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Time- or age-dependent accumulation of mitochondrial damage and dysfunction is strongly associated with
aging [1]. Thus, a major biomedical goal is to identify and therapeutically manipulate those inherent programs
that protect againstmitochondrial dysfunction to promote cell survival and organismal health. Themitochondrial
unfolded protein response (UPRmt) is such a protective transcriptional response mediated by mitochondrial-to-
nuclear signaling that includes mitochondrial proteostasis genes to stabilize mitochondrial function, metabolic
adaptations, as well as an innate immunity program. Here, we review the UPRmt and its role during a variety
of forms of mitochondrial dysfunction including those caused by mutations in respiratory chain genes as well
as upon exposure to pathogens that produce mitochondrial toxins. We also review recent data in support of
and against the emerging role of the UPRmt during aging and longevity. This article is part of a Special Issue
entitled: Mitochondrial Dysfunction in Aging.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Mitochondria are essential organelles present in nearly all eukaryot-
ic cells best known for their roles in energy metabolism including the
tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation
(OxPhos). However, mitochondria also contribute tomany other essen-
tial cellular processes including nucleotide and amino acid synthesis,
iron–sulfur cluster biogenesis, as well as calcium homeostasis and
apoptosis. Mitochondria are dynamic double membrane bounded or-
ganelles, which divide and fuse throughout their lifetime [2]. Eachmito-
chondrion is comprised of four discrete compartments: the outer
membrane, intermembrane space, inner membrane and matrix. The
large surface area of the inner membrane allows for cristae formation
that accommodates the respiratory chain complexes and ATP synthase
promoting the coupling of electron transport and ATP synthesis during
OxPhos [3,4].

Mitochondria are comprised of over 1000 proteins, most of which
are encoded by nuclear genes and translated on cytosolic ribosomes
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prior to import into mitochondria [5]. However, thirteen respiratory
chain and ATP synthase components are encoded by the mitochondrial
genome (mtDNA) and translated on mitochondrial ribosomes prior to
assembly into the OxPhos complexes. The overall architecture of the
compartment coupled with the proximity to the reactive oxygen emit-
ting respiratory chain presents considerable challenges to organelle
maintenance.

Given the central importance of these organelles in eukaryotic phys-
iology and the challenges inmaintaining their optimal function, it is per-
haps not surprising that a number of components and signaling
pathways have been identified that respond to mitochondrial dysfunc-
tion and promote organelle maintenance and recovery, while adapting
metabolism to maintain survival. A number of mechanisms are in
place to ensure membrane and protein quality including a localized
cadre of molecular chaperones, quality control proteases, and anti-
oxidant enzymes which promote protein folding and stability while
degrading those proteins that fail to fold or assemble [6–8]. In turn,
these activities prevent the accumulation of misfolded or potentially
toxic damaged proteins maintaining the compartmentalized protein
homeostasis essential for mitochondrial function.

A general decline in mitochondrial function has been well docu-
mented to occur as organisms age [1]. Those cells that are especially en-
ergetic, such as neurons and muscle cells, are most affected [9], but
reports of mitochondrial decline have been reported in most cell
types. The exact underlying lesion that causes perturbed mitochondrial
function is unclear in most cases but mtDNAmutation or deletion accu-
mulation [10], an increase in oxidative damage [11] and/or aggregation
of mitochondrial proteins [12], and alterations in mitochondrial mor-
phology have been documented [13]. Presumably, the pathways and
machineries in place to protect mitochondrial function are eventually
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overwhelmed by the prolonged stress leading to mitochondrial dys-
function and the associated pathology including neurodegeneration,
muscular and ocular defects as well as metabolic disorders including
diabetes [14].

Despite the central importance of mitochondrial function to nearly
all cells and the strong link betweenmitochondrial dysfunction and dis-
ease, it has been clearly demonstrated that in a variety of speciesmodest
levels of mitochondrial dysfunction lead to increased longevity [15–18].
While the underlying cellular alterations that potentially include meta-
bolic adaptations and mitochondrial maintenance are unclear, increas-
ing evidence points towards a mitochondrial stress response pathway
known as the mitochondrial unfolded protein response (UPRmt) having
a prominent protective role.
2. Cellular processes affected by UPRmt activation

The UPRmt was initially documented in mammalian cell culture as a
response to depleted mtDNA or the accumulation of misfolded proteins
within the mitochondrial matrix that resulted in increased mitochon-
drial chaperone and protease transcription to alleviate and promote
the recovery from mitochondrial stress [19–21]. More recent work in
Caenorhabditis elegans has identified a number of components required
for UPRmt activation [22–25], which has suggested a mechanism by
which the cell senses mitochondrial dysfunction [26] and for the
identification of over 400 genes induced during mitochondrial dys-
function [27,28], which we have attempted to categorize below
(Fig. 1A).
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Fig. 1. UPRmt activation via ATFS-1 regulates a broad transcriptional program. (A) In response
mechanisms including protein folding and protein quality control, aswell as those involved inm
transcription. (B) The UPRmt is activated during conditions such asmtDNA depletion, respirator
regulated by themitochondrial protein-import efficiency of the transcription factor ATFS-1. In t
(MTS),where it is degradedby theprotease Lon. However, duringmitochondrial dysfunction or
portion of ATFS-1 in the cytosol, followed by its translocation to the nucleus via its nuclear loc
described in panel A, which promote survival and recovery from mitochondrial stress.
2.1. Stabilization of mitochondrial function

The increase in the mitochondrial chaperones during stress in-
cluding the matrix-localized chaperones Hsp60 and mtHsp70 pro-
motes the folding of recoverable proteins, while the increase of
proteases including the i-AAA and m-AAA proteases removes pro-
teins that fail to fold or assemble. Additionally, the UPRmt includes
numerous anti-oxidant genes including a mitochondrial superoxide
dismutase and genes involved in glutathione metabolism that limit
the protein and membrane perturbations caused by ROS emitted
from defective respiratory chains [27]. Increased transcription of
protein homeostasis and anti-oxidant genes potentially stabilizes
the protein-folding environment to promote organelle function but
also prepares for the recovery or regeneration of those salvageable
organelles while irreparable organelles are degraded via mitophagy
[29–32].
2.2. Metabolic adaptations

Interestingly, the UPRmt also includes multiple glycolysis genes and
lactate dehydrogenase suggesting that cells may shift to oxidative gly-
colysis during respiratory chain and mitochondrial dysfunction [25,
27]. This metabolic adaptation would allow cells to generate ATP from
a pathway localized within the cytosol and less likely to be affected by
mitochondrial dysfunction. Increased glycolysis allows cells tomaintain
cellular energy levels to promote normal cellular functions butmay also
provide the energy required to recover efficient mitochondrial activity.
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to mitochondrial damage or stress ATFS-1 induces genes involved in mitochondrial repair
itochondrial biogenesis, the detoxification response,metabolism and innate immune gene
y chain dysfunction, increased ROS or increasedmitochondrial unfolded proteins, which is
he absence of stress, ATFS-1 localizes to mitochondria via its mitochondria targeting signal
stress, generalmitochondrial protein import is attenuated, leading to the accumulation of a
alization signal (NLS). In the nucleus, ATFS-1 induces the mitochondrial protective genes
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In addition to glycolysis, the UPRmt also includes genes involved in
amino acid and additional carbohydrate metabolisms [27] suggesting
that considerable and complicated metabolic alterations occur during
mitochondrial stress.

2.3. Recovery of mitochondrial function

A separate set of genes induced duringmitochondrial stress suggests
that UPRmt activation promotes the recovery of mitochondrial function
by regenerating and rebuilding the respiratory chain and ATP synthase.
Iron–sulfur clusters are essential cofactors synthesized in themitochon-
drialmatrix [33] required for respiratory chain function but also numer-
ous other intracellular activities such as DNA repair [34]. The UPRmt

includes most of the iron–sulfur cluster biogenesis genes suggesting
that maintaining iron–sulfur cluster biogenesis is important during
mitochondrial stress. In addition to respiratory chain cofactors, the
UPRmt also includes multiple respiratory complex assembly factors,
which facilitate the assembly of specific respiratory complexes [35,36]
aswell asmost genes required for ubiquinone biosynthesis, which is in-
volved in electron transport within the respiratory chain [37].

Additionally, the UPRmt includes themitochondrial RNA polymerase
required to transcribe the mtDNA-encoded respiratory chain and ATP
synthase genes as well as the core components of the translocase of
the inner membrane (TIM), which is required for the import of proteins
across the innermitochondrial membrane [37]. Furthermore, the UPRmt

includes most of themitochondrial fissionmachinery such as dynamin-
related protein (Drp1) but none of themitochondrial fusionmachinery.
Mitochondrial fission is required to eliminate severely defective mito-
chondrial portions [38], but is also required to increase mitochondrial
number [2,39].

Of course, the expression of many additional genes is altered during
mitochondrial stress or dysfunction, which is beyond the focus of this
review.

2.4. Conditions that activate the UPRmt

A number of mitochondrial perturbations have been found to acti-
vate the UPRmt including the above mentioned mtDNA depletion [19,
40] and the accumulation of unfolded proteinswithin themitochondrial
matrix [21] or intermembrane space [41]. An early RNAi screen demon-
strated that inhibition of respiratory chain or ATP synthase components
expression was sufficient to trigger the UPRmt [40], which is consistent
with activation via mtDNA depletion. More recently, it has been
shown that respiratory chain and mitochondrial ribosome gene muta-
tions also activate the UPRmt [6,27,42–44] suggesting that an imbalance
between mtDNA-encoded and nuclear-encoded OxPhos components is
an initiating event in UPRmt activation [44,45]. Additionally, inhibition
of mitochondrial proteases, mitochondrial chaperones, respiratory
chain complex assembly factors [46] and mitochondrial tRNA synthe-
tases [47] causes UPRmt activation. Lastly, exposure to a number of re-
spiratory chain inhibitors such as antimycin [48,49], rotenone and
paraquat [27,40,49] all activates the UPRmt. The variety of defectswithin
mitochondria that activate the UPRmt suggests that cells likely monitor
some aspect of mitochondrial function reliant onmultiple mitochondri-
al activities to initiate the stress response [26,45,48].

3. Regulation of the UPRmt

3.1. UPRmt signaling in C. elegans

RNAi screens in C. elegans have identified a number of components
required for UPRmt activation [22,23,48,49] allowing the initiation of
studies to understand the signaling mechanism by which the status of
the mitochondria is transmitted to the nucleus to coordinate adaptive
transcription. The only transcription factor identified by screens from
three different labs is Activating Transcription Factor associated with
Stress-1 or ATFS-1 (originally described as ZC376.7) [24,48,49].

Interestingly, ATFS-1 contains a mitochondrial targeting sequence
(MTS) in addition to a nuclear localization signal (NLS) within the
bZip domain suggesting a unique mechanism of communication be-
tween both compartments (Fig. 1B). In short, the evaluation of mito-
chondrial function or dysfunction is based on mitochondrial protein
import efficiency; a process that requires mitochondrial chaperones,
an efficiently functioning respiratory chain, ATP and intact TIM and
TOM (Translocase of the Inner or Outer Membrane) complexes [50].
Like nearly all transcription factors, ATFS-1 has a NLS located near the
carboxy-terminus that allows for its nuclear localization, whereas its
MTS, located at the amino-terminus, also allows for its import into mi-
tochondria. Normally, the MTS is dominant and ATFS-1 is efficiently
imported from the cytosol to the mitochondrial matrix where the MTS
is cleaved and it is degraded by the Lon protease. However, if import
efficiency is impaired by any of the described mitochondrial defects, a
percentage of ATFS-1 accumulates in the cytosol and, because it has a
NLS, then traffics to the nucleus to activate the UPRmt [27]. Thus, the
cell monitors mitochondrial import efficiency or capacity of the entire
cellular pool of organelles. If the capacity is not sufficient to import all
ATFS-1, the UPRmt is induced to rectify what is perceived to be deficien-
cy in mitochondrial function [26].

In addition to ATFS-1, a number of additional components have been
identified in C. elegans that are required for UPRmt activation including
the homeobox transcription factor DVE-1, the ubiquitin-like protein
UBL-5, the mitochondrial protease ClpP and the mitochondrial peptide
transporter HAF-1, which have been reviewed elsewhere [45,51,52].
Understanding how each of these components regulates the UPRmt

and how they interact with ATFS-1 is an active area of research. Data
from our lab suggests that ClpP and HAF-1 function upstream of ATFS-
1 to regulate the UPRmt [24,27]. HAF-1, which transports peptides
from the matrix to the intermembrane space, similarly to the yeast
protein Mdl1p [53], functions as a negative regulator of mitochondrial
protein import although the mechanism is unknown [26,27]. Thus, in
the absence of HAF-1, ATFS-1 preferentially partitions to mitochondria
rather than trafficking to the nucleus during stress. Additional means
to adjust mitochondrial import rates including phosphorylation of the
protein import machinery [54,55] as well as the mitochondrial stress-
dependent turnover of an essential component of the import channel
occur during metabolic stress and may impact UPRmt signaling. It has
been suggested that reduced import rates reduce the burden or unfold-
ed protein load on the mitochondrial protein-folding environment in
addition to activating the UPRmt [56,57].

A number of other known factors have also been identified that are
required for UPRmt signaling including Tor signaling [6,23], proteasome
and ribosome function [49], as well as mevalonate and ceramide
production [48,58,59], however the relationship has yet to be resolved.

3.2. UPRmt signaling in mammals

Less is currently known about UPRmt regulation in mammalian cells
but the current data suggest that it may be considerably more compli-
cated, potentially receiving inputs from multiple signal transduction
pathways. Early studies suggested a role for JNK2 phosphorylation and
c-Jun,which binds and activates the promoters of the bZip transcription
factor genes CHOP (C/EBP homology protein, also known as GADD153
and DDIT-3) and C/EBPβ to inducemitochondrial chaperone genes dur-
ingmitochondrial unfolded protein stress [21]. The authors suggest that
CHOP-C/EBPβ dimerization is required for the induction of genes con-
taining mitochondrial UPR elements (MUREs) [60]. Interestingly,
MUREs exist in the promoters of multiple mitochondrial chaperone
and protease genes but the transcription factor that binds the MUREs
is currently unclear. Additionally, CHOP is induced by multiple forms
of cellular stress [61] and it is therefore currently unclear how CHOP ac-
tivities integrate with a mitochondrial specific response. Of note, c-Jun
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was also required for UPRmt activation in flies [17]. Recently, the estro-
gen receptor and the mitochondrial matrix-localized sirtuin Sirt5 have
also been found to play a role in UPRmt regulation in response to unfold-
ed protein accumulation in the intermembrane space [41,62].

3.3. A role for GCN-2-mediated eIF2α phosphorylation

While the transcriptional outputs to mitochondrial stress in worms
and mammals are relatively similar, very little mechanistic overlap be-
tween mitochondrial-to-nuclear signaling between worms and mam-
mals has been elucidated. In particular, the mammalian ortholog of
ATFS-1 is unclear as is thewormortholog of CHOP; an issue complicated
by the high homology among the entire bZip family of proteins. Recent
work has demonstrated that an increase in eukaryotic translation initi-
ation factor 2 alpha (eIF2α) phosphorylation occurs in response to mi-
tochondrial stress in both worms and mammals [6,63–65] resulting in
the attenuation of global protein synthesis while preferentially translat-
ing those mRNAs that contain upstream open reading frames (uORFs)
[66]. Four eIF2α kinases exist, but in yeast, C. elegans, and mammals,
the kinase general control non-derepressible 2 (GCN2) appears to
contribute the most to the induced eIF2α phosphorylation that occurs
during mitochondrial stress [6,63,64,67] (Fig. 2). However PKR, an
eIF2α kinase that responds to double stranded RNA, has also been
shown to be required for eIF2α phosphorylation during mitochondrial
stress in the mouse intestine suggesting mitochondrial dysfunction ac-
tivates multiple eIF2α kinases [65].

GCN2 is activated during amino acid depletion as its tRNA
synthetase-like domain binds directly to uncharged tRNAs that accumu-
late during conditions such as starvation or caloric restriction, leading to
kinase activation and eIF2α phosphorylation [66,68]. GCN2 has also
been shown to be activated by ROS and provide resistance to oxidative
stress, but the relationship between uncharged tRNA accumulation, ROS
andmitochondrial dysfunction is currently unclear [6,69,70]. The resul-
tant attenuation of global protein synthesis has been suggested to be
protective by reducing the burden on the dysfunctional protein-
folding environment in the mitochondria. In addition to a reduction in
global protein synthesis, those transcripts with uORFs such as ATF4
are preferentially translated [71] (Fig. 2), leading to altered transcrip-
tional outputs. Interestingly, CHOP expression has been shown to in-
crease during mitochondrial dysfunction in an ATF4-dependent
manner [64]. However, a protective role for CHOP or ATF4 duringmito-
chondrial dysfunction has yet to be demonstrated. These data generated
in bothworms andmammals suggest that GCN2-mediated eIF2α phos-
phorylation may be involved in a UPRmt. And, work from our lab indi-
cates that loss of GCN2 function in C. elegans results in increased ATFS-
1 activation consistent with GCN2 and ATFS-1 functioning in separate
ROS 
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Fig. 2. GCN2 phosphorylates eIF2α duringmitochondrial dysfunction. Dysfunctional mitochond
tochondria and in the cytosol. ROS as well as imbalanced amino acid levels activate the kinase G
synthesis duringmitochondrial stress reduces the burden of unfolded proteins onmitochondria
phosphorylation selectively increases the translation of mRNAs containing uORFs such as ATF
uORFs suggesting that it may also be preferentially translated during eIF2α phosphorylation.
mitochondrial protective programs [6]. However, it should be noted
that multiple atfs-1 transcripts exist, several that contain a single uORF
and several that do not. As a single uORF is known to promote transla-
tion when eIF2α is phosphorylated [72], it will be interesting to deter-
mine if ATFS-1 is preferentially translated in a GCN2-dependent
manner during mitochondrial stress.

4. Protective effects mediated by the UPRmt

Transcriptional responses consistent with UPRmt activation have
been observed in multiple species, however because the regulatory
components have been elucidated in C. elegans, the physiologic roles
of the UPRmt are best characterized in this model organism.We primar-
ily focus on the role of ATFS-1, as it is the UPRmt component best under-
stoodmechanistically and the transcripts induced duringmitochondrial
dysfunction requiring ATFS-1 have been characterized (see Section 2).
Consistentwith ATFS-1 being rapidly turned over, atfs-1-deletion affects
the expression of very few transcripts in otherwise healthy worms.
However, duringmitochondrial stress, ATFS-1 is required for the induc-
tion of over 400 genes [27]. atfs-1-deletion causes no obvious develop-
mental defects in the soma, but germline defects have been noted [59,
73]. However, the role of ATFS-1 in germline function is unclear.

4.1. Genotoxic respiratory chain defects

C. elegans strains with hypomorphic mutations in respiratory chain
and ubiquinone biosynthesis genes including the succinate dehydroge-
nase componentmev-1 (complex II), the cytochrome c reductase com-
ponent isp-1 (complex III) and the clk-1 gene required for ubiquinone
biosynthesis have considerable developmental delays and have been
shown to activate the UPRmt [6,27,42,43,74]. Consistent with a protec-
tive role for theUPRmt, the development rate of all three of thesemutant
worms is further impaired in the absence of ATFS-1 [6,27,42]. Similarly,
worms lacking GCN2 were also developmentally delayed during mito-
chondrial dysfunction. And, strains lacking both ATFS-1 and GCN2 are
further compromised highlighting the independent effects of both
signaling pathways.

4.2. Statin exposure or cholesterol depletion

HMG-CoA reductase is the rate-limiting enzyme in the mevalonate
pathway of cholesterol biosynthesis and the target of the cholesterol
reducing drugs known as statins. As the mevalonate pathway is also
required for the production of coenzyme Q (respiratory chain compo-
nent, also known as ubiquinone), dolichols (required for protein glyco-
sylation) and isoprenoids (lipid required for membrane binding of
eIF2
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4, which induces transcription of the gene encoding CHOP. Several atfs-1 mRNAs contain
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many small GTPases), statin-mediated inhibition can causemultiple un-
desirable off-target effects [75]. To understand the compensatory path-
ways in place to tolerate reduced output of the mevalonate pathway,
Rauthan and colleagues performed a mutagenesis screen to isolate
C. elegansmutant strains resistant to high levels of statins. From a screen
of over 150,000 mutagenized genomes, four resistant strains were iso-
lated. Interestingly, all four mutations were in the atfs-1 gene and
caused amino acid substitutions in theMTS [59]. The reducedmitochon-
drial import efficiency resulted in constitutive activation of the UPRmt,
providing protection from statins as well as deletion of the gene
encoding HMG-CoA reductase [58]. While these results indicate that
transcriptional outputs of the UPRmt are required to tolerate reduced
mevalonate pathway output, it is currently not clear which UPRmt-
regulated transcripts are required.

4.3. UPRmt-mediated innate immunity

Recent findings suggest a surprising role for the UPRmt during
exposure to bacterial pathogens. A relatively benign strain of E. coli is
the typical C. elegans food source used experimentally, although its nat-
ural habitat contains a large number of species whose metabolic by-
products are toxic to mitochondria [76]. These studies evolved from
the finding that respiratory toxins produced by bacteria activate the
UPRmt including the respiratory chain inhibitors antimycin and cyanide,
and the ATP synthase inhibitor oligomycin [48,49,73]. And, more recent
studies have indicated that pathogen generated siderophores or iron
chelators also cause mitochondrial dysfunction and UPRmt activation
[73,77].

Interestingly, in addition to inducing a mitochondrial protective
response, ATFS-1 also induces a number of innate immune genes
including anti-microbial peptides and secreted lysozymes during
Pseudomona
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Stenotropho
Sphingobact
Chryseobact
etc. 
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Plasma membrane

MITO-  
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Fig. 3. UPRmt-mediated innate immunity in response to bacterial infection. In their natural hab
vation [48]. Secreted bacterial toxins such as Pseudomonas aeruginosa produced cyanide targ
perturbing mitochondrial protein import causing ATFS-1 to traffic to the nucleus. In the nucle
proteases, but also innate immune genes such as antimicrobial peptides and secreted lyso
P. aeruginosa and survive longer when exposed to the pathogen [73] indicating that the UPRmt
mitochondrial dysfunction [27,73]. Furthermore, ATFS-1 also induced
expression of multiple xenobiotic detoxification genes such as the cyto-
chrome P450s [27,48,78]. The above findings raised the question as to
why an innate immune responsewould be coupledwith amitochondri-
al protective response via a single transcription factor activated during
mitochondrial stress. Intriguingly, Liu and colleagues examined UPRmt

activation when C. elegans were exposed to ~500 natural bacterial
isolates. Interestingly, 18% of the strains causedUPRmt activation includ-
ing species related to human pathogens including Pseudomonas
aeruginosa [48], which is known to produce the respiratory chain in-
hibitor cyanide [79]. These findings suggested a role for the UPRmt in
immunosurveillance; potentially in detecting those bacteria that
target mitochondrial function to promote infection (Fig. 3).

In support of this model, worms lacking ATFS-1 survived for shorter
periods of timewhen raised on P. aeruginosa, demonstrating the impor-
tance of the UPRmt when exposed to the pathogen [73]. Interestingly,
UPRmt activation caused by P. aeruginosa exposure required the cyanide
synthase genes as well the siderophore biosynthesis genes consistent
with these compounds perturbing mitochondrial activity of the host.
Furthermore, animals with a pre-activated or hyper-activated UPRmt

survived longer on P. aeruginosa further demonstrating the protective
effects. Most impressively, these worms were able to delay intestinal
colonization by P. aeruginosa suggesting that the UPRmt mediated a bac-
tericidal activity in addition to amitochondrial protective response [73].
In sum, these results suggest a role for theUPRmt in immunosurveillance
by detecting those pathogens that perturb mitochondrial function and
regulating an immune response. Interestingly, mitochondrial stress in-
duces a similar set of innate immune genes in cultured mammalian
cells [73], and more recently mitochondrial dysfunction has been
shown to induce an anti-viral response in mice, further linking innate
immunity and mitochondrial dysfunction [80,81].
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et mitochondria and activate the UPRmt. Cyanide impairs the respiratory chain, thereby
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zymes [73]. Worms with an activated UPRmt have reduced intestinal accumulation of
promotes an innate immune response that confers resistance to pathogenic bacteria.
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5. Enhanced longevity, mitochondrial stress and the UPRmt

5.1. Mitochondrial stress-associated lifespan extension

Longevity and stress resistance often coincide, as was recently
outlined for several well-studied stressors in C. elegans [82]. But, be-
cause mitochondrial dysfunction contributes to normal aging as well
asmultiple devastating diseases [13,14], the demonstration thatmoder-
ate mitochondrial perturbation extends lifespan by up to 50% was sur-
prising [83,84]. Impressively, the lifespan increase associated with
mitochondrial dysfunction occurs in yeast [67], worms [83,84], flies
[17] and mice [15,44]. However, like many treatments or conditions
that extend lifespan, it comes at a significant cost to development (as
described above), animal size and fecundity [82].

Consistent with both positive and negative effects culminating from
dysfunctional mitochondria, Rea and colleagues demonstrated that re-
spiratory chain inhibition has dose-dependent effects on longevity
which anti-correlate with developmental rate, fertility and animal size
[85] (Fig. 4). This “mitochondrial threshold effect” suggests that up to
a certain point mitochondria are able to function under compromised
conditions and compensate for respiratory chain deficiencies. However,
beyond this threshold, compensatory pathways may not be able to off-
set the severe decline inmitochondrial function, which eventually leads
to death [43,85]. A similar threshold effect was observed when worms
were treated with paraquat [86], suggesting that increasing amounts
of ROS may cause longevity only up to a certain point, after which the
damage becomes detrimental. In sum, these findings suggest that
protective effects emanate from defective mitochondria, which may
be therapeutically separable from the underlying organelle defects.
This section focuses on the role of the UPRmt in the enhanced longevity
conferred by modest mitochondrial dysfunction.
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Fig. 4.Mitochondrial stress and lifespan regulation. (A) Lifespan increases with moderate
levels of mitochondrial dysfunction and is reducedwhen the damage is too severe. During
mild mitochondrial dysfunction (orange), whichmay affect the entire mitochondrial pool
or individualorganelles, the organism is able to promote mitochondrial recovery through
physiological alterations that positively affect lifespan. These adaptations include pro-sur-
vival metabolic alterations, maintenance of the mitochondrial protein folding environ-
ment and resistance to pathogens. (B) The UPRmt is activated in response to
mitochondrial dysfunction and promotesmitochondrial repair andmetabolic adaptations.
At some point, the mitochondrial damage becomes irreparable off-setting the UPRmt-me-
diated protective effects (dashed line). During severe mitochondrial dysfunction UPRmt

activation still occurs, but may not be sufficient to maintain mitochondrial homeostasis
and protect survival.
5.2. The UPRmt in longevity

To our knowledge, UPRmt activation occurs in all of the mutant and
RNAi-treated worms with increased longevity associated with mito-
chondrial dysfunction, suggesting that the UPRmt promotes longevity
[43,44,74]. However, accumulating data suggest that the relationship
between the UPRmt and increased longevity is a complicated one [87].

UPRmt activation in C. elegans occurs only during exposure to mito-
chondrial stress in development, but not in adulthood [40]. Intriguingly,
exposure to mitochondrial stress increased lifespan only, if it occurred
during development, but not during adulthood [43]. And, ubl-5was re-
quired for the lifespan extension suggesting a requirement for the
UPRmt. More recent studies support this findings demonstrating that
the level of UPRmt activation correlates with lifespan extension [44],
and the requirement for both haf-1 and atfs-1 in the lifespan extension
caused by mitochondrial ribosome or respiratory chain perturbation
[44,74]. However, these results are somewhat controversial as a sep-
arate study found that atfs-1 (RNAi) and a loss-of-function atfs-1-
mutation failed to suppress the increased longevity conferred by a
complex III defect [42]. It is unclear what accounts for the difference
between these studies, but technical differences exist including the
use of FUDR during the lifespan studies, which limits reproduction
by causing germline dysfunction. Regardless, this is clearly an active
and rapidly progressing area of research.

Importantly, not all loss-of-function mutations in respiratory chain
components promote longevity. For example, defects in complex II
shorten lifespan [88], whichmay be explained by the severity of the de-
fects caused by themutation or because complex II is the only respirato-
ry complex that also functions in the tricarboxylic acid cycle. Perhaps
not surprisingly, the UPRmt is activated in complex II mutants suggest-
ing UPRmt activation is not sufficient to extend lifespan [42,43]. Howev-
er, the reduction in lifespan could be reversed by mitochondrial
ribosome or complex IV inhibition which both activate the UPRmt to a
stronger degree [44]. Another study showed that a gain-of-functionmu-
tation in the atfs-1 gene, which causes constitutive UPRmt activation,
wasnot sufficient to induce longevity [59]. Combined, these studies sug-
gest that UPRmt activation is not sufficient to increase longevity but
some caution is warranted in addition to the potential toxic side effects
associated with complex II defects. For example, the mutation in atfs-1
that causes constitutive UPRmt activation is not well-characterized and
may alter other aspects of ATFS-1 activity, as it has been shown that
overexpression of a single mitochondrial molecular chaperone is suffi-
cient to confer enhanced longevity [17,89]. However, these results are
also consistent with ATFS-1 and the UPRmt functioning alongsidemulti-
ple pathways activated during mitochondrial dysfunction (see below).
For example, at least three other transcription factors have been
shown to be required for the longevity associated with mitochondrial
dysfunction including HIF-1 [86], TAF-4 [90], CEH-23 [91] and the
kinase GCN2 [6].

5.3. Tissue specificity and extra-cellular communication

Studies in both worms and flies suggest the existence of inter-
cellular communication of mitochondrial status or transmission of an
extra-cellular UPRmt signal [17,43,92]. Interestingly, these studies also
suggest a hierarchy for those tissues capable of conferring increased lon-
gevity during mitochondrial dysfunction. Inhibition of complex IV spe-
cifically in the intestine and neurons, but not in muscle cells, was
sufficient to confer longevity in C. elegans. Intriguingly, neuronal specific
complex IV inhibition resulted in UPRmt activation in the intestine also
resulting in increased longevity [43]. An important aspect of these stud-
ies is that neuronal-specific impairment of complex IV resulted in less
developmental delay, but conferred a similar increase in longevity sug-
gesting that the detrimental effects of mitochondrial perturbation can
be separated from those that enhance longevity. A similar approach in
flies demonstrated that amuscle-specific respiratory chain perturbation
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in developing animals resulted in UPRmt activation and an increase in
longevity. The increase in longevity required an insulin-like growth fac-
tor binding protein in addition to UPRmt activation [17,93].

6. Conclusions, comments and future directions

Considerable progress in understandingwhich transcripts constitute
a UPRmt, and how the stress response is activated and signaled has been
made in recent years. The UPRmt is emerging as a regulator of cell
survival during a variety of conditions associated with mitochondrial
dysfunction including general aging, genotoxic respiratory defects as
well as mitochondrial dysfunction associated with pathogen infection.
However, many questions remain.

6.1. Identification of ATFS-1 like transcription factors

While it is clear that a UPRmt similar to that which occurs in
C. elegans is activated in mammals duringmitochondrial stress, it is un-
clear how it is regulated. It is certainly possible that the mammalian re-
sponse is regulated in a manner unlike that in C. elegans. However, the
present difficulty in identifying the functional ortholog is reminiscent
of the difficulties in identifying the functional ortholog of the transcrip-
tion factor Hac1 that regulates an endoplasmic reticulum stress specific
UPR [94]. Hac1 was identified in Saccharomyces cerevisiae and the func-
tional mammalian ortholog was not identified until six years later in a
genetic screen [95] and by induction during ER stress [96] rather than
by homology searching. While the homology with Hac1 is quite poor,
the mammalian transcription factor known as XBP1 is regulated in
nearly the exact same manner and activates transcription of a similar
ER-protective program to that identified in yeast, perhaps suggesting
that a functional mammalian ortholog of ATFS-1 remains to be discov-
ered. Of note, a recent report identified a yeast transcription factor reg-
ulated similarly to ATFS-1. Hap1 regulates expression of genes involved
in heme biogenesis in response to heme or oxygen levels when Hap1 is
in the nucleus. Interestingly, a ribosome profiling experiment showed
that the Hap1mRNA is translated on ribosomes on or near the outermi-
tochondrial membrane and that the Hap1 protein has a MTS and local-
izes to mitochondria [97], suggesting that it is regulated similarly to
ATFS-1. Presumably, a similar approach combined with screening
could be used to identify proteins that regulate a UPRmt in mammals.

6.2. Integration of the UPRmt with other mitochondrial protective pathways

Mitochondrial dysfunction is very pleiotropic likely causing dysfunc-
tion throughout the cell and activation of multiple protective signaling
pathways. A particular intriguing potential interaction is between the
UPRmt and the mitochondrial autophagy pathway, which degrades
those severely dysfunctional mitochondria that are likely irreparable
[98]. Both pathways are regulated bymitochondrial protein import effi-
ciency. Import efficiency of the kinase Pink1 is a major determinant in
selecting those severely defective organelles for degradation. Normally,
Pink1 is imported into mitochondria, processed and degraded. Howev-
er, if import is impaired due to the accumulation of misfolded proteins
within the mitochondrial matrix or depletion of the inner membrane
potential, Pink1 accumulates on the outer membrane where it recruits
the ubiquitin ligase Parkin and ultimately the autophagy machinery.
Once engulfed by an autophagosome, the defective mitochondrion is
delivered to a lysosome where it is ultimately degraded. In addition to
import efficiency, a recent screen identified ceramide as an essential
regulator of the UPRmt [48]. Intriguingly, ceramide is known to accumu-
late on damaged mitochondria and is also required for early events
in mitophagy [99] suggesting a potential role in coordinating both
pathways.

In addition to coordinating with mitochondrial turnover, several
interactions with components that regulate translation have been doc-
umented. As discussed, the kinase GCN2 is activated concomitantly to
the UPRmt and is required for development and lifespan extension dur-
ingmitochondrial dysfunction [6] but the role reduced translation plays
is unclear. Furthermore, the kinase TOR and its upstream regulator Rheb
were both found to be required for UPRmt activation [6], but again very
little is known regarding the mode of regulation or the physiological
significance. Additional interactions likely exist with other metabolic
regulators including AMP kinase and the sirtuins [25,62].

Lastly, as theUPRmt is a transcriptional response that affects over 400
genes controllingmany aspects of cell physiology, it will be important to
understand which affected activities are the most important in amelio-
rating the defects associated with mitochondrial dysfunction and po-
tentially the easiest to manipulate. The list of candidates includes but
is not limited to mitochondrial repair or regeneration, protein quality
control, and metabolic remodeling as suggested by the transcriptional
outputs mediated by ATFS-1.
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