case σ(x)2 is Lipschitz, Corol-

lary 22 may provide a useful bound on
∫

σ(x)2

nx
dν(x) in terms of its value at some point.

As a first example, consider the discrete Ornstein–Uhlenbeck process of Example 10, which
is the Markov chain on {−N, . . . ,N} given by the transition probabilities pk,k = 1/2, pk,k+1 =
1/4−k/4N and pk,k−1 = 1/4+k/4N ; the coarse Ricci curvature is κ = 1/2N , and the invariant
distribution is the binomial 1

22N

( 2N
N+k

)
. This example is interesting because the diameter is 2N

(which is the bound provided by Proposition 23), whereas the average distance between two
points is ≈ √

N . It is immediate to check that 0 is attractive, namely that o = 0 and r = 1 fulfill
the assumptions. Since σ(x)2 ≈ 1 and κ ≈ 1/N , the proposition recovers the correct order of
magnitude for distance to the origin.

Our next example is the Ornstein–Uhlenbeck process dXt = −αXt dt + s dBt on R
N (Ex-

ample 9). Here it is clear that 0 is attractive in some sense, so o = 0 is a natural choice. The
invariant distribution is Gaussian of variance s2/α; under this distribution the average distance
to 0 is ≈ √

Ns2/α.
At small time τ , a point x ∈ R

N is sent to a Gaussian centered at (1 − ατ)x, of variance τs2.
The average quadratic distance to the origin under this Gaussian is (1 − ατ)2d(0, x)2 + Ns2τ +
o(τ) by a simple computation. If d(0, x)2 > Ns2/2α this is less than d(0, x)2, so that we can
take r = √

Ns2/2α. Considering the random walk discretized at time τ we have we have κ ∼ ατ ,
σ(x)2 ∼ Ns2τ and nx ≈ N . So in the proposition above, the first term is ≈ √

s2/α, whereas the
second term is 5r ≈ √

Ns2/α, which is thus dominant. So the proposition gives the correct
order of magnitude; in this precise case, the first term in the proposition reflects concentration
of measure (which is dimension-independent for Gaussians), whereas it is the second term 5r

which carries the correct dependency on dimension for the average distance to the origin.

Proof. Let ϕ : R → R be the function defined by ϕ(x) = 0 if x � 2r , and ϕ(x) = (x − 2r)2

otherwise. For any real-valued random variable Y , we have

Eϕ(Y ) � ϕ(EY) + 1

2
VarY supϕ′′ = ϕ(EY) + VarY.

Now let f : X → R be defined by f (x) = ϕ(d(o, x)). We are going to show that

Mf (x) � (1 − κ)2f (x) + σ(x)2

nx

+ 9r2

for all x ∈ X. Since
∫

f dν = ∫
Mf dν, we will get

∫
f dν � (1 − κ)2

∫
f dν + ∫

σ(x)2

nx
dν + 9r2

which easily implies the result.
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First, suppose that r � d(o, x) < 2r . We have f (x) = 0. Now
∫

d(o, y)dmx(y) is at most
d(o, y) by assumption. Using the bound above for ϕ, together with the definition of σ(x)2 and nx ,
we get

Mf (x) =
∫

ϕ
(
d(o, y)

)
dmx(y) � ϕ

(∫
d(o, y)dmx(y)

)
+ σ(x)2

nx

= σ(x)2

nx

since
∫

d(o, y)dmx(y) � 2r by assumption.
Second, suppose that d(x, o) � 2r . Using that X is r-geodesic, we can find a point x′ such

that d(o, x) = d(o, x′) + d(x′, x) and r � d(o, x′) < 2r (take the second point in a sequence
joining o to x). Now we have

∫
d(o, y)dmx(y) = W1(δo,mx)

� W1(δo,mx′) + W1(mx′ ,mx)

� W1(δo,mx′) + (1 − κ)d(x′, x)

� d(o, x′) + (1 − κ)d(x′, x) � (1 − κ)d(o, x) + 2κr

and as above, this implies

Mf (x) � ϕ

(∫
d(o, y)dmx(y)

)
+ σ(x)2

nx

�
(
(1 − κ)d(o, x) + 2κr − 2r

)2 + σ(x)2

nx

= (1 − κ)2ϕ
(
d(o, x)

) + σ(x)2

nx

as needed.
The last case to consider is d(o, x) < r . In this case we have

∫
d(o, y)dmx(y) = W1(δo,mx)

� W1(δo,mo) + W1(mo,mx) = J (o) + W1(mo,mx)

� J (o) + (1 − κ)d(o, x) � J (o) + r.

So we need to bound J (o). If X is included in the ball of radius r around o, the result trivially
holds, so that we can assume that there exists a point x with d(o, x) � r . Since X is r-geodesic we
can assume that d(o, x) < 2r as well. Now J (o) = W1(mo, δo) � W1(mo,mx) + W1(mx, δo) �
(1 − κ)d(o, x) + W1(mx, δo) � (1 − κ)d(o, x) + d(o, x) by assumption, so that J (o) � 4r .
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Plugging this into the above, for d(o, x) < r we get
∫

d(o, y)dmx(y) � 5r so that

ϕ(
∫

d(o, y)dmx(y)) � 9r2 hence Mf (x) � 9r2 + σ(x)2

nx
.

Combining the results, we get that whatever x ∈ X

Mf (x) � (1 − κ)2f (x) + σ(x)2

nx

+ 9r2

as needed. �
6.2. Strong L2 Bonnet–Myers

As mentioned above, positive coarse Ricci curvature alone does not imply a 1/
√

κ-like di-
ameter control, because of such simple counterexamples as the discrete cube or the Ornstein–
Uhlenbeck process. We now extract a property satisfied by the ordinary Brownian motion on
Riemannian manifolds (without drift), which guarantees a genuine Bonnet–Myers theorem. Of
course, this is of limited interest since the only available example is Riemannian manifolds, but
nevertheless we found it interesting to find a sufficient condition expressed in our present lan-
guage.

Our definition of coarse Ricci curvature controls the transportation distance between the mea-
sures issuing from two points x and x′ at a given time t . The condition we will now use controls
the transportation distance between the measures issuing from two points at two different times.
It is based on what holds for Gaussian measures in R

N . For any x, x′ ∈ R
N and t, t ′ > 0, let m∗t

x

and m∗t ′
x′ be the laws of the standard Brownian motion issuing from x at time t and from x′ at

time t ′, respectively. It is easy to check that the L2 transportation distance between these two
measures is

W2
(
m∗t

x ,m∗t ′
x′

)2 = d(x, x′)2 + N(
√

t − √
t ′)2

hence

W1
(
m∗t

x ,m∗t ′
x′

)
� d(x, x′) + N(

√
t − √

t ′)2

2d(x, x′)
.

The important feature here is that, when t ′ tends to t , the second term is of second order
in t ′ − t . This is no more the case if we add a drift term to the diffusion.

We now take this inequality as an assumption and use it to copy the traditional proof of
the Bonnet–Myers theorem. Here, for simplicity of notation we suppose that we are given a
continuous-time Markov chain; however, the proof uses only a finite number of different values
of t , so that discretization is possible (this is important in Riemannian manifolds, because the
heat kernel is positive on the whole manifold at any positive time, and there is no simple control
on it far away from the initial point; taking a discrete approximation with bounded steps solves
this problem).
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Proposition 52 (Strong L2 Bonnet–Myers). Let X be a metric space equipped with a continuous-
time random walk m∗t . Assume that X is ε-geodesic, and that there exist constants κ > 0,C � 0
such that for any two small enough t, t ′, for any x, x′ ∈ X with ε � d(x, x′) � 2ε one has

W1
(
m∗t

x ,m∗t ′
x′

)
� e−κ inf(t,t ′)d(x, x′) + C(

√
t − √

t ′)2

2d(x, x′)

with κ > 0. Assume moreover that ε � 1
2

√
C/2κ .

Then

diamX � π

√
C

2κ

(
1 + 4ε√

C/2κ

)
.

When t = t ′, the assumption reduces to W1(m
∗t
x ,m∗t

x′ ) � e−κtd(x, x′), which is just the
continuous-time version of the positive curvature assumption. The constant C plays the role
of a diffusion constant, and is equal to N for (a discrete approximation of) Brownian motion on
a Riemannian manifold. We restrict the assumption to d(x, x′) � ε to avoid divergence problems

for C(
√

t−√
t ′)2

2d(x,x′) when x′ → x.

For Brownian motion on an N -dimensional Riemannian manifold, we can take κ = 1
2 inf Ric

by Bakry–Émery theory (the 1
2 is due to the fact that the infinitesimal generator of Brownian

motion is 1
2
), and C = N as in R

N . So we get the usual Bonnet–Myers theorem, up to a
factor

√
N instead of

√
N − 1 (similarly to our spectral gap estimate in comparison with the

Lichnerowicz theorem), but with the correct constant π .

Proof. Let x, x′ ∈ X. Since X is ε-geodesic, we can find a sequence x = x0, x1, . . . , xk−1,

xk = x′ of points in X with d(xi, xi+1) � ε and
∑

d(xi, xi+1) = d(x0, xk). By taking a sub-
sequence (denoted xi again), we can assume that ε � d(xi, xi+1) � 2ε instead.

Set ti = η sin(
πd(x,xi )
d(x,x′) )2 for some (small) value of η to be chosen later. Now, since t0 = tk = 0

we have

d(x, x′) = W1(δx, δx′) �
∑

W1
(
m∗ti

xi
,m

∗ti+1
xi+1

)
�

∑
e−κ inf(ti ,ti+1)d(xi, xi+1) + C(

√
ti+1 − √

ti )
2

2d(xi, xi+1)

by assumption. Now we have | sinb − sina| = |2 sin b−a
2 cos a+b

2 | � |b − a|| cos a+b
2 | so that

C(
√

ti+1 − √
ti )

2

2d(xi, xi+1)
� Cηπ2d(xi, xi+1)

2d(x, x′)2
cos2

(
π

d(x, xi) + d(x, xi+1)

2d(x, x′)

)
.

Besides, if η is small enough, one has e−κ inf(ti ,ti+1) = 1 − κ inf(ti , ti+1) + O(η2). So we get

d(x, x′) �
∑

d(xi, xi+1) − κ inf(ti , ti+1)d(xi, xi+1)

+ Cηπ2d(xi, xi+1)

′ 2
cos2

(
π

d(x, xi) + d(x, xi+1)

′

)
+ O

(
η2).
2d(x, x ) 2d(x, x )
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Now the terms
∑

d(xi, xi+1) cos2(π
d(x,xi )+d(x,xi+1)

2d(x,x′) ) and
∑

inf(ti , ti+1)d(xi, xi+1) are close

to the integrals d(x, x′)
∫ 1

0 cos2(πu)du and d(x, x′)η
∫ 1

0 sin2(πu)du respectively; the relative
error in the Riemann sum is easily bounded by πε/d(x, x′) so that

d(x, x′) � d(x, x′) − κηd(x, x′)
(

1

2
− πε

d(x, x′)

)

+ Cηπ2

2d(x, x′)2
d(x, x′)

(
1

2
+ πε

d(x, x′)

)
+ O

(
η2)

hence, taking η small enough,

d(x, x′)2 � Cπ2

2κ

1 + 2πε/d(x, x′)
1 − 2πε/d(x, x′)

so that either d(x, x′) � π
√

C/2κ , or 2πε/d(x, x′) � 2πε/π
√

C/2κ � 1/2 by the assumption
that ε is small, in which case we use (1 + a)/(1 − a) � 1 + 4a for a � 1/2, hence the conclu-
sion. �
7. Coarse Ricci curvature and Gromov–Hausdorff topology

One of our goals was to define a robust notion of curvature, not relying on differential calculus
or the small-scale structure of a space. Here we first give two remarks about how changes to the
metric and the random walk affect curvature. Next, in order to be able to change the underlying
space as well, we introduce a Gromov–Hausdorff–like topology for metric spaces equipped with
a random walk.

First, since coarse Ricci curvature is defined as a ratio between a transportation distance and
a distance, we get the following remark.

Remark 53 (Change of metric). Let (X,d,m = (mx)) be a metric space with random walk, and
let d ′ be a metric on X which is bi-Lipschitz equivalent to d , with constant C � 1. Suppose that
the coarse Ricci curvature of m on (X,d) is at least κ . Then the coarse Ricci curvature of m

on (X,d ′) is at least κ ′ where 1 − κ ′ = C2(1 − κ).

As an example, consider the ε-step random walk on a Riemannian manifold with positive
Ricci curvature; κ behaves like ε2 times the usual Ricci curvature, so that small bi-Lipschitz
deformations of the metric, smaller than O(ε2), will preserve positivity of curvature of the ε-
step random walk.

The next remark states that we can deform the random walk m = (mx) if the deformation
depends on x in a Lipschitz way. Given a metric space (X,d), consider the space of 0-mass
signed measures P0(X) = {μ+ − μ−} where μ+,μ− are measures on X with finite first mo-
ment and with the same total mass. Equip this space with the norm (it is one) ‖μ+ − μ−‖ :=
supf 1-Lipschitz

∫
f d(μ+ − μ−) = W1(μ+,μ−). Then the following trivially holds.

Remark 54 (Change of random walk). Let (X,d) be a metric space and let m = (mx)x∈X ,
m′ = (m′

x)x∈X be two random walks on X. Suppose that the coarse Ricci curvature of m is at
least κ , and that the map x �→ mx −m′

x ∈ P0(X) is C-Lipschitz. Then the coarse Ricci curvature
of m′ is at least κ − 2C.
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We now turn to changes in the space itself, for which we need to give a generalization of
Gromov–Hausdorff topology taking the random walk data into account. Two spaces are close in
this topology if they are close in the Gromov–Hausdorff topology and if moreover, the measures
issuing from each point x are (uniformly) close in the L1 transportation distance.

Recall [3] that two metric spaces (X,dX) and (Y, dY ) are at Gromov–Hausdorff distance
at most e ∈ [0;∞] if there exists a semi-metric space (Z,dZ) and isometries fX : X ↪→ Z,
fY : Y ↪→ Z, such that for any x ∈ X, there exists y ∈ Y with dZ(fX(x), fY (y)) � e, and likewise
for any y ∈ Y (i.e. the Hausdorff distance between fX(X) and fY (Y ) is at most e). We extend
this definition as follows to incorporate the random walk.

Definition 55. Let (X, (mx)x∈X) and (Y, (my)y∈Y ) be two metric spaces equipped with a random
walk. For e ∈ [0;∞], we say that these spaces are e-close if there exists a metric space Z and
two isometric embeddings fX : X ↪→ Z, fY : Y ↪→ Z such that for any x ∈ X, there exists y ∈ Y

such that dZ(fX(x), fY (y)) � e and the L1 transportation distance between the pushforward
measures fX(mx) and fY (my) is at most 2e, and likewise for any y ∈ Y .

It is easy to see that this is defines a semi-metric on the class of metric spaces equipped with a
random walk. We say that a sequence of spaces with random walks (XN, (mN

x )x∈XN ) converges
to (X, (mx)) if the semi-distance between (XN, (mN

x )) and (X,mx) tends to 0. We say, moreover,
that a sequence of points xN ∈ XN tends to x ∈ X if we can take xN and x to be corresponding
points in the definition above. We give a similar definition for convergence of tuples of points
in XN .

Coarse Ricci curvature is a continuous function in this topology. Namely, a limit of spaces
with coarse Ricci curvature at least κ has coarse Ricci curvature at least κ , as expressed in the
following proposition.

Proposition 56 (Gromov–Hausdorff continuity). Let (XN, (mN
x )x∈XN ) be a sequence of metric

spaces with random walk, converging to a metric space with random walk (X, (mx)x∈X). Let
x, y be two distinct points in X and let (xN , yN) ∈ XN × XN be a sequence of pairs of points
converging to (x, y). Then κ(xN , yN) → κ(x, y).

In particular, if all spaces XN have coarse Ricci curvature at least κ , then so does X. Thus,
having coarse Ricci curvature at least κ is a closed property.

Proof. We have κ(x, y) = 1− W1(mx,my)

d(x,y)
and likewise for κ(xN, yN). The definition ensures that

d(xN, yN) and W1(m
N
x ,mN

y ) tend to d(x, y) and W1(mx,my) respectively, hence the result. �
Note however, that the coarse Ricci curvature of (X, (mx)) may be larger than the limsup of

the coarse Ricci curvatures of (XN, (mN
x )), because pairs of points in XN , contributing to the

curvature of XN , may tend to the same point in X; for example, X may consist of a single point.
This collapsing phenomenon prevents positive curvature from being an open property. Yet it

is possible to relax the definition of coarse Ricci curvature so as to allow any variation at small
scales; with this perturbed definition, having coarse Ricci curvature greater than κ will become
an open property. This is achieved as follows (compare the passage from trees to δ-hyperbolic
spaces).
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Definition 57. Let (X,d) be a metric space equipped with a random walk m. Let δ � 0. The
coarse Ricci curvature up to δ along x, y ∈ X is the largest κ � 1 for which

W1(mx,my) � (1 − κ)d(x, y) + δ.

With this definition, the following is easy.

Proposition 58. Let (X, (mx)) be a metric space with random walk with coarse Ricci curvature
at least κ up to δ � 0. Let δ′ > 0. Then there exists a neighborhood VX of X such that any space
Y ∈ VX has coarse Ricci curvature at least κ up to δ + δ′.

Consequently, the property “having curvature at least κ for some δ ∈ [0; δ0)” is open.

It would be interesting to study which properties of positive coarse Ricci curvature carry to
this more general setting.

8. Transportation distance in Riemannian manifolds

Here we give the proofs of Proposition 6 and of the statements of Example 7 and Section 3.3.1.
We begin with Proposition 6 and evaluation of the coarse Ricci curvature of the ε-step random

walk. The argument is close to the one in [43, Theorem 1.5(xii)], except that we use the value of
Ricci curvature at a given point instead of its infimum on the manifold.

Let X be a smooth N -dimensional Riemannian manifold and let x ∈ X. Let v,w be unit
tangent vectors at x. Let δ, ε > 0 small enough. Let y = expx(δv). Let x′ = expx(εw) and y′ =
expy(εw

′) where w′ is the tangent vector at y obtained by parallel transport of w along the

geodesic t �→ expx(tv). The first claim is that d(x′, y′) = δ(1 − ε2

2 K(v,w) + O(δε2 + ε3)).
We suppose for simplicity that w and w′ are orthogonal to v.
We will work in cylindrical coordinates along the geodesic t �→ expx(tv). Let vt =

d
dt

expx(tv) be the speed of this geodesic. Let Et be the orthogonal of vt in the tangent
space at expx(tv). Each point z in some neighborhood of x can be uniquely written as
expexpx(τ (z)v)(εζ(z)) for some τ(z) ∈ R and ζ(z) ∈ Eτ(z).

Consider the set expx(E0) (restricted to some neighborhood of x to avoid topological prob-
lems), which contains x′. Let γ be a geodesic starting at some point of expx(E0) and ending at y′,
which realizes the distance from expx(E0) to y′. The distance from x′ to y′ is at least the length
of γ . If δ and ε are small enough, the geodesic γ is arbitrarily close to the Euclidean one so that
the coordinate τ is strictly increasing along γ . Let us parametrize γ using the coordinate τ , so
that τ(γ (t)) = t . Let also wt = ζ(γ (t)) ∈ Et . In particular wδ = w′.

Consider, for each t , the geodesic ct : s �→ expexpx(tv)(swt ). We have γ (t) = ct (ε). For each

given t , the vector field D
dt

ct (s) is a Jacobi field along the geodesic s �→ ct (s). The initial con-
ditions of this Jacobi field for s = 0 are given by D

dt
ct (s)|s=0 = vt and D

dt
d
ds

ct (s)|s=0 = D
dt

wt .
Applying the Jacobi equation yields

∣∣∣∣dγ (t)
∣∣∣∣
2

=
∣∣∣∣dct (ε)

∣∣∣∣
2

= |vt |2 + 2ε〈vt , ẇt 〉 + ε2|ẇt |2 − ε2 〈
R(wt , vt )wt , vt

〉 + O
(
ε3)
dt dt
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where ẇt = D
dt

wt . But since by definition wt ∈ Et , we have 〈vt , ẇt 〉 = 0. Since moreover |vt | = 1
we get

∣∣∣∣dγ (t)

dt

∣∣∣∣ = 1 + ε2

2
|ẇt |2 − ε2

2

〈
R(wt , vt )wt , vt

〉 + O
(
ε3).

Integrating from t = 0 to t = δ and using that 〈R(wt , vt )wt , vt 〉 = K(w,v) + O(δ) yields that
the length of the geodesic γ is

δ

(
1 − ε2

2
K(v,w) + O

(
ε3) + O

(
ε2δ

)) + ε2

2

δ∫
t=0

|ẇt |2

so that the minimal value is achieved for ẇt = 0. But by definition ẇt = 0 means that the geodesic
γ starts at x′. So first, we have estimated d(x′, y′), which proves Proposition 6, and second, we
have proven that the distance from y′ to expx(E0) is realized by x′ up to the higher-order terms,
which we will use below.

Let us now prove the statement of Example 7. Let μ0,μ1 be the uniform probability measures
on the balls of radius ε centered at x and y respectively. We have to prove that

W1(μ0,μ1) = d(x, y)

(
1 − ε2

2(N + 2)
Ric(v, v)

)

up to higher-order terms.
Let μ′

0,μ
′
1 be the images under the exponential map, of the uniform probability measures on

the balls of radius ε in the tangent spaces at x and y respectively. So μ′
0 is a measure having

density 1 + O(ε2) w.r.t. μ0, and likewise for μ′
1.

If we average Proposition 6 over w in the ball of radius ε in the tangent space at x, we get that

W1
(
μ′

0,μ
′
1

)
� d(x, y)

(
1 − ε2

2(N + 2)
Ric(v, v)

)

up to higher-order terms, since the coupling by parallel transport realizes this value. Indeed, the
average of K(v,w) on the unit sphere of the tangent plane at x is 1

N
Ric(v, v). Averaging on the

ball instead of the sphere yields an 1
N+2 factor instead.

Now the density of μ′
0, μ′

1 with respect to μ0, μ1 is 1 + O(ε2). More precisely write
dμ′

0
dμ0

=
1 + ε2f0 and

dμ′
1

dμ1
= 1 + ε2f1 (where f0 and f1 can be written very explicitly in terms of the

metric and its derivatives). Note that f1 = f0 + O(d(x, y)), and that moreover f0 integrates to
0 since both μ0 and μ′

0 are probability measures. Plugging all this in the estimate above, we get
the inequality for W1(μ0,μ1) up to the desired higher-order terms.

The converse inequality is proven as follows: if f is any 1-Lipschitz function, the L1 trans-
portation distance between measures μ0 and μ1 is at least the difference of the integrals of f

under μ0 and μ1. Consider the function f equal to the distance of a point to expx(E0) (taken in
some small enough neighborhood of x), equipped with a − sign if the point is not on the same
side of E0 as y. Clearly f is 1-Lipschitz. We computed above a lower bound for f in cylindrical
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coordinates, which after integrating yields a lower bound for W1(μ
′
0,μ

′
1). Arguments similar to

the above turns this into the desired lower bound for W1(μ0,μ1).
Finally, let us briefly sketch the proofs of the other statements of Section 3.3.1, namely, evalu-

ation of the diffusion constant and local dimension (Definition 18). Up to a multiplicative factor
1 + O(ε), these can be computed in the Euclidean space.

A simple computation shows that the expectation of the square distance of two points taken
at random in a ball of radius ε in R

N is ε2 2N
N+2 , hence the value ε2 N

N+2 for the diffusion con-

stant σ(x)2.

To evaluate the local dimension nx = σ(x)2

sup Varmx f,f 1-Lipschitz (Definition 18), we have to bound

the maximal variance of a 1-Lipschitz function on a ball of radius ε in R
N . We will prove that

the local dimension nx is comprised between N − 1 and N . A projection to a coordinate axis

provides a function with variance ε2

N+2 , so that local dimension is at most N . For the other bound,
let f be a 1-Lipschitz function on the ball and let us compute an upper bound for its variance.
Take ε = 1 for simplicity. Write the ball of radius 1 as the union of the spheres Sr of radii r � 1.
Let v(r) be the variance of f restricted to the sphere Sr , and let a(r) be the average of f on Sr .
Then associativity of variances gives

Varf =
1∫

r=0

v(r)dμ(r) + Varμ a(r)

where μ is the measure on the interval [0;1] given by rN−1

Z
dr with Z = ∫ 1

r=0 rN−1 dr = 1
N

.
Since the variance of a 1-Lipschitz function on the (N − 1)-dimensional unit sphere is at

most 1
N

, we have v(r) � r2

N
so that

∫ 1
r=0 v(r)dμ(r) � 1

N+2 . To evaluate the second term, note that

a(r) is again 1-Lipschitz as a function of r , so that Varμ a(r) = 1
2

∫∫
(a(r)− a(r ′))2 dμ(r)dμ(r ′)

is at most 1
2

∫∫
(r − r ′)2 dμ(r)dμ(r ′) = N

(N+1)2(N+2)
. So finally

Varf � 1

N + 2
+ N

(N + 1)2(N + 2)

so that the local dimension nx is bounded below by N(N+1)2

N2+3N+1
� N − 1.
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