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0. Introduction

Let V be ann-dimensional real vector space endowed with a rank-n lattice Γ . The
dual latticeΓ ∗ = Hom(Γ.Z) is naturally a subset of the dual vector spaceV ∗. Let
Φ = [β1, β2, . . . , βN ] be a sequence of not necessarily distinct elements ofΓ ∗, which
spanV ∗ and lie entirely in an open halfspace ofV ∗. In what follows, the order of elements
in the sequence will not matter.

The closed coneC(Φ) generated by the elements ofΦ is an acute convex cone,
divided into open conic chambers by the(n− 1)-dimensional cones generated by linearly
independent(n−1)-tuples of elements ofΦ. Denote byZΦ the sublattice ofΓ ∗ generated
by Φ. Pick a vectora ∈ V ∗ in the coneC(Φ), and denote byΠΦ(a) ⊂ R

N+ the convex
polytope consisting of all solutionsx = (x1, x2, . . . , xN) of the equation

∑N
k=1xkβk = a

in nonnegative realnumbersxk . This is a closed convex polytope called thepartition
polytopeassociated toΦ anda. Conversely, any closed convex polytope can be realized as
a partition polytope.

If λ ∈ Γ ∗, then the vertices of the partition polytopeΠΦ(λ) have rational coordinates.
We denote byιΦ(λ) the number of points with integral coordinates inΠΦ(λ). ThusιΦ(λ)
is the number of solutions of the equation

∑N
k=1xkβk = λ in nonnegative integersxk. The

function λ 	→ ιΦ(λ) is called thevector partition functionassociated toΦ. Obviously,
ιΦ(λ) vanishes ifλ does not belong toC(Φ) ∩ ZΦ.
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Let EP(RN) be the ring of complex functions onRN generated by exponentials and
polynomials. Thus anyf ∈ EP(RN) is of the form

f (x)=
m∑
j=1

e〈yj ,x〉Pj (x),

where y1, . . . ,ym ∈ CN , and the functionsP1, . . . ,Pm are polynomials with complex
coefficients. If the elements{yj ,1 � j � m} are such that there exists an integerM
with Myj ∈ 2π iZN , then the functionf is said to beperiodic-polynomial(or sometimes
quasipolynomial). The restriction of such a function to any cosetx +MZN of ZN/MZN

is plainly polynomial.
A generalization ofιΦ(λ) is the sum of the values of a functionf ∈ EP(RN) over the

integral points ofΠΦ(λ):

S[f,Φ](λ)=
∑

ξ∈ΠΦ(λ)∩ZN

f (ξ).

Indeed, iff = 1, the functionS[f,Φ] is just the functionιΦ . Such a sumS[f,Φ] will be
called an Euler–MacLaurin sum.

In this paper, we will search for “explicit” formulae for the functionλ 	→ S[f,Φ](λ)
onΓ ∗. Let us recall some qualitative results about this function. We start with the following
result of Ehrhart: for a rational polytopeΠ in Rr , consider the functionk 	→ #(kΠ ∩ Zr ),
where #S stands for the cardinality of the setS. Ehrhart proved that this function is
given by a periodic-polynomial formula for all integersk � 0. More precisely (see [12]
and references therein), ifM is an integer such that all the vertices of the polytope
MΠ are in Z

r , then there exist polynomial functionsPj , 0 � j � M − 1, such that
#(kΠ ∩ Zr ) = ∑M−1

j=0 e2iπjk/MPj (k). If f is a polynomial, thenS[f,Φ](λ) consists of
summing up the values of a polynomial over the integral points of the rational polytope
ΠΦ(λ). If f is an exponentialx 	→ e〈y,x〉, thenS[ey,Φ](λ) is the sum

∑
ξ∈ΠΦ(λ)∩ZN

e〈y,ξ 〉;
such sums were evaluated “explicitly” by M. Brion [4] and by A.I. Barvinok [3] for generic
exponentials.

Assume first thatΦ consists ofn= dimV linearly independent vectors ofΓ ∗. Denote
by ρ the linear isomorphism fromRn to V ∗ defined byρ(x)=∑n

i=1xiβi . The setΠΦ(λ)
is nonempty if and only ifλ ∈ C(Φ) ∩ ZΦ. In this case, the setΠΦ(λ) coincides with
ρ−1(λ), and our functionλ 	→ S[f,Φ](λ) on Γ ∗ is just the functionλ 	→ f (ρ−1(λ))

restricted toC(Φ) ∩ ZΦ. In general, the mapρ :RN → V ∗ defined byρ(x)=∑N
i=1 xiβi

is a surjection, and the following qualitative statement holds:

Theorem 0.1. For each conic chamberc of the coneC(Φ), there exists an exponential-
polynomial functionP[c, f,Φ] onV ∗ such that for eachλ ∈ c ∩ Γ ∗, we have

S[f,Φ](λ)=P[c, f,Φ](λ).
This theorem follows, for example, from [5], and there are many antecedents of this

result in particular cases. The periodic-polynomial behavior ofιΦ(λ) on closures of conic
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chambers of the coneC(Φ) is proved in [20]. Iff is a polynomial function, then the sum∑
ξ∈kΠ f (ξ) is a polynomial function ofk for k � 0 if the vertices ofΠ have integral

coordinates [4,8,12]. LetΠ1,Π2, . . . ,ΠN be rational polytopes inRr . For a sequence
[k1, . . . , kN ] of nonnegative integers, denote byk1Π1 + k2Π2 + · · · + kNΠN the weighted
Minkowski sum of the polytopesΠi . Then, as proved in [17], there exists an periodic-
polynomial functionP on RN such that

#
(
(k1Π1 + k2Π2 + · · · + kNΠN)∩ Z

r
)=P(k1, k2, . . . , kN ).

We explain in Section 3.2 how to pass from the setting of Minkowski sums to the setting
of partition polytopes.

Most of the investigations of the functionS[f,Φ] [5,8,15], starting with the Euler–
MacLaurin formula evaluating the sum

∑B
A f (k) of the values of a functionf at all integral

points of an interval[A,B], were dedicated to the fascinating relation ofS[f,Φ](λ) with
the integral off on the polytopesΠΦ(a), whena varies nearλ. This relation uses Todd
differential operators, which leads to a Riemann–Roch calculus forS[f,Φ] initiated by
Khovanskii and Pukhlikov [15]. In fact, there is a dictionary between rational polytopes
and line bundles on toric varieties, which inspired these results.

Introduce the convex polytope

�(Φ)=
N∑
i=1

[0,1]βi.

We obtain a residue formula forS[f,Φ] which implies the following qualitative result.

Theorem 0.2. For each conic chamberc of the coneC(Φ), there exists an exponential-
polynomial functionP[c, f,Φ] onV ∗ such that, for eachλ ∈ (c − �(Φ))∩ Γ ∗, we have

S[f,Φ](λ)=P[c, f,Φ](λ).

We assumed thatΦ linearly generatesV ∗, hence the setc − �(Φ) containsc. In
particular, the functionιΦ(λ) is periodic-polynomial on the neighborhoodc − �(Φ) of
the closure of the conic chamberc (this neighborhood is usually much larger thanc,
see the pictures in Appendix A). We give specific residue formulae on each of these
sectorsc − �(Φ). Our main theorems are Theorem 2.3 and its various corollaries: the
residue formulae of Theorem 3.1 forιΦ(λ) and the residue formulae of Theorem 3.8
for S[f,Φ](λ). If f is a generic exponentialx 	→ e〈y,x〉, then the residue formula
of Theorem 3.7 implies that formula (3.4.1) of Brion and Vergne [5] holds on the
neighborhoodc − �(Φ) of c.

The residue formula makes the exponential-polynomial behavior ofS[f,Φ](λ) in each
of these sectors clear. More specifically, in Section 2.2, we construct an exponential-
polynomial functionE[f,Φ] on the entire vector spaceV ∗ with values in a finite-
dimensional vector spaceS, the space ofsimple elements, and linear functionalsJc :S→ C

depending on the conic chamberc, such thatS[f,Φ](λ) = 〈Jc,E[f,Φ](λ)〉 for λ in
a specified neighborhood of the chamberc depending onf and containingc − �(Φ).
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Moreover, from the comparison with the Jeffrey–Kirwan expression for the volume of
ΠΦ(a), which is given by a very similar residue formula on each conic chamber (cf. [2]),
one immediately obtains the Riemann–Roch formula of [5,8,15] forS[f,Φ].

Conversely, applying Todd operators to the Jeffrey–Kirwan residue expression, we
could deduce our main theorem from [8] or [5]. However, our present result is an explicit
formula which holds on a region larger thanc, and the path followed in the present article
to obtain this result is direct. Furthermore, our result has the advantage that it provides
independent and very similar residue formulae for volumes and for Ehrhart polynomials of
polytopes. These computations are quite efficient: we give a few illustrative examples in
Appendix A. We refer to [2] for examples of calculations of volumes by residue methods
and examples of application of change of variables in residue for expressions of Ehrhart
polynomials.

Our method is based on a detailed study of the generating function

1∏N
k=1(1− eβk )

for the partition function or, more generally, of periodic meromorphic functions with poles
on an affine arrangement of hyperplanes. As a main tool, we will use a separation theorem
due to the first author [21]. We review these results in Section 1.

As stated before, the equationS[f,Φ](λ) = P[c, f,Φ](λ) holds for λ belonging
to a specified “neighborhood” ofc, which, in general, is strictly larger thanc. This
neighborhood depends onf andΦ. As a result the polynomialsP[c, f,Φ](λ) for two
neighboring chambers will coincide along a thick strip near their common boundary. We
illustrate our residue formula and this effect with an example here.

Example 1. We set V ∗ = R2 with standard basis vectorse1, e2 and corresponding
coordinatesa1, a2. Let

Φh = [e1, e1, . . . , e1, e2, e2, . . . , e2, e1 + e2, e1 + e2, . . . , e1 + e2],
where each vectore1, e2, e1 + e2 is repeatedh-time. There are two chambers contained in
C(Φh): c1 = {a1> a2> 0} andc2 = {a2> a1> 0}.

Our residue formula in this case reduces to the following iterated residues:

ιΦh(a1, a2)= Res
z2=0

(
Res
z1=0

(
ea1z1+a2z2 dz1 dz2

(1− e−z1)h(1− e−z2)h(1− e−(z1+z2))h

))
for any(a1, a2) ∈ S1,h = c1 − �(Φh), while

ιΦh(a1, a2)= Res
z1=0

(
Res
z2=0

(
ea1z1+a2z2 dz1 dz2

(1− e−z1)h(1− e−z2)h(1− e−(z1+z2))h

))
for any(a1, a2) ∈ S2,h = c2 − �(Φh).

Pictures of the chambers and of the sets�(Φh), S1,h, S2,h, S1,h ∩ S2,h are given on
Figs. 4–8 in Appendix A.
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Let us give the explicit result forh= 3. We denote byι[c,Φ3] the polynomial function
of (a1, a2), which coincides with the vector partition functionιΦ3 on the chamberc.

The functionι[c1,Φ3] is equal to

1

14

(
a2 + 5

5

)(
7a2

1 − 7a1a2 + 2a2
2 + 21a1 − 9a2 + 14

)
,

so it vanishes along the linesa2 = −1,−2,−3,−4,−5. By symmetry, the function

ι[c2,Φ3] = 1

14

(
a1 + 5

5

)(
2a2

1 − 7a1a2 + 7a2
2 − 9a1 + 21a2 + 14

)
vanishes along the linesa1 = −1,−2,−3,−4,−5. These vanishing properties may be
deduced from the Ehrhart reciprocity Theorem. Our results show that the functions
ι[c1,Φ3] andι[c2,Φ3] coincide on the integral points inS1,h ∩ S2,h. Indeed, we have

ι[c1,Φ3] − ι[c2,Φ3] = 1

14

(
a1 − a2 + 2

5

)(
2a2

1 + 3a1a2 + 2a2
2 + 21a1 + 21a2 + 59

)
,

thus the two polynomial functionsι[c1,Φ3] andι[c2,Φ3] coincide along the linesa1−a2 =
−2,−1,0,1,2.

1. Partial fraction decompositions

1.1. Complex hyperplane arrangements

Let E be an-dimensional complex vector space. Ifα ∈ E∗ is a nonzero linear form
onE, then we denote byHα the hyperplane{z ∈E | 〈α, z〉 = 0}.

An arrangementA of hyperplanes inE is a finite collection of hyperplanes. Thus one
may associate an arrangementA(∆) to any finite subset∆⊂ E∗ of nonzero linear forms;
this arrangement consists of the set of hyperplanesHα , whereα varies in∆. Conversely,
given an arrangementA = {H1, . . . ,HN } of hyperplanes, we choose for each hyperplane
Hi ∈ A a linear formαi ∈E∗ such thatHi =Hαi . Note that such a linear formαi is defined
only up to proportionality.

We will call a set{Hi}mi=1 of m hyperplanes inE independentif dim
⋂
Hi = n −m.

This is equivalent to saying that the corresponding linear forms are linearly independent.
We will say that an hyperplaneL0 is dependenton an arrangement{Li}Ri=1, if the linear
form α0 definingL0 can be expressed as a linear combination of the formsαi (1 � i �R)

definingLi . An arrangementA = {H1, . . . ,HN } is calledessentialif
⋂
i Hi = {0}. Writing

A =A(∆), this condition means that the set of vectors∆ generatesE∗.
Let A = {H1, . . . ,HN } be an arrangement of hyperplanes and∆ = {α1, . . . , αN } be

a set of linear forms such thatA = A(∆). Let us denote byRA the ring of rational
functions onE with poles along

⋃N
i=1Hi . Then each elementF ∈ RA can be written

asF = P/
∏R
i=1βi , whereP is a polynomial and[β1, . . . , βR] is a sequence of elements
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of ∆. The algebraRA is Z-graded by the degree. Denote byB(∆) the set ofn-element
subsets of∆ which are bases ofE∗. Givenσ ∈ B(∆), we can form the following elements
of RA:

fσ (z) := 1∏
α∈σ α(z)

. (1.1)

Clearly, the vector space spanned by the functionsfσ for σ ∈ B(∆) depends only onA.

Definition 1.1. The subspaceSA of RA spanned by the functionsfσ , σ ∈ B(∆), is called
the space ofsimple elementsof RA:

SA =
∑

σ∈B(∆)
Cfσ .

The vector spaceSA is contained in the homogeneous component of degree−n of RA.
If A is not an essential arrangement, then the setB(∆) is empty andSA = {0}.

We let vectorsv ∈E act onRA by differentiation:

∂vf (z) := d

dε
f (z+ εv)

∣∣∣
ε=0
.

Then the following holds [6, Proposition 7].

Theorem 1.1. There is a direct sum decomposition

RA =
(∑
v∈E

∂vRA

)
⊕ SA.

As a corollary of this decomposition, we can define the projection map

TresA :RA → SA,

called thetotal residue. The following assertion is obvious.

Lemma 1.2. Assume thatA is a subset ofB. Then

RA ⊂RB, SA ⊂ SB.

Furthermore, iff ∈ RA, thenTresB(f ) belongs toSA and

TresB(f )= TresA(f ).

We denote byRhp the space of rational functions onE with poles along hyperplanes.
In other words,Rhp is the union of the spacesRA asA varies over all arrangements of
hyperplanes inE. The preceding lemma shows that the assignment Tresf = TresA f , for
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f ∈RA, is well defined onRhp. Forf ∈ Rhp, the function Tresf is a linear combination of
functionsfσ , defined in (1.1), where the setσ is a basis ofE∗ such thatA(σ ) is contained
in the set of poles off . The map Tres vanishes on the spaceRhp(m) of homogeneous
fractions of degreem unlessm+n= 0. In particular, ifφ = fσP , whereP is a polynomial
andσ is a basis ofE∗, then the total residue ofφ is P(0)fσ .

The total residue also vanishes on all homogeneous elements of degree−n of the form
P/
∏R
i=1βi , whereP is a homogeneous polynomial of degreeR − n and vectors{βi}Ri=1

do not generateE∗.
Denote byR̂hp the space of formal meromorphic functions onE near zero, with poles

along hyperplanes. In other words, any element ofR̂hp can be written asP/
∏R
i=1βi , where

P is a formal power series and[β1, . . . , βR] is a sequence of elements ofE∗. The total
residue extends to the spacêRhp by defining

Tres

(
P∏R
i=1βi

)
= Tres

(
P[R−n]∏R
i=1βi

)
,

whereP[R−n] is the homogeneous component ofP of degreeR − n.
For example, ifa ∈ E∗, then the element ea denotes the power series

∑∞
k=0 a

k/k!
and the total residue of ea/

∏R
i=1βi is, by definition, equal to the total residue of

aR−n/((R− n)!∏R
i=1βi). Again, this total residue vanishes if the linear forms{βi}Ri=1

do not spanE∗.

Example 2. Consider the function

g(z1, z2)= ez1

(1− e−z1)(1− e−z2)(1− e−(z1−z2))2
.

Thus we write

g = P

z1z2(z1 − z2)2
with P = ez1

z1

1− e−z1
z2

1− e−z2

(
z1 − z2

1− e−(z1−z2)

)2

.

To compute the total residue ofg, we need the term of degree 2 in the expansion ofP

at the origin. This isP[2] := 3z2
1 − 13

12z1z2. Then

P[2]
z1z2(z1 − z2)2

= 23

12

1

(z1 − z2)2
+ 3

1

z2(z1 − z2)
.

The total residue of the first fraction is equal to 0, and we obtain the answer

Tresg = 3

z2(z1 − z2)
.

The following statements follow from the discussion above. We will use them later.
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Lemma 1.3. Consider the meromorphic functionF onE expressed as

F(z)= e〈a,z〉∏N
i=1(1− uie−〈βi,z〉)

,

where[β1, . . . , βN ] is a sequence of elements ofE∗ and the coefficientsui , i = 1, . . . ,N ,
are nonzero complex numbers. Then

• TresF = 0 if thoseβj for whichuj = 1 do not spanE∗.
• If the setσ = {βj | uj = 1} forms a basis ofE∗, then

(TresF)(z)= 1∏
βj∈σ 〈βj , z〉

1∏
βk /∈σ (1− uk) .

1.2. Rational hyperplanes arrangements

Let V be a real vector space of dimensionn. Forα ∈ V ∗, we denote byHα = {v ∈ V |
〈α,v〉 = 0}, this time, the real hyperplane determined byα.

Again, letΓ be a rank-n lattice inV and denote byΓ ∗ ⊂ V ∗ the dual lattice. This means
that if α ∈ Γ ∗ andγ ∈ Γ , then〈α,γ 〉 ∈ Z. We denote byC[Γ ∗] the ring of functions on
VC generated by the exponential functionsz 	→ e〈ξ,z〉, ξ ∈ Γ ∗.

Definition 1.2. An arrangementA of real hyperplanes inV is Γ -rational if A=A(∆) for
some finite subset∆ of Γ ∗. We simply say thatA is rational if Γ has been fixed.

Given a rational arrangementA = {H1, . . . ,HN } of hyperplanes, for each hyperplane
Hi ∈ A we choose a linear formαi ∈ Γ ∗ such thatHi =Hαi . If Hα =Hβ with bothα and
β in Γ ∗, thenα andβ are proportional with arational coefficient of proportionality.

For anyu ∈ C∗, α ∈ Γ ∗, consider the meromorphic function onVC defined by

g[α,u](z)= 1

1− ue〈α,z〉 .

If u = ea with a ∈ C, then the set of poles of the functiong[α,u] is the set{z ∈ VC |
〈α, z〉 + a ∈ 2iπZ}.

Definition 1.3. We denote byMΓ the ring of meromorphic functions onVC generated by
C[Γ ∗] and by the functionsg[α,u], whereu varies inC∗ andα in Γ ∗. Given a finite subset
∆ of nonzero elements ofΓ ∗, denote byMΓ∆ the ring of meromorphic functions onVC

generated by the ringC[Γ ∗] and by the meromorphic functionsg[α,u], whereu varies in
C∗ and nowα is restricted to be a member of the finite set∆.
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Thus, to be explicit, a functionF ∈ MΓ can be written, by reducing to a common
denominator, as

F(z)=
∑
ξ∈I cξe〈ξ,z〉∏R

k=1(1− uke〈αk,z〉)

whereI is a finite subset ofΓ ∗; uk, cξ ∈ C∗, and the elementsαk are inΓ ∗. If in addition
αk ∈∆, then this function is inMΓ∆.

If we write z = x + iy with x, y ∈ V , then the functiony 	→ F(x + iy) is periodic:
F(x + i(y + 2πγ ))= F(x + iy) for anyγ ∈ Γ . Thus functionsF ∈MΓ induce functions
on the complexified torusVC/2iπΓ .

Lemma 1.4. Let ∆ and∆′ be two finite subsets ofΓ ∗ such thatA(∆) = A(∆′). Then
we haveMΓ∆ = MΓ∆′

. Thus the ringMΓ∆ depends only on the rational hyperplane
arrangementA(∆).

Proof. Let us note the following identities:

1

(1− eaekz)
= 1∏

ζ,ζ k=1(1− ζea/kez)
,

1

1− uez
= 1+ uez + u2e2z + · · · + u(n−1)e(n−1)z

1− unenz ,

1

1− uez
= u−1e−z

u−1e−z − 1
,

wheren, k ∈ Z, anda,u, z ∈ C.
These identities show thatMΓ∆ does not change if we multiply one of the elements of

∆ by a nonzero integer. This implies the lemma since any two sets∆,∆′ ⊂ Γ ∗ such that
A(∆)=A(∆′) may be transformed into each other by such an operation.✷

Now we can give the following definition:

Definition 1.4. LetA be aΓ -rational hyperplane arrangement in a vector spaceV . Define
MΓA to be the ringMΓ∆, where∆⊂ Γ ∗ is an arbitrary subset such thatA =A(∆).

It is clear that, ifB is a subset ofA, thenMΓB is a subring ofMΓA.

1.3. Behavior at∞

Consider a functionF ∈ MΓ . The function of the real variabley 	→ F(x + iy) is
2πΓ -periodic. In this section, we study the behavior of the function of the real variable
x 	→ F(x + iy) at∞.

Let z0 ∈ VC be not a pole ofF . Then, for allv ∈ V , the functions 	→ F(z0 + sv) is
well-defined whens is a sufficiently large real number.
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Definition 1.5. Let F ∈MΓ . Assume thatz0 ∈ VC is not a pole ofF . Define�(z0,F ) to
be the set ofµ ∈ V ∗ such that for everyv ∈ V , the functions 	→ es〈µ,v〉F(z0 + sv) remains
bounded whens is real and tends to+∞.

Example. Let F(z) = 1/(1 − ez); pick z0 /∈ 2iπZ. Then�(z0,F ) = [0,1]. Indeed, the
functionθ(s, v) = esµv/(1 − ez0+sv) is bounded ass tends to∞ if and only 0� µ � 1:
when v = 0, the functionθ(s, v) is the constant 1/(1 − ez0); if v > 0, we obtain the
conditionµ � 1; if v < 0, we obtain the conditionµ � 0. Note that ifv �= 0, then, for
µ ∈ ]0,1[, the functions 	→ θ(s, v) tends to 0 whens tends to∞.

Definition 1.6. For two subsetsA andB of a real vector space, we denote byA+ B their
Minkowski sum:

A+B = {a + b | a ∈A, b ∈ B}.

Note that the sum of convex sets is convex.

Proposition 1.5. LetF ∈MΓ be written in the form

F(z)=
∑
ξ∈I cξe〈ξ,z〉∏R

i=1(1− uie〈αi ,z〉)
,

whereI is a finite subset ofΓ ∗, αi are inΓ ∗, and all the constantscξ andui are nonzero
complex numbers. Assume thatz0 ∈ VC is such that

∏R
i=1(1− uie〈αi,z0〉) �= 0. Then

�(z0,F )=
{
µ ∈ V ∗

∣∣∣µ+ ξ ∈
R∑
i=1

[0,1]αi for all ξ ∈ I
}
. (1.2)

Proof. The set described on the right-hand side of (1.2) is easily seen to be contained in
�(z0,F ). Indeed, letµ ∈ V ∗ be such thatµ+ ξ belongs to the set

∑R
i=1[0,1]αi for all

ξ ∈ I. We writeF(z)=∑
ξ∈I cξFξ (z) with

Fξ (z)= e〈ξ,z〉∏R
i=1(1− uie〈αi,z〉)

.

Let us show that for eachξ ∈ I , the functions 	→ es〈µ,v〉Fξ (z0 + sv) remains bounded
when s tends to∞. We haveµ + ξ = ∑R

i=1 tiαi with 0 � ti � 1 and we may write
es〈µ,v〉Fξ (z0 + sv) as

e〈ξ,z0〉 es〈µ+ξ,v〉∏R
i=1(1− uie〈αi,z0〉es〈αi,v〉)

= e〈ξ,z0〉
R∏
i=1

esti〈αi ,v〉

(1− uie〈αi ,z0〉es〈αi,v〉)
.
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As each of the factors on the right-hand side remains bounded whens tends to∞, we have
shown thatµ ∈ �(z0,F ).

We now prove the converse. Letµ be such that the function

s 	→ es〈µ,v〉F(z0 + sv)
is bounded ass → ∞ for any v ∈ V . Assume that, nevertheless, there existsν in the
set I such thatµ + ν is not in the convex polytopeΠ := ∑R

i=1[0,1]αi . The vectors
αk =∑

i∈k αi , wherek is a subset of{1, . . . ,R}, are all in the polytopeΠ . Thus there
existsw ∈ V anda ∈ R such that〈∑i∈k αi,w〉< a for all subsetsk of {1,2, . . . ,R}, while
〈µ+ ν,w〉> a. The set of such vectorsw is an open set inV .

We write

es〈µ,v〉F(z0 + sv)= P(s, v)

D(s, v)
,

with

P(s, v)=
∑
ξ

cξe〈ξ,z0〉es〈µ+ξ,v〉 and D(s, v)=
R∏
i=1

(
1− uie〈αi,z0+sv〉).

Then

D(s, v)=
R∏
i=1

(
1− uie〈αi,z0+sv〉)=

∑
k

cke〈αk,z0〉es〈αk,v〉,

for some constantsck. Note that the functions 	→ D(s, v) does not vanish identically,
as D(0, v) = ∏R

i=1(1 − uie〈αi ,z0〉). Thus for anyw such that〈∑i∈k αi,w〉 < a, the
denominatorD(s,w) can be rewritten as a finite sum of exponentials

∑
k hke

bks with
distinct exponentsbk and nonzero coefficientshk . We clearly have maxk(bk) < a.

Consider now

P(s,w) =
∑
ξ

cξe〈ξ,z0〉es〈µ+ξ,w〉.

Since the set{w ∈ V | 〈µ + ν,w〉 > a, 〈∑i∈k αi,w〉 < a} is open, we can choose an
elementw0 in it such that the numbers〈µ + ξ,w0〉 aredistinct for all ξ ∈ I . Then the
numeratorP(s,w0) may be rewritten as a sum of exponentials

∑
j cje

aj s with nonzero
constantscj , and distinct exponentsaj such that maxj (aj ) > a. Thus the functionF(s,w0)

is equal to the quotient
∑
j cje

aj s/
∑
k hke

bks , which is equivalent toces(maxj aj−maxk bk)

as s → +∞ (c �= 0). The exponent is positive, hence the functions 	→ F(s,w0) tends
to ∞ when s tends to+∞. This contradicts our assumption onµ, and the proof of
Proposition 1.5 is complete.✷

Let F ∈MΓ . As a consequence of Proposition 1.5, the set�(z0,F ) is independent of
the choice ofz0.
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Definition 1.7. LetF ∈MΓ andz0 be an arbitrary element ofVC which is not a pole ofF .
We denote by�(F ) the set�(z0,F ).

The set�(F ) is easy to determine, using any presentation ofF as a fraction.

Example 3. Let

F(z)= 1

1− ez
= 1+ ez

1− e2z
.

Using the first expression, we obtain�(F ) = [0,1]. Using the second expression, we
obtain�(F )= [0,2] ∩ [−1,1].

Lemma 1.6. LetF ∈MΓ andµ ∈ V ∗. Assume thatµ is in the interior of�(F ) and that
z0 is not a pole ofF . Then for all nonzerov ∈ V , the functions 	→ es〈µ,v〉F(z0 + sv) tends
to zero whens is real and tends to+∞.

Proof. ConsiderF ∈ MΓ written as in Proposition 1.5 and let us return to the first
part of the proof of this proposition. If the interior of�(F ) is nonempty, then the
linear formsαi necessarily generateV ∗. Furthermore, ifµ is in the interior of�(F ),
then, for eachξ ∈ I , we can writeµ + ξ = ∑R

i=1 tiαi with 0 < ti < 1. Each factor
esti〈αi ,v〉/(1− uie〈αi ,z0〉es〈αi,v〉) remains bounded whens tends to∞. Sincev is not equal
to 0, there exists at least one linear formαj with 〈αj , v〉 �= 0. The corresponding factor
tends to 0 whens tends to∞, and we obtain the lemma.✷
Definition 1.8.

• Forµ ∈ V ∗, we denote byMΓ (µ) the set ofF ∈MΓ such thatµ ∈ �(F ). Similarly,
for µ ∈ V ∗ and aΓ -rational arrangementA, let

MΓA(µ)= {
F ∈MΓA ∣∣µ ∈ �(F )

}
.

• Let F ∈MΓ andµ ∈ �(F ). A decompositionF =∑
Fi of F into a sum of terms

fromMΓ will be calledµ-admissibleif µ ∈ �(Fi) for everyi.

We have the following obvious inclusions:

Lemma 1.7. LetF,G ∈MΓ . Then

�(F )∩ �(G)⊂ �(F +G) and �(F )+ �(G)⊂ �(FG).

Remark 1.1. A consequence of Proposition 1.5 is that ifF = ∑
i∈I Pi/D is a sum of

fractions fromMΓ with the same denominator, thenF ∈MΓ (µ) if and only if Pi/D ∈
MΓ (µ) for each i ∈ I . However, for a decompositionF = ∑

i Pi/Di with different
denominators, the inclusion

⋂
i �(Pi/Di)⊂ �(F ) is strict in general.
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Fig. 1. The sets�(F1), �(F2), and�(F3).

Fig. 2. The sets�(F1), �(F2), �(F3), and�(F2)∩ �(F3).

Example 4. Set

F1 = 1

(1− ez1)(1− ez2)
, F2 = 1

(1− ez1+z2)(1− ez2)
,

F3 = 1

(1− ez1+z2)(1− e−z1)
.

Then we haveF1 = F2 − F3. Figure 1 shows the three parallelograms�(F1), �(F2) and
�(F3). Clearly,�(F2)∩ �(F3) is strictly smaller than�(F1) (cf. Fig. 2).

The following lemma will allow us to obtain admissible decompositions of certain
specific elements ofMΓ (µ).

Lemma 1.8. Letα1, . . . , αr be nonzero linear forms, and letα0 = −(α1 + α2 + · · · + αr).
Letu1, . . . , ur be nonzero complex numbers, and let

F = 1∏r
i=1(1− uieαi ) .

Setµ=∑r
i=1 tiαi ∈ �(F ) with 0� t1 � t2 � · · · � tr � 1.

Assume that either the linear formα0 is not identically zero, or ifα0 = 0 then the product
u1 · · ·ur �= 1. This ensures that the function(1 − u1 · · ·ure−〈α0,z〉)−1 is well defined as a
meromorphic function onVC. Then we have

F =
r∑
i=1

Fi
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where

Fi = (−1)i+1 1

(1− u1u2 · · ·ure−α0)

i−1∏
j=1

1

(1− u−1
j e−αj )

r∏
j=i+1

1

(1− ujeαj ) ,

andµ ∈ �(Fi) for each1 � i � r.

Proof. The equalityF =∑r
i=1Fi is verified by multiplying by(1−u1u2 · · ·ure−α0). The

resulting formula in another form is

r∑
i=1

∏i−1
j=1uje

αj∏
j �=i (1− ujeαj ) = 1−∏r

i=1uie
αi∏r

i=1(1− uieαi ) . (1.3)

It remains to check thatµ ∈ �(Fi) for eachi. We have

µ=
i−1∑
j=1

tj αj + tiαi +
r∑

j=i+1

tj αj = −tiα0 +
i−1∑
j=1

(tj − ti)αj +
r∑

j=i+1

(tj − ti)αj

where the coefficients of−α0,−α1, . . . ,−αi−1, αi+1, . . . , αr are between 0 and 1.
Considering the form of the functionsFi , this is exactly the criterion of being in�(Fi),
and the proof is complete.✷
Remark 1.2. We would like to stress here that theµ-admissible decomposition ofF given
in Lemma 1.8 depends on the position of the elementµ in �(F ) in an essential manner.

Example 5. Let

F(z1, z2)= 1

(1− ez1)(1− ez2)

andµ= (µ1,µ2) in �(F ), i.e., 0� µ1 � 1 and 0� µ2 � 1. Then ifµ1 � µ2, we write

F = F1 − F2

with

F1(z1, z2)= 1

(1− ez1+z2)(1− ez2)
and F2(z1, z2)= 1

(1− ez1+z2)(1− e−z1) ,

so thatµ ∈ �(F1)∩ �(F2).
If µ1 � µ2, then the roles ofz1 andz2 are reversed, and

F = F ′
1 − F ′

2
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with

F ′
1(z1, z2)= 1

(1− ez1+z2)(1− ez1)
and F ′

2(z1, z2)= 1

(1− ez1+z2)(1− e−z2)
.

Again, we haveµ ∈ �(F ′
1)∩ �(F ′

2).

Example 6. Let

F(z)= 1

(1− u−1e−z)(1− vez)
with u �= v. Letµ ∈ [−1,1]. Then if 0� µ� 1, we write

F(z)= F1(z)−F2(z)

with

F1(z)= 1

(1− u−1v)

1

(1− vez) , F2(z)= 1

(1− u−1v)

1

(1− uez)

andµ ∈ �(F1)∩�(F2). If −1 � µ� 0, then we exchange the roles ofz and−z and write

F(z)= F ′
1(z)−F ′

2(z)

with

F ′
1(z)=

1

(1− u−1v)

1

(1− u−1e−z)
, F ′

2(z)=
1

(1− u−1v)

1

(1− v−1e−z)
,

where againµ ∈ �(F ′
1)∩ �(F ′

2).

1.4. Separating variables

Let Γ ⊂ V be a lattice of full rank andA be aΓ -rational arrangement of hyperplanes
in V . Recall that givenµ ∈ V ∗, we definedMΓA(µ) to be the subspace of functionsF in
MΓA such thatµ ∈ �(F ).

Lemma 1.9 (The exchange lemma).LetA = {H1, . . . ,Hm} be a rational arrangement of
hyperplanes and letH0 be a rational hyperplane, which is dependent onA. Denote byAi
the arrangement{H0,H1, . . . , Ĥi, . . . ,Hm}, where we have replaced the hyperplaneHi by
the hyperplaneH0. Then, for anyµ ∈ V ∗, we have

MΓA(µ)⊂
m∑
i=1

MΓAi (µ).
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Proof. The dependence ofH0 on A means that there are linear formsα0, . . . , αm ∈ Γ ∗
with H0 = Hα0,H1 = Hα1, . . . ,Hm = Hαm , such thatα0 may be expressed as a linear
combination of the rest of theαs. By using multiples of these linear forms to describe our
hyperplanes and reordering the hyperplanes inA if necessary, we may assume that the
relation takes the formα0 + α1 + · · · + αr = 0, wherer �m.

Let F ∈MΓA(µ). By Lemma 1.4, we may write

F =
∑
ξ∈I

cξ
eξ

D
, D =

R∏
j=1

(
1− ujeβj

)
,

where [β1, . . . , βR] is a sequence of not necessarily distinct elements of the set
{α1, . . . , αm} andcξ is a nonzero complex number forξ ∈ I . According to Remark 1.1,
each of the terms eξ /D is inMΓA(µ), so we may assume thatF is of the form eξ /D to
begin with.

We argue by induction on the lengthR of the sequence[β1, . . . , βR]. If the set{βj | 1 �
j �R} of elements occurring in the sequence is strictly smaller than the set{α1, . . . , αm},
then one of the linear formsαi does not appear in the sequence[β1, . . . , βR], and thusF is
already in

∑m
i=1M

ΓAi (µ). Otherwise, reordering the sequence, we may assume thatβ1 =
α1, β2 = α2, . . . , βr = αr . We writeD′ = ∏r

i=1(1 − uieαi ), D′′ = ∏R
j=r+1(1 − ujeβj ),

so thatD = D′D′′. As µ ∈ �(F ), we writeµ = µ′ + µ′′ with µ′ ∈ ∑r
i=1[0,1]αi and

µ′′ ∈ −ξ +∑R
i=r+1[0,1]βi. Now

eξ

D
= 1

D′
eξ

D′′ with
1

D′ ∈MΓ (µ′) and
eξ

D′′ ∈MΓ (µ′′).

We may suppose that, after reordering the firstr elements of the sequence if necessary,
we haveµ′ =∑r

k=1 tkαk with 0� t1 � t2 � · · · � tr .
Using Lemma 1.8, we write 1/D′ = ∑r

k=1F
′
k , with µ′ ∈ �(F ′

k). Thus we obtain
a µ-admissible decomposition eξ /D = ∑r

k=1F
′
ke
ξ /D′′. More explicitly, writing u0 =

(u1 · · ·ur)−1, we obtain theµ-admissible decomposition

eξ

D
=

r∑
k=1

1

(1− u−1
0 e−α0)

Gk

with

Gk = eξ∏k−1
j=1(1− u−1

j e−αj )
∏r
j=k+1(1− ujeαj )∏R

j=r+1(1− ujeβj )
.

For each 1� k � r, we haveµ = tkα0 + µ′
k with 0 � tk � 1 andµ′

k ∈ �(Gk). We can
apply our induction hypothesis toGk ∈ MΓA(µ′

k) since the length of the denominator
of Gk is R − 1. We then obtain an admissible decomposition ofGk as

∑m
i=1G

i
k with
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µ′
k ∈ �(Gik) andGik ∈MΓAi . According to Lemma 1.7, the functionGik/(1 − u−1

0 e−α0)

is inMΓAi (tkα0 +µ′
k)=MΓAi (µ). Hence the proof is now complete.✷

Clearly, if B ⊂ A thenMΓB(µ) ⊂ MΓA(µ). The following crucial partial fraction
decomposition type result holds in the reverse direction:

Theorem 1.10 [21]. For eachµ ∈ V ∗, we have the equality

MΓA(µ)=
∑

MΓ a(µ),

where the sum is over all independent subarrangementa of A.

Proof. We use induction on the numberN of elements inA. If A is linearly independent,
we are done. If not, we assume that the statement is known for arrangements with
N − 1 elements, and writeA = {Hα1,Hα2, . . . ,HαN }. As A is not independent, there is
a hyperplane, sayHαN , which is dependent on the rest of the system

A′ = {Hα1, . . . ,HαN−1}.

For 1� i � (N − 1) we let

A′
i =

{
Hα1,Hα2, . . . , Ĥαi , . . . ,HαN

}
.

Note that eachA′
i hasN − 1 elements. A functionF of MΓA(µ) may be written in the

form F = P/D with P =∑
ξ∈I cξeξ andD =D′DN , where

D′ =
R∏
j=1

(
1− ujeβj

)
and DN =

nN∏
j=1

(
1− vjeαN

)
.

In the factorization ofD′, the elementsβj belong to the set{α1, . . . , αN−1}.
Each of the termsFξ = eξ /D of F is in MΓA(µ). We may splitµ asµ = µ′ + µN ,

with µN = tNαN , 0� tN � nN and

eξ

D′ ∈MΓA′
(µ′).

Applying the exchange lemma toHαN and the systemA′, we obtain an admissible
decomposition of eξ /D′ as a sum of elementsF ′

i ∈MΓA′
i (µ′). ThenFξ is a sum of terms

of the formF ′
i /DN , each of which is inMΓA′

i (µ). Since the systemA′
i is composed

of N − 1 hyperplanes, we may conclude the proof of the theorem by our induction
hypothesis. ✷
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Remark 1.3. A fixed total order≺ on the arrangementA of hyperplanes in ann-dimen-
sional vector space selects a subsetNBC(A,≺) of the set ofn-tuples of independent
hyperplanes inA. This subset is called theno-broken-circuit basisof A (cf. [21] for
details). The arguments used in the proof of the above theorem may be used to show that,
in fact,

MΓA(µ)=
∑

a∈NBC(A,≺)
MΓ a(µ).

Moreover, the setsNBC(A,≺) are minimal with respect to this property.

Now we analyze the setMΓ a(µ) when the arrangementa is independent. Thus leta
be a set ofm independent hyperplanes. We chooseαk ∈ Γ ∗, k = 1, . . . ,m, such thata =
{Hα1, . . . ,Hαm}. Thenφ = [α1, . . . , αm] is a sequence of linearly independent linear forms.
Let h = [h1, h2, . . . , hm] be a sequence of nonnegative integers andu = [u1, u2, . . . , um]
be a sequence of nonzero complex numbers. We introduce the function

g(ξ,φ,h,u)= eξ∏m
i=1(1− uieαi )hi ,

whereξ ∈ Γ ∗.

Proposition 1.11. For an independent arrangementa =A(φ), each functionF ∈MΓ a(µ)

may be represented as aµ-admissible linear combination of the functionsg(ξ,φ,h,u).

Proof. Clearly, it is sufficient to prove this statement for the case|φ| = 1. The general case
will follow by taking the product of the linear combinations for each participating linear
form.

Set φ = {α} and a = A(φ). An elementF ∈ MΓ a(µ) is a linear combination of
elementsFξ = eξ /D ∈MΓ a(µ), whereD =∏R

i=1(1− uieα). We need to show that each
functionFξ may be represented as a linear combination of elements ofMΓ a(µ) of the
form eζ /(1− veα)h.

We use induction onR. If all the ui are equal, thenFξ already has the required
form. If not, up to reordering, we can assume thatu1 �= u2. We writeD = D12D

′ with
D12 = (1 − u1eα)(1 − u2eα). FactorFξ asFξ = G/D12 with G = eξ /

∏R
i=3(1− uieα),

and letµ= µ′ +µ′′, whereµ′ = tα with 0 � t � 2 andµ′′ ∈ �(G).
There are two cases: if 0� t � 1, we write

1

(1− u1eα)(1− u2eα)
= 1

(1− u2u
−1
1 )

1

(1− u1eα)
+ 1

(1− u1u
−1
2 )

1

(1− u2eα)
;

if 1 � t � 2, we write

1

(1− u1eα)(1− u2eα)
= −1

(1− u2u
−1
1 )

u−1
1 e−α

(1− u2eα)
+ −1

(1− u1u
−1
2 )

u−1
2 e−α

(1− u1eα)
.
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In both cases, we obtain aµ-admissible decomposition of eξ /D into a sumG1+G2, where

G1 = c1
eξ

′∏
i �=1(1− uieα) and G2 = c2

eξ
′∏

i �=2(1− uieα) .

This allows us to reduce the number of factors inFξ by one. Our statement now follows
by the inductive hypothesis.✷
1.5. Essential arrangements and nonspecial elements

Now we formulate a version of Theorem 1.10 in a form which incorporates Proposi-
tion 1.11 and excludes some degenerate cases.

Let againΓ be a lattice of full rank in then-dimensional vector spaceV , and let
A = {H1, . . . ,HN } be an essentialΓ -rational arrangement of hyperplanes inV . Fix a set
∆ of representative linear forms forA; thus we haveA = A(∆). Defineµ ∈ V ∗ to beΓ -
specialwith respect toA if µ= λ+∑N

i=1 tiαi , whereλ ∈ Γ ∗, ti ∈ R, αi ∈∆ and at most
n− 1 of the coefficientsti are nonzero. This property depends both onΓ and onA. The
set of nonspecial elements is aΓ ∗-invariant union of open polyhedral chambers inV ∗.

Note that ifF ∈MΓA, then the boundary of�(F ) is contained in the set of special
elements. Thus ifµ is nonspecial andF ∈MΓA(µ), thenµ is in the interior of�(F ). We
arrive at the following proposition.

Proposition 1.12. Let A be an essential arrangement of rational hyperplanes. LetF ∈
MΓA. Let µ ∈ �(F ) be a nonspecial element. Then there exists a setB consisting of
independentn-tuples of hyperplanes and aµ-admissible decompositionF = ∑

a∈B Fa,
with Fa ∈MΓ a(µ). Furthermore, choosing a basisσ = {α1, . . . , αn} such thata = A(σ ),
the functionFa is a linear combination of functionsg(ξ, σ,h,u) with µ+ ξ =∑n

i=1 tiαi
and0< ti < hi .

This proposition allows us to writeF as a linear combination of those functions
g(ξ, σ,h,u), for whichµ belongs to the interior of�(g(ξ, σ,h,u)).

2. Expansion and inversion formula

2.1. Expansion of functions

Let V be a real vector space of dimensionn endowed with a latticeΓ . A choice of a
nonzero vectorv in V induces a choice of an open half spaceV ∗+ ⊂ V ∗ of linear forms
which take positive values onv. We fix such a half space and consider a finite subset∆

of elements ofV ∗+ ∩ Γ ∗. We assume that∆ linearly spans the vector spaceV ∗ and thus
generates a closed acuten-dimensional coneC(∆):

C(∆)=
∑
α∈∆

R�0α.
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Fig. 3. The chambers of the systemA+
3 .

Recall that we denoted byB(∆) the set of those subsets of∆ which are bases ofV ∗.
Following [1], we will call a vector inV ∗ singularwith respect to∆ if it is in a coneC(ν)
generated by a subsetν ⊂∆ of cardinality strictly less thann. The set of singular vectors
will be denoted byC∆sing and the vectors in the complementC∆reg = V ∗ \C∆sing will be called

regular. The connected components ofC∆reg are conic chambers calledbig chambers. This
term is chosen to differentiate them from the smaller chambers cut out by special elements
defined in Section 1.5. We might call big chambers simplychambers, whenever this does
not cause confusion.

A big chamber is an open cone. Note that there might be regular elements which are
specialin the sense of Section 1.5: if suchµ is writtenµ=∑N

i=1 tiαi , ti ∈ R, αi ∈∆ and
at mostn − 1 of the coefficientsti are nonzero, then at least one of the coefficientsti is
strictly negative.

If c is a big chamber andσ ∈ B(∆), then eitherc ⊂ C(σ) or c ∩ C(σ)= ∅. One of the
big chambers is the complement of the closed coneC(∆); we denote it bycnull. Note that
this convention is slightly different from the convention adopted in [2], wherecnull was not
considered a chamber.

If c is a big chamber contained inC(∆), then the closure ofc may be represented as

c =
⋂
C(σ), c ⊂ C(σ), σ ∈ B(∆).

In particularc is a closed convex polyhedral cone.
Denote byC❏Γ ∗❑ the set of complex, formal, possibly infinite linear combinations of

the exponentials eλ, whereλ ∈ Γ ∗. If Θ =∑
λ∈Γ ∗mλeλ is an element ofC❏Γ ∗❑, then the

supportof Θ is the set ofλ ∈ Γ ∗ such thatmλ �= 0. The coefficientmλ of eλ in Θ will be
denoted by Coeff(Θ,λ).

Let C∆❏Γ
∗❑ be the subspace ofC❏Γ ∗❑ spanned by the elementsΘ with supports

contained in sets of the formI + C(∆), whereI is a finite subset ofΓ ∗. This subspace
forms a ring which contains the ringC[Γ ∗] of finite linear combinations of elements eξ ,
ξ ∈ Γ ∗.
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Consider the arrangement of hyperplanesA = A(∆) and recall the definition of the
algebraMΓA from Section 1. Every functionF ∈MΓA can be written in the form

F =
∑
ξ∈I cξeξ∏R

k=1(1− ukeβk )
,

whereI is a finite subset ofΓ ∗, uk, cξ ∈ C∗, and the exponentsβk are in∆.
Forα ∈∆ andu ∈ C∗, define the expansion

r+
(

1

1− ueα

)
=

∞∑
k=0

ukekα,

where the right-hand side is interpreted as a formal series. This expansion map extends to
an injective ring homomorphism

r+ :MΓA → C∆❏Γ
∗❑

given by

r+(F )=
(∑
ξ∈I

cξeξ
) R∏
k=1

r+
(

1

1− ukeβk
)
.

We callr+(F ) the expansion ofF .
The aim of this section is to give a residue formula for the coefficient Coeff(r+(F ),λ)

for F ∈MΓA andλ ∈ Γ ∗.

2.2. The residue transform

We start with a general definition of exponential-polynomial functions.

Definition 2.1.

• For aZ-moduleW and a fieldF, define the space of polynomial functionsP(W,F)
to be the subring ofF-valued functions onW generated by the additiveF-valued
characters ofW .

• For aZ-moduleW and a fieldF, define the space of exponential-polynomial functions
EP(W,F) to be the subring ofF-valued functions onW generated by the additive
F-valued and multiplicativeF∗-valued characters ofW .

Clearly, an exponential-polynomial function is a linear combination of multiplicative
characters (exponentials) with polynomial coefficients. Usually, we will setF = C, and in
this case we will write EP(W) for EP(W,F). In our applications,W will be either a vector
space or a lattice.
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WhenW is a lattice of full rank in a vector spaceE, a polynomial functionf on
W extends in an unique way to a polynomial function onE. Exponential-polynomial
functions also extend to exponential-polynomial functions onE, but the extension is not
unique. For example, ifW = Z ⊂ R =E, then the functionn 	→ (−1)nn is an exponential-
polynomial function onZ, which can be extended onR as the exponential-polynomial
functionx 	→ ei(2k+1)πxx for any integerk.

WhenW is a lattice and a functionf ∈ EP(W) is such that the multiplicative characters
which appear in it take values in roots of unity, then such a function is calledperiodic-
polynomialor sometimes,quasipolynomial.

We continue with the setup of a latticeΓ ⊂ V , an arrangementA and a set of
linear forms∆ ⊂ Γ ∗ representingA. In this section we associate to anyF ∈ MΓA an
exponential-polynomial function onΓ ∗ with values in the space of simple fractionsSA.

According to Lemma 1.3, the total residue of a functionF ∈MΓA, written in the form

F =
∑
ξ∈I cξeξ∏R

k=1(1− ukeβk )
, (2.1)

vanishes unless the set of linear forms{βk | uk = 1} spans the vector spaceV ∗. Let us
define the total residue ofF at some pointp ∈ VC as the total residue of the function
z 	→ F(z−p). Then we observe that the total residue ofF given in the above form vanishes
atp ∈ VC unless

the set of forms
{
βk
∣∣ e〈βk,p〉uk = 1

}
linearly spansV ∗.

The linear formsβk are all inΓ ∗, hence the set SP(F,Γ ) of those pointsp ∈ VC which
satisfy this condition is invariant under translations by elements of the lattice 2π iΓ .
Consider two points inVC equivalent if they are related by such a translation, and choose
a set RSP(F,Γ ) containing exactly one point from each equivalence class of points in
SP(F,Γ ). It is clear from the definitions that the set RSP(F,Γ ) is finite; we will call it a
reduced set of polesof F .

This definition of the set RSP(F,Γ ) is somewhat informal: it depends on the
presentation ofF . The only properties that we will need from it are that

• the set RSP(F,Γ ) is finite;
• if p,q ∈ RSP(F,Γ ) andp− q ∈ 2π iΓ , thenp = q ;
• if the total residue ofF(z)G(z), whereG(z) is an entire function, does not vanish at

someq ∈ VC, thenq ∈ 2π iΓ + RSP(F,Γ ).

Now we define a functions[F,Γ ] :Γ ∗ → SA with values in the space of simple
fractions associated to∆, whose value atλ ∈ Γ ∗ is the sum of all the total residues of
the functionz 	→ e〈λ,z〉F(−z) taken at inequivalent points inVC. More precisely,

Definition 2.2. ForF ∈MΓA andλ ∈ Γ ∗, we introduce

s[F,Γ ](λ)=
∑

p∈RSP(F,Γ )

Tres
(
e〈λ,z−p〉F(p− z)), (2.2)

where the set RSP(F,Γ ) is a reduced set of poles ofF .
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Clearly, the definition does not depend on the choice of representatives RSP(F,Γ ).

Lemma 2.1. The functionλ 	→ s[F,Γ ](λ) is an exponential-polynomial function onΓ ∗
with values in the space of simple fractionsSA.

Proof. LetF ∈MΓA be given in the form (2.1), and pick an elementp ∈ RSP(F,Γ ). For
λ ∈ V ∗ consider the total residue

Tres
(
e〈λ,z〉F(p− z)).

The function e〈λ,z〉F(p − z) is in the spacêRhp introduced at the end of Section 1.1.
As the total residue depends only on the component of degree−n of this function, for the
purpose of the calculation of its total residue, we can replace the exponential e〈λ,z〉 by its
expansion truncated up to orderR− n. Thus we have

Tres
(
e〈λ,z〉F(p− z))= Tres

(
R−n∑
j=1

〈λ, z〉j
j ! F(p− z)

)
.

The right-hand side here clearly depends polynomially onλ, thus each term

Tres
(
e〈λ,z−p〉F(p− z))= e−〈λ,p〉 Tres

(
e〈λ,z〉F(p− z)),

appearing in the definition ofs[F,Γ ] is an exponential-polynomial function ofλ. As the
set RSP(F,Γ ) is finite, this completes the proof.✷

Let us look at a few special cases.

Case 1. Let F be of the form

F =
∑
ξ∈I cξeξ∏R

k=1(1− eβk )
,

i.e., let all constantsuk be equal to 1. For a basisσ = {α1, . . . , αn} of V ∗, formed by
elements of the sequence[β1, . . . , βR], the latticeZσ is contained inΓ ∗ and is usually
different fromΓ ∗. Consider(Zσ)∗ ⊂ V , the dual lattice toZσ :

(Zσ)∗ = {
s ∈ V ∣∣ 〈s,αk〉 ∈ Z for 1 � k � n

}
.

If p ∈ 2π i(Zσ)∗, then the set of linear forms{βk | e〈βk,p〉 = 1} linearly spansV ∗, since
it containsσ . Then the set RSP(F,Γ ) is a union of representatives of the finite groups
2π i(Zσ)∗/2π iΓ in VC, asσ varies over bases ofV ∗ formed by theβks. As a result, for
λ ∈ Γ ∗ andp ∈ RSP(F,Γ ), the exponential e〈λ,p〉 is a root of unity. This implies that
the functions[F,Γ ] on the latticeΓ ∗ is periodic-polynomial. More precisely, ifnF is
an integer such thatnFΓ ⊂ Zσ for all basesσ of V ∗ formed byβks, then the function
s[F,Γ ] is polynomialon all cosets of the formλ+ nFΓ ∗.
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Case 2. There is an interesting special case of this setup, whens[F,Γ ] is plainly
polynomial: the unimodular case.

We will call a subset∆⊂ Γ ∗ unimodular, if every basisσ ∈ B(∆) is aZ-basis ofΓ ∗,
i.e., the parallelepiped

∑
α∈σ [0,1]α contains no elements of the latticeΓ ∗ in its interior.

In this case, the integernF mentioned above may be taken to be equal to 1. We collect
what we have found in the following

Lemma 2.2. Let

F =
∑
ξ∈I cξeξ∏R

k=1(1− eβk )
.

Then the functionλ 	→ s[F,Γ ](λ) is a periodic-polynomial function onΓ ∗. If, further-
more, the elements of the sequence[β1, β2, . . . , βR] belong to a unimodular subset ofΓ ∗,
then the functionλ 	→ s[F,Γ ](λ) is a polynomial.

Case 3. Assume, at the other extreme, that the constantsuk are generic.
Forp ∈ RSP(F,Γ ), denote byj(p) the subset of the set of indices{1,2, . . . ,R} given

by

j(p)= {
j ∈ {1,2, . . . ,R} ∣∣ uje〈βj ,p〉 = 1

}
.

If the constantsuk are generic, then the set{βj }, j ∈ j(p), if nonempty, consists of exactly
n linearly independent elements of∆.

We have

e〈λ,z−p〉F(p− z) = e〈λ,z−p〉
(∑
ξ∈I

cξe〈ξ,p−z〉
)

1∏
j∈j(p)〈βj , z〉

∏
j∈j(p)

〈βj , z〉
1− e−〈βj ,z〉

×
∏
k/∈j(p)

1

1− uke〈βk,p−z〉 .

By Lemma 1.3, the total residue of this function is the simple fraction
∏
j∈j(p) β

−1
j ,

multiplied by the constant, which is obtained by settingz to zero in the rest of the
expression. As a result we obtain the following explicit formula:

s[F,Γ ](λ)=
∑

p∈RSP(F,Γ )

e−〈λ,p〉
(∑
ξ∈I

cξe
〈ξ,p〉

) ∏
k/∈j(p)

1

1− uke〈βk,p〉
1∏

j∈j(p) βj
,

which expresses the functionλ 	→ s[F,Γ ](λ) as a linear combination of exponentials.
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2.3. The residue formula

We start with recalling the notion of residue introduced by Jeffrey and Kirwan [14]. Let
again∆ be a set of vectors in an open halfspace of ann-dimensional real vector spaceV ∗
and letA =A(∆). We assume that∆ generateV ∗. Fix a volume form vol onV ∗. Given a
big chamberc of C∆reg, one can construct a functionalf 	→ J 〈c, f 〉vol on the spaceSA of
simple fractions as follows. For a simple fraction

fσ = 1∏
α∈σ α

, σ ∈ B(∆),

set

J 〈c, fσ 〉vol =
{

vol(σ )−1, if c ⊂ C(σ),

0, if c ∩C(σ)= ∅.

Here we denoted by vol(σ ) the volume of the parallelepiped
∑
α∈σ [0,1]α with respect to

our chosen volume form.
Now we formulate our main result. LetΓ be a rank-n lattice inV , and letΓ ∗ ⊂ V ∗ be

its dual lattice. As before, we assume that∆⊂ Γ ∗. Denote by volΓ ∗ the measure onV ∗
assigning volume 1 to a minimal parallelepiped spanned by elements ofΓ ∗.

Theorem 2.3. LetF ∈MΓA and let�(F )0 be the interior of�(F ). Then forλ ∈ Γ ∗ and
any big chamberc such that(λ+ �(F )0)∩ c �= ∅, one has

Coeff
(
r+(F ),λ

)= J
〈
c, s[F,Γ ](λ)〉volΓ ∗ . (2.3)

Before starting the proof, we analyze the one-dimensional case. LetV = Re and
V ∗ = Re∗ with latticesΓ = Ze andΓ ∗ = Ze∗; let ∆ = {e∗}. There are two chambers
in this case:c+ = R>0e

∗ andc− = R<0e
∗. We simply writeF(z) for a functionF(ze) on

VC. ThenJ 〈c+,TresF 〉volΓ ∗ = Resz=0F(z) dz, while J 〈c−,TresF 〉volΓ ∗ = 0.
Introduce the notation

c(k,R)=
(
k + (R − 1)

R − 1

)
= 1

(R− 1)! (k + 1)(k+ 2) · · ·(k + (R − 1)
)
.

We have the following simple generating function forc(k,R):

Lemma 2.4.

Res
z=0

ekz

(1− e−z)R
dz= c(k,R).

Proof. Using the change of variablesy = ez in the calculation of the residue, we obtain
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Res
z=0

ekz

(1− e−z)R
dz = Res

y=1

yk

(1− y−1)R

dy

y
= Res
y=1

yR+k−1

(y − 1)R
dy

= Res
x=0

(1+ x)R+k−1

xR
dx = c(k,R). ✷

Now consider the function

F(z)= eξz

(1− uez)R
,

whereξ is an integer. The following explicit formula holds for the expansion ofF :

r+(F )= eξz
∞∑
k=0

c(k,R)ukekz.

Hence we have

Coeff(F,λ)=
{

0, if λ− ξ ∈ Z<0,

uλ−ξ c(λ− ξ,R), if λ− ξ ∈ Z�0.
(2.4)

Note that the relation

Coeff(F,λ)= uλ−ξ c(λ− ξ,R)

holds wheneverλ − ξ � −(R − 1), since both sides of this equality vanish forλ − ξ =
−1,−2, . . . ,−(R− 1).

Let us analyze our proposed formula (2.3) in this example. We first write out the element
s[F,Γ ](λ) explicitly. The functionF(z) has just one polep modulo 2π iΓ ; it is given by
the equation ep = u−1. Thus we have

s[F,Γ ](λ)= uλ−ξ Tres
e(λ−ξ)z

(1− e−z)R ,

which leads to

s[F,Γ ](λ)= uλ−ξ c(λ− ξ,R)1
z
.

Now assume thatλ ∈ Z and we picked a chamberc such that(λ+ �(F )0) ∩ c is not
empty.

First we consider the casec = c+. Here

J
〈
c+, s[F,Γ ](λ)〉volΓ ∗ = uλ−ξ c(λ− ξ,R).
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Since(λ + �(F )0) ∩ c+ is nonempty, there existsµ ∈ �(F )0 such thatλ + µ > 0. As
µ+ ξ = t with 0< t < R, this implies thatλ− ξ � −(R− 1). This is consistent with our
computation of Coeff(F,λ) above.

Assume now that(λ+ �(F )0)∩ c− is not empty. Now we have

J
〈
c
−, s[F,Γ ](λ)〉volΓ ∗ = 0.

Since(λ+ �(F )0) ∩ c− is nonempty, there existsµ ∈ �(F )0 such thatλ+ µ< 0. As
µ+ ξ = t with 0< t < R, this implies thatλ− ξ < 0. Again, this is consistent with (2.4).

We now return to the proof of the theorem.

Proof. If (λ + �(F )0) ∩ c is nonempty, then we can choose a nonspecial elementµ ∈
�(F )0 such thatλ+µ ∈ c.

By Proposition 1.12, there is aµ-admissible decomposition ofF as a sum of functions
g(ξ, σ,h,u) with σ ∈ B(∆). Furthermore, the elementµ still belongs to�(g(ξ, σ,h,u))0.
It is thus sufficient to prove the theorem in the caseF = g(ξ, σ,h,u).

Let σ = {α1, α2, . . . , αn} andξ ∈ Γ ∗. Then we have

F(z)= e〈ξ,z〉

(1− u1e〈α1,z〉)h1 · · · (1− une〈αn,z〉)hn
.

Let C(σ) be the cone generated byσ andZσ the sublattice ofΓ ∗ generated byσ .
ThenC(σ) ∩ Zσ is the set of elementsλ ∈ V ∗ of the formλ =∑n

i=1 kiαi , whereki are
nonnegative integers. Then it easily follows from the result (2.4) in the one-dimensional
case that we have

Coeff(F,λ)=
{

0, if ki < 0 for somei, 1 � i � n,

u
k1
1 c(k1, h1) · · ·uknn c(kn,hn), if ki � 1− hi, i = 1, . . . , n,

(2.5)

whereλ− ξ =∑n
i=1 kiαi andki ∈ Z, i = 1, . . . , n.

We now computes[F,Γ ](λ). The set of poles SP(F,Γ ) of the functionF is given by

SP(F,Γ )= {
p ∈ VC

∣∣ e〈αk,p〉 = u−1
k , for 1 � k � n

}
. (2.6)

Choose an elementp0 in this set and again denote by(Zσ)∗ the dual lattice toZσ . Then
for any s ∈ (Zσ)∗, the pointp0 + 2iπs of VC still satisfies e〈αk,p0+2iπs〉 = u−1

k . Thus
SP(F,Γ )= p0 + 2iπ(Zσ)∗.

We have

s[F,Γ ](λ)=
∑

p∈RSP(F,Γ )

e〈ξ−λ,p〉 Tres
e〈λ−ξ,z〉∏n

k=1(1− e−〈αk,z〉)hk
.
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Since RSP(F,Γ ) is a set of representatives of the set SP(F,Γ )modulo the lattice 2π iΓ ,
using (2.6), we can write∑

p∈RSP(F,Γ )

e〈ξ−λ,p〉 = e〈ξ−λ,p0〉 ∑
m∈(Zσ)∗/Γ

e2iπ〈ξ−λ,m〉.

This sum is nonzero if and only ifξ − λ ∈ Zσ . If λ− ξ =∑n
i=1 kiαi with ki ∈ Z, then

e〈ξ−λ,p0〉 = e−∑n
i=1 ki 〈αi,p0〉 = u

k1
1 · · ·uknn .

We thus obtain:

• s[F,Γ ](λ) is equal to 0 ifλ− ξ is not inZσ ;
• If λ− ξ =∑n

i=1 kiαi with ki ∈ Z, then

s[F,Γ ](λ)= |Γ ∗/Zσ |
n∏
i=1

u
ki
i c(ki, hi)

1∏n
i=1αi

.

Now we proceed to computing the Jeffrey–Kirwan residues. Letλ ∈ Γ ∗ and letc be
a chamber such that(λ + �(F )0) ∩ c �= ∅. This means that there isµ ∈ V ∗ such that
λ+µ ∈ c andµ+ ξ =∑n

i=1 tiαi with 0< ti < hi .
There are two cases: eitherc ⊂ C(σ) or c∩C(σ)= ∅. If c ⊂ C(σ), then we can conclude

thatλ− ξ =∑n
i=1 xiαi , wherexi are rational numbers andxi >−hi , i = 1, . . . , n. On the

other hand, we have

• J 〈c, s[F,Γ ](λ)〉volΓ ∗ = 0 if λ− ξ /∈ Zσ.

• If λ− ξ =∑n
i=1 kiαi with ki ∈ Z, thenJ 〈c, s[F,Γ ](λ)〉volΓ ∗ factors:

|Γ ∗/Zσ |
n∏
i=1

u
ki
i c(ki, hi)J

〈
c,

1∏n
i=1αi

〉
volΓ ∗

= |Γ ∗/Zσ |
volΓ ∗(σ )

n∏
i=1

u
ki
i c(ki, hi).

It easy to see from the definitions that volΓ ∗(σ )= |Γ ∗/Zσ |, hence

J
〈
c, s[F,Γ ](λ)〉volΓ ∗ =

n∏
i=1

u
ki
i c(ki, hi).

This is consistent with the expression (2.5) for Coeff(F,λ), asλ− ξ =∑n
i=1 kiαi , where

ki are integers andki � 1− hi .
In the casec ∩ C(σ) = ∅, we can conclude thatλ − ξ = ∑n

i=1xiαi , where at least
one of the numbersxi is negative. This is again consistent with (2.5), since by definition
J 〈c, s[F,Γ ](λ)〉volΓ ∗ = 0.

Thus we covered all cases and the theorem is proved.✷
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3. Ehrhart polynomials

3.1. Partition polytopes and the vector partition function

Let V be a real vector space of dimensionn endowed with a latticeΓ , and letΦ be a
sequence ofnot necessarily distinctelements[β1, . . . , βN ] of the dual latticeΓ ∗ ⊂ V ∗. We
assume thatΦ generatesV ∗. Denote byρ the surjective linear map fromRN to the vector
spaceV ∗ defined byρ(wk) := βk , 1� k �N , where{wk}Nk=1 is the standard basis ofRN .

The mapρ may be written as

ρ(x1, x2, . . . , xN)=
N∑
i=1

xiβi .

We denote byC+
N the closed convex cone inRN generated byw1, . . . ,wN , and we set

C(Φ) := ρ(C+
N), the cone generated by(β1, . . . , βN).We assume here thatρ−1(0)∩C+

N =
{0}. Then 0 is not in the convex hull of the vectorsβk andC(Φ) is an acute cone.

Definition 3.1. Fora ∈ V ∗, we define thepartition polytopeΠΦ(a) by

ΠΦ(a) := ρ−1(a)∩C+
N .

The setΠΦ(a) is the convex polytope consisting of all solutions(x1, x2, . . . , xN) of the
equation

N∑
k=1

xkβk = a

in nonnegative real numbersxk. In particular, the polytopeΠΦ(a) is empty ifa is not in
the coneC(Φ).

WhenV = Re is one-dimensional, and∆ = [b1e
∗, . . . , bNe∗] wherebk are positive

integers, the polytopeΠΦ(a) is the (N − 1)-dimensional simplex consisting of the
intersection of the hyperplane

∑N
i=1 bixi = a with the positive quadrant.

Denote byZΦ the lattice inV ∗ generated byΦ; naturallyZΦ ⊂ Γ ∗. Then the mapρ
sends the standard latticeZN ⊂ RN to the latticeZΦ.

For a generalλ in the latticeΓ ∗, the vertices of the polytopeΠΦ(λ) are only rational
rather than integral.

Example 7. SetV = Re with Γ = Ze, β1 = 2e∗ andβ2 = 3e∗. Let λ be a nonnegative
integer. Then the polytopeΠΦ(λe∗) consists of the set{(x1, x2) | x1 � 0, x2 � 0, 2x1 +
3x2 = λ}. The vertices ofΠ(λ) are(λ/2,0) and(0, λ/3), so they are integral if and only
if λ is multiple of 6.

Let∆= {α1, . . . , αR} be a set of linear forms fromΓ ∗ such that
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• each element of∆ is apositivemultiple of an element of the sequenceΦ;
• for everyβi in Φ, there is a uniqueαj ∈∆ which is a multiple ofβi .

Note that it is possible thatR <N .
For j a subset of{1,2, . . . ,N}, we denote byC+

j the closed convex cone inRN

generated by the set{wj | j ∈ j}, and byC(Φj) the closed convex cone inV ∗ generated by
the set{βj | j ∈ j}.

Forλ ∈ Γ ∗, denote byιΦ(λ) the number of points with integral coordinates inΠΦ(λ).
Thus ιΦ(λ) is the number of solutions of the equation

∑N
k=1 xkβk = λ in nonnegative

integersxk . The functionλ 	→ ιΦ(λ) is called thevector partition functionassociated toΦ.
The numberιΦ(λ) is zero ifλ does not belong toC(Φ) ∩ ZΦ.

Recall the definition of the space of meromorphic functionsMΓA defined in Section 1.2
and the expansion mapr+ defined in Section 2.1. Let

FΦ = 1∏N
i=1(1− eβi )

.

This function is in the ringMΓA and, almost by definition, the expansionr+(FΦ) is the
generating function forιΦ :

r+(FΦ)=
∑
λ∈Γ ∗

ιΦ(λ)eλ.

We can thus apply Theorem 2.3 and obtain a residue formula forιΦ(λ). We give this
formula below in a slightly more precise form.

Similarly to the notation introduced earlier, we denote byB(Φ) the set of linearly
independentn-tuples of elements of the sequenceΦ. For each such basisσ ∈ B(Φ) of V ∗,
we denote byC(σ) the cone generated by the elements ofσ and byG(σ,Γ ) the lattice
2iπ(Zσ)∗ so that

G(σ,Γ )= {
p ∈ VC

∣∣ e〈β,p〉 = 1, for all β ∈ σ}.
Clearly, 2π iΓ ⊂ G(σ,Γ ), and we may choose a finite, reduced set of elements
RG(σ,Γ )⊂G(σ,Γ ), which is in one-to-one correspondence with the finite factor group
G(σ,Γ )/2π iΓ .

Given a chamberc, we denote byB(Φ, c) the set ofσ ∈ B(Φ) such thatc ⊂ C(σ) and
define

G(Φ, c,Γ )=
⋃

σ∈B(Φ,c)
G(σ,Γ ) and RG(Φ, c,Γ )=

⋃
σ∈B(Φ,c)

RG(σ,Γ ).

Introduce the convex polytope

�(Φ)=
N∑
i=1

[0,1]βi.
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Now we are in position to formulate the appropriate version of our Theorem 2.3.

Theorem 3.1. Denote byι[c,Φ] the periodic-polynomial function onΓ ∗ given by

∑
p∈RG(Φ,c,Γ )

e−〈λ,p〉J
〈
cTres

(
e〈λ,z〉∏N

i=1(1− e〈βi,p〉e−〈βi,z〉)

)〉
volΓ ∗ .

Then, for anyλ ∈ (c − �(Φ))∩ Γ ∗, we have

ιΦ(λ)= ι[c,Φ](λ). (3.1)

Remark 3.1. We assumed thatΦ linearly generatesV ∗, hence if c is a big chamber
contained inC(Φ), then the setc − �(Φ) containsc. This means that the formula (3.1) is
in particular true forλ ∈ c ∩ Γ ∗. The setcnull − �(Φ) remains equal tocnull and does not
touch the boundary ofC(Φ).

Proof. The setc being open, the setc−�(Φ) coincide withc−�(Φ)0. The sum appearing
in the theorem is a restricted version of the sum in (2.2) definings[FΦ,Γ ]. Note that the
set of poles SP(FΦ,Γ ) appearing in that definition specializes to the set

⋃
σ∈B(Φ) G(σ,Γ )

in our case.
Thus in order to deduce the statement of the theorem from Theorem 2.3, we only need to

check that ifp ∈ VC is such thatJ 〈c,Tres(e〈λ,z〉FΦ(p− z))〉volΓ ∗ does not vanish, thenp
is necessarily inG(Φ, c,Γ ). Indeed, by Lemma 1.3, if Tres(e〈λ,z〉FΦ(p− z)) �= 0, then the
set∆(p)= {β ∈Φ | 〈β,p〉 ∈ 2π iZ} has to spanV ∗. The functionz 	→ e〈λ,z〉FΦ(p− z) is
in the spacêRA(∆(p)). Its total residue can be written as a sum of functionsφσ ∈ SA(∆(p))
with σ ∈ B(∆(p)). Now if

J
〈
c,Tres

(
e〈λ,z〉FΦ(p− z))〉volΓ ∗ �= 0,

then there exists a basisσ ∈ B(∆(p)) such thatc ⊂ C(σ). This implies thatp is in
G(Φ, c,Γ ). ✷
Remark 3.2. To compute the residue formula of Theorem 3.1 forιΦ(λ), a precise
determination of the setRG(Φ, c,Γ ) is not necessary. We can indeed sum over any bigger
set, the extra terms contributing 0 to the sum. For example, we can sum over a set of
representatives of the finite group ofnΦ th roots of unity of the torusVC/2iπΓ , wherenΦ
is such thatnΦΓ ∗ ⊂ Zσ for anyσ ∈ B(Φ). In particular, if the systemΦ is unimodular,
then our set ofp’s reduces to a single pointp = 0. In this case, we obtain that the vector
partition functionιΦ(λ) is given by the polynomial

J

〈
c,Tres

(
e〈λ,z〉∏N

i=1(1− e−〈βi,z〉)

)〉
volΓ ∗

.

on each sector(c − �(Φ))∩ Γ ∗.
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Let us comment on the novel aspects of Theorem 3.1. Givenλ ∈ C(Φ) ∩ Γ ∗, the
functionk 	→ ιΦ(kλ), k = 0,1,2, . . . , counts the number of integral points in the dilated
polytopekΠΦ(λ) of the rational polytopeΠΦ(λ). Clearly, the ray{kλ} remains in the
closure of a chamber ofC(Φ), and k 	→ ιΦ(kλ) is a periodic polynomial function of
k called the Ehrhart periodic-polynomial [11] of the rational polytopeΠΦ(λ). When
V is one-dimensional, this case corresponds to enumeration of lattice points in rational
simplices and is the cornerstone of Ehrhart’s work (see [12], and references there).
The vector partition function in this case is called the restricted partition function. Our
formula of Theorem 3.1 for the restricted partition function clearly coincides with results
summarized in Comtet [9, Théorème B, page 122], since we use the same method of
generating functions and partial fraction decompositions, in a multivariate setting.

Theorem 3.1 gives an explicit residue formula for the number of integral points in the
polytopeΠΦ(λ), whenλ now varies in the coneC(Φ). If c is a big chamber contained in
C(Φ), this formula is periodic-polynomial on the “neighborhood”c − �(Φ) of c. This is
somewhat surprising, as the combinatorial nature of the polytopeΠΦ(λ) changes, when
crossing walls of the big chambers. Thus these different periodic-polynomial functions
for the vector partition function on different sectors coincide for neighboring chambers
in a strip containing their common boundary. Precisely, for two chambersc1 andc2, the
periodic-polynomial functionsι[Φ, c1] andι[Φ, c2] are equal on the setΓ ∗∩(c1−�(Φ))∩
(c2 − �(Φ)). This implies some divisibility properties of the functionι[Φ, c1] − ι[Φ, c2]
on adjacent chambers. We give some illustrative examples for these properties ofι[Φ, c] in
Appendix A.

The relation between the number of integral points and the volume of the polytope
ΠΦ(λ) has been the subject of several investigations (see, e.g., [5,7,8,10,13,18]), starting
with the fascinating results of Khovanskii and Pukhlikov [15].

Recall that in Baldoni and Vergne [2, Theorem 9], we discussed the Jeffrey–Kirwan
residue formula for the volume of the polytopeΠΦ(a). Let c be a big chamber contained
in C(Φ). Denote byv[Φ, c,vol] the polynomial function

v[Φ, c,vol](a)= J

〈
c,Tres

(
e〈a,z〉∏N
i=1〈βi, z〉

)〉
vol
.

The volume of the polytopeΠΦ(a) is given by a locally polynomial formula ina.
Explicitly, for a varying in the closure of the big chamberc:

volume(ΠΦ)(a)= v[Φ, c,vol](a). (3.2)

The residue formula of Theorem 3.1 forιΦ(λ) on the closure of the chamberc may be
immediately deduced from the results of Brion and Vergne [5] or Cappell and Shaneson
[8] by applying Todd operators to the volume function given by the residue formula above
(3.2). It is satisfying, however, to obtain “explicit” and very similar formulae for volumes
of polytopes and for the number of integral points in polytopes by residue methods, in a
parallel way. It is puzzling to see that the formula for the number of points holds in a larger
set than we would guess from its continuous analogue, the volume function.
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3.2. Minkowski sum of rational convex polytopes and families of partition polytopes

In this section, we briefly describe how to realize any rational convex polytope as a
partition polytopeΠΦ(a).

Recall some standard conventions. Faces of a polytopeΠ of dimensionr may have any
codimension from 0 tor. A face of codimension 1 is called afacet. A face of dimension
0 is a vertex, a face of dimension 1 is anedge. The polytopeΠ is said to be simple if
each vertex ofΠ is the source of exactlyr edges. Given a rational polytopeΠ in a vector
space endowed with a latticeΘ of full rank, a facef of Π is calledreticular if the affine
space spanned byf contains a point ofΘ. In particular, a vertex is reticular if and only if
it belongs toΘ. A rational polytopeΠ is integral if all its vertices belong to the latticeΘ.

Let Φ be again a sequence ofN linear forms[β1, . . . , βN ] generatingV ∗ and lying
on the same side of a hyperplane. Fora in the interior ofC(Φ), the polytopeΠΦ(a) has
dimensionN − n.

We keep our earlier notations. For a basisσ ∈ B(Φ) of V ∗, we denote byvσ the map
fromV ∗ to RN defined byvσ (βj )=wj for all βj ∈ σ . Clearly,ρ ◦vσ is the identity onV ∗.
If βk is not inσ , the vectorwk − vσ (βk) is in the subspaceρ−1(0).

Recall

Proposition 3.2 [5]. Let c be a big chamber contained inC(Φ).

• For anya ∈ c, the convex polytopeΠΦ(a) is simple, with verticesvσ (a), σ ∈ B(Φ, c).
These vertices are all distinct, and the(N − r) edges ofΠΦ(a) with source at the
vertexvσ (a) are the vectorswk − vσ (βk), whereβk /∈ σ .

• If a ∈ c, then the vertices of the convex polytopeΠΦ(a) are the pointsvσ (a), σ ∈
B(Φ, c). Some of these points may coincide.

Let λ ∈ C(Φ) ∩ ZΦ. Consider the functionk 	→ ιΦ(kλ), wherek is a nonnegative
integer. Now we will see that our formula (3.1) for the Ehrhart periodic-polynomial
E[λ](k) = ιΦ(kλ) is actually polynomial ink if all the vertices ofΠΦ(λ) have integral
coordinates. More generally, we will show that our formula is compatible with some of the
results of [11,17,19] on the periodic-polynomial behavior ofE[λ](k).

Lemma 3.3. If M is an integer such thatMΠΦ(λ) is integral, thenE[λ](k) =∑
ζM=1 ζ

kPζ (k), whereζ varies overMth roots of unity andPζ is a polynomial.

Proof. After Theorem 3.1, we have

E[λ](k)=
∑

p∈RG(Φ,c,Γ )
e−k〈λ,p〉P(p)[λ](k),

where

P(p)[λ](k)= J

〈
c,Tres

(
ek〈λ,z〉∏N

i=1(1− e〈βi,p〉e−〈βi,z〉)

)〉
volΓ ∗

.
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We show that all exponentials e−〈λ,p〉 areMth roots of unity. For eachp ∈RG(Φ, c,Γ ),
there existsσ ∈ B(Φ, c) such thatp is a solution of the equations e〈βi,p〉 = 1 for all βi ∈ σ .
Sincec ⊂ C(σ), we can writeλ =∑

βi∈σ xiβi , where eachxi is a rational nonnegative
number. The pointvσ (λ)=∑

βi∈σ xiwi is a vertex of the polytopeΠΦ(λ). If Mvσ (λ) is

integral, then all numbersMxi are integers, so we have eM〈λ,p〉 = 1 asp is a solution of
the equations e〈βi,p〉 = 1 for all βi ∈ σ . ✷

The notion of big chambers inC(Φ) is closely related to the Minkowski sum of the
corresponding partition polytopes as follows.

Lemma 3.4. Leta, b ∈C(Φ). The Minkowski sumΠΦ(a)+ΠΦ(b) of the polytopesΠΦ(a)
andΠΦ(b) is equal to the polytopeΠΦ(a + b) if and only if there exists a big chamberc

contained inC(φ) such thata, b ∈ c.

Proof. Clearly the polytopeΠΦ(a)+ΠΦ(b) is a subset of the polytopeΠΦ(a + b).
Let c be a chamber contained inC(Φ) such thata, b ∈ c. Hencea + b is in c.

Let us prove thatΠΦ(a + b) is equal toΠΦ(a) + ΠΦ(b). By the description of the
vertices given in Proposition 3.2, any elementx of the polytopeΠΦ(a + b) can be
written as

∑
σ∈B(Φ,c) tσ vσ (a + b), with

∑
tσ = 1. Then we may writex = x1 + x2, with

x1 =∑
σ∈B(Φ,c) tσ vσ (a) andx2 =∑

σ∈B(Φ,c) tσ vσ (b), with x1 ∈ΠΦ(a) andx2 ∈ΠΦ(b).
Conversely, leta, b ∈ C(Φ) such thatΠΦ(a) +ΠΦ(b) = ΠΦ(a + b). Consider then

a chamberc contained inC(Φ) such thata + b ∈ c. Let σ such thatc ⊂ C(σ). The point
vσ (a+b), being inΠΦ(a+b), can be written asx1+x2 with x1 ∈ΠΦ(a) andx2 ∈ΠΦ(b).
Since those coordinates ofvσ (a+b) corresponding toβk /∈ σ are equal to 0, we see that the
kth coordinate ofx1,x2 vanish whenβk /∈ σ . This implies thatx1 = vσ (a) andx2 = vσ (b).
Thusa, b ∈⋂σ∈B(Φ,c) C(σ )= c. The lemma is proved.✷

When (λ1, λ2, . . . , λs) are elements ofc ∩ Γ ∗, and ki are nonnegative integers, the
polytopeΠΦ(k1λ1+k2λ2+· · ·+ksλs) is a rational convex polytope which is the weighted
Minkowski sumk1ΠΦ(λ1) + · · · + ksΠΦ(λs). As (k1λ1 + · · · + ksλs) varies in c, the
function ιΦ(k1λ1 + · · · + ksλs) is a periodic-polynomial function ofki . This extension
of Ehrhart’s result is well-known [16]. As in Lemma 3.3, if the polytopesΠΦ(λk) have
integral vertices, then the function(k1, k2, . . . , ks) 	→ ιΦ(k1λ1 + k2λ2 + · · · + ksλs) is a
polynomial function ofk1, k2, . . . , ks .

Now recall briefly (cf. [5]) how any convex polytopeΠ can be embedded in a family
ΠΦ(a) of partition polytopes.

LetE be a real vector space of dimensionr. LetΠ ⊂E be a convex polytope. We can
always chooseN vectorsuk ∈E∗ and a sequence of real numbersh = (h1, h2, . . . , hN) ∈
RN such thatΠ =Π(h), where

Π(h)= {
v ∈E ∣∣ 〈uk, v〉 + hk � 0, 1� k �N

}
.
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AsΠ is compact, the vectorsuk generateE∗. We do not necessarily assume here that
this set of inequalities is minimal. Consider the mapU :RN →E∗ defined by

(x1, x2, . . . , xN) 	→ x1u1 + x2u2 + · · · + xNuN,

and letV be then= (N − r)-dimensional vector spaceV = U−1(0). The restrictionsβi
of the linear coordinatesxi to the vector spaceV form a systemΦ of elements ofV ∗. The
elementsβi of the systemΦ satisfy the equation〈u1, v〉β1 + · · · + 〈uN,v〉βN = 0 for all
v ∈E.

Lemma 3.5. The polytopeΠ(h) is isomorphic to the partition polytopeΠΦ(h1β1 + · · · +
hNβN).

Proof. A point of the polytopeΠΦ(h1β1 + · · · + hNβN) is a point(l1, l2, . . . , lN ) ∈ R
N+

such thatl1β1 + l2β2 + · · · + lNβN = h1β1 + · · · + hNβN . This implies that there exists a
uniquev ∈E such thatli −hi = 〈ui, v〉, so that〈uk, v〉+hk = lk � 0 andv is inΠ(h). ✷

Assume now thatE is endowed with a latticeΘ and that the polytopeΠ is rational.
Then there exist vectorsuk ∈Θ∗ and integershk such that

Π(h)= {
v ∈E ∣∣ 〈uk, v〉 + hk � 0, 1 � k �N

}
.

We can always assume, adding superfluous elementsuk to Θ∗ if necessary, that
〈uk, v〉 ∈ Z if and only if v ∈ Θ∗. Then the set of integral points in the polytope
ΠΦ(h1β1 + · · · + hNβN) is in bijection with the set of integral points inΠ(h).

More generally, letΠ1,Π2, . . . ,Πk be a set of rational convex polytopes inE. The
Minkowski sumt1Π1 + t2Π2 + · · · + tsΠs , where eachtk is a nonnegative real number,
can be described as a set{v ∈ E | 〈uk, v〉 + t1h

1
k + t2h

2
k + · · · + tsh

s
k � 0}. As before, we

consider the mapU : RN →E∗ defined by

(x1, x2, . . . , xN) 	→ x1u1 + x2u2 + · · · + xNuN .

LetV =U−1(0) andΦ the system of linear forms obtained by the restrictions of the linear
coordinates. Then the pointsλi =∑

hikβk belong to the closure of a chamber contained in
C(Φ), and the familyt1Π1 + t2Π2 + · · · + tsΠs is a member of the family of partitions
polytopesΠΦ(a), wherea = t1λ1 +· · ·+ tsλs varies in the closure of a chamber contained
in C(Φ).

Thus the results of this article give, in particular, “explicit periodic-polynomial
formulae” for mixed enumerators as functions of the inequalities defining the family of
Minkowski polytopest1Π1 + · · · + tsΠs .
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3.3. Sums of exponentials over partition polytopes

Consider now a pointy = (y1, y2, . . . , yN) in CN and the exponential function e〈y,x〉 =
e
∑N
i=1 xiyi overRN . We consider the function

S[ey,Φ](λ)=
∑

ξ∈ΠΦ(λ)∩ZN

e〈y,ξ 〉.

Let

FΦ,y(z)= 1∏N
j=1(1− eyje〈βj ,z〉)

.

Almost by definition, the expansionr+(FΦ,y) is the generating function forS[ey,Φ]:

r+(FΦ,y)=
∑
λ∈Γ ∗

S[ey,Φ](λ)eλ.

Let σ ∈ B(Φ). We introduce the set

G(σ,y,Γ )= {
p ∈ VC

∣∣ e〈βj ,p〉 = e−yj for all βj ∈ σ}.
Clearly, if γ ∈ 2π iΓ and p ∈ G(σ,y,Γ ), then p + γ ∈ G(σ,y,Γ ) and we may

choose a finite, reduced set of elementsRG(σ,y,Γ ) ⊂ G(σ,y,Γ ), which is in one-to-
one correspondence with the finite cosetG(σ,y,Γ )/2π iΓ .

For a chamberc, we defineRG(Φ,y, c,Γ ) to be the union of the setsRG(σ,y,Γ ) over
all basesσ ∈ B(Φ) such thatc ⊂ C(σ).

Applying our Theorem 2.3, we obtain:

Theorem 3.6. Let c be a big chamber of a sequenceΦ = [β1, . . . , βN ], and lety ∈ C
N .

Denote byι[c,y,Φ] the exponential-polynomial function onΓ ∗ equal to

∑
p∈RG(Φ,y,c,Γ )

e−〈λ,p〉J
〈
c,Tres

(
e〈λ,z〉∏N

i=1(1− e〈βi,p〉eyie−〈βi,z〉)

)〉
volΓ ∗

.

Then, for anyλ ∈ (c − �(Φ)) ∩ Γ ∗, the functionλ 	→ S[ey,Φ](λ) is given by the
exponential-polynomial formula

S[ey,Φ](λ)= ι[c,y,Φ](λ).

Let us compare this expression to the “explicit” formula of [3,4] for sums of
exponentials over the integral points of a convex polytope for sufficiently genericy.

Let σ ∈ B(Φ, c) and assume thaty is sufficiently generic in the sense that for any basis
σ ∈ B(Φ, c) and for everyp ∈ G(σ,y,Γ ), we have eyje〈βj ,p〉 = 1 for all βj ∈ σ , while



A. Szenes, M. Vergne / Advances in Applied Mathematics 30 (2003) 295–342 331

eyke〈βk,p〉 �= 1 for all βk /∈ σ . Then, forp ∈G(σ,y,Γ ), the functionz 	→ FΦ,y(p − z) is
equal to

1∏
βj∈σ (1− e−〈βj ,z〉)

∏
βk /∈σ

1

(1− eyke〈βk,p〉e−〈βk,z〉)
,

and we obtain by Lemma 1.3

Tres
(
e〈λ,z−p〉FΦ,y(p− z))= e−〈λ,p〉∏

k/∈σ

1

(1− eyke〈βk,p〉)
1∏

βj∈σ βj
.

For y generic, all the subsetsG(σ,y,Γ ) are disjoint asσ varies inB(Φ). Thus for
genericy we obtain a formulaS[ey,Φ](λ) as a linear combination of the pure exponential
functionsλ 	→ e−〈λ,p〉 associated to the elementsp ∈ RG(Φ,y, c,Γ ).

Theorem 3.7. Let c be a chamber andy a generic element ofCN . LetE[c,y,Φ](λ) be the
function ofλ defined by∑

σ∈B(Φ,c)

1

volΓ ∗(σ )

∑
p∈RG(σ,y,Γ )

e−〈λ,p〉 ∏
βk /∈σ

1

(1− eyke〈βk,p〉)
.

Then, forλ ∈ (c − �(Φ))∩ Γ ∗, we have the “explicit” formula

S[ey,Φ](λ)=E[c,y,Φ](λ).

Remark 3.3. On the setc ∩ Γ ∗, it is possible to deduce this formula from the Baum–
Fulton–MacPherson equivariant Riemann–Roch formula applied to the (possibly singular)
toric variety and its holomorphic line bundle associated with the polytopeΠΦ(λ), at
least when this polytope is integral. This dictionary between toric varieties and rational
polytopes is used in several proofs of formulae for sums of functions over integral points
of convex integral polytopes [7,13,18].

Let us rewrite the formula of Theorem 3.7 in geometric terms in the case whenΦ is
a unimodular system andλ is in an open chamberc of C(Φ). First we note that for any
σ ∈ B(Φ, c) each setRG(σ,y,Γ ) consists of just one element and the number volΓ ∗(σ )
is equal to 1. Thus the formula forE[c,y,Φ] is simply indexed by the setB(Φ, c), which
also indexes the vertices of the polytopeΠΦ(λ). Letσ ∈ B(Φ, c) andp be an element such

that e〈βi,p〉 = e−yi , for all βi ∈ σ . If λ=∑
βi∈σ xiβi , then e−〈λ,p〉 = e

∑
βi∈σ xiyi = e〈y,vσ (λ)〉

is the value of the exponential function ey at the vertexvσ (λ) of the polytopeΠΦ(λ).
Similarly, the edgesaσk = wk − sσ (βk) passing throughvσ (λ) are such that e〈y,aσk 〉 =
eyke〈βk,p〉. Thus, for the simple polytopeΠΦ(λ) associated to an unimodular systemΦ,
we obtain ∑

ξ∈ΠΦ(λ)∩ZN
e〈y,ξ 〉 =

∑
v

e〈y,v〉∏
aj (v)

(1− e〈aj (v),y〉)
,
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wherev varies over the vertices of the polytopeΠΦ(λ) andaj (v) varies over the primitive
edges of the polytope with source at the vertexv. One may recognize here the localization
formula for the equivariant index applied to the smooth toric variety and its holomorphic
line bundle associated with the polytopeΠΦ(λ).

In the general case, Theorem 3.7 implies formula (3.4.1) of Brion and Vergne [5]. Again,
our results here imply that this formula holds on a larger set ofλs, on which the elements
vσ (λ) are not necessarily vertices of the polytopeΠΦ(λ).

3.4. Summing the values of an exponential-polynomial function over partition polytopes

We denoteS[f,Φ](λ)=∑
ξ∈ΠΦ(λ)∩ZN

f (ξ) for an exponential-polynomial functionf

on RN . Recall the definition of the polynomial functions

c(x,h)= 1

(h− 1)! (x + 1)(x + 2) · · ·(x + (h− 1)
)
,

(wherec(x,1)= 1) which form a basis of polynomial functions onR ash runs through the
positive integers. Let againΓ ⊂ V be a lattice in ann-dimensional vector space, andΦ be
a sequence[β1, . . . , βN ] of linear forms fromΓ ∗ lying on the same side of an hyperplane
and generatingV ∗. Also, fix y = (y1, y2, . . . , yN) ∈ C

N and leth = (h1, h2, . . . , hN) be a
list of positive integers. Consider the exponential-polynomial function onRN given by

fh,y(x)= e〈y,x〉
N∏
i=1

c(xi, hi).

The generating function for the functionS[fh,y,Φ] =∑
ξ∈ΠΦ(λ) fh,y(ξ) is the function

FΦ,y,h(z)= 1∏N
i=1(1− eyie〈βi ,z〉)hi

.

Note that the set�(FΦ,y,h) is the set�(Φ,h) = ∑N
i=1[0,1]hiβi . It always contains

�(Φ).
Theorem 2.3 states:

Theorem 3.8. Let c be a chamber,y ∈ CN and h ∈ NN . Let P[c,y,h,Φ] be the
exponential-polynomial function onΓ ∗ equal to

∑
p∈RG(Φ,y,c,Γ )

e−〈λ,p〉J
〈
c,Tres

(
e〈λ,z〉∏N

i=1(1− e〈βi,p〉eyie−〈βi ,z〉)hi

)〉
volΓ ∗

.

Then, for anyλ ∈ (c − �(Φ,h)) ∩ Γ ∗, the functionλ 	→ S[fh,y,Φ](λ) is given by the
exponential-polynomial formula

S[fh,y,Φ] =P[c,y,h,Φ](λ).
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In particular, if c is a chamber contained inC(Φ), then for any exponential-polynomial
functionf ∈ EP(RN), the functionλ 	→ S[f,Φ](λ) is given by an exponential-polynomial
functionP[c, f,Φ] for λ ∈ (c − �(Φ))∩ Γ ∗. The set(c − �(Φ)) containsc.
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Appendix A. Examples

Let V be a two-dimensional real vector space with basis(e1, e2); then the dual vector
spaceV ∗ has basise∗1, e∗2. Sometimes we denote a vectora1e

∗
1 + a2e

∗
2 in V ∗ simply

by (a1, a2); similarly (z1, z2) stands forz1e1 + z2e2 in V . We take the latticeΓ to be
Ze1 ⊕ Ze2.

A.1. The arrangementA2

Let

Φ = {
e∗1, e∗2, e∗1 + e∗2

}
.

The spaceRA(Φ) consists of rational functionsf (z1, z2) onVC with denominator a product
of powers of the linear formsz1, z2, z1 + z2. The systemΦ is unimodular.

The closed coneC(Φ) generated byΦ is the first quadrant{a1 � 0, a2 � 0}. There are
three big chambers for the systemΦ: the exterior of the coneC(Φ) denoted bycnull, the
chamberc1 = {a2> 0, a1> a2} and the chamberc2 = {a1> 0, a2> a1}.

The linear formsJ (c1,da) andJ (c2,da) are easily computed. For a rational function
f (z1, z2) in the spaceRA(Φ), we have

J 〈c1,Tresf 〉volΓ ∗ = Res
z2=0

Res
z1=0

(
f (z1, z2)dz1 dz2

)
,

Fig. 4. The chambers.
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Fig. 5. The polytope�(Φ).

Fig. 6. The polyhedronS1,n.

while

J 〈c2,Tresf 〉volΓ ∗ = Res
z1=0

Res
z2=0

(
f (z1, z2)dz1 dz2

)
.

We denote byΦn the system of 3n vectors where each linear forme∗1, e∗2, e∗1 + e∗2 has
multiplicity n.

The polytope�(Φ) is the convex hull of the six points 0,e∗1, e∗2, 2e∗1 + e∗2, 2e∗2 + e∗1,
2e∗1 + 2e∗2. The polytope�(Φn) is the dilated convex polytopen�(Φ).

The setS1,n = c1 − �(Φn) is the interior of the polyhedron determined by the
inequalities

a2 � −2n, a1 � −2n, a1 − a2 � −n.
The partition functionιΦn(λ) is given by a polynomial formulaι[c1,Φn](λ) whenλ varies
in the setS1,n ∩ Z2.

The setS2,n = c2 − �(Φn) is the interior of the polyhedron determined by the
inequalities

a1 � −2n, a2 � −2n, a2 − a1 � −n.



A. Szenes, M. Vergne / Advances in Applied Mathematics 30 (2003) 295–342 335

Fig. 7. The polyhedronS2,n.

The partition functionιΦn(λ) is given by a polynomial functionι[c2,Φn](λ) whenλ varies
in the setS2,n ∩ Z2.

We see that the setcnull ∩ S1,n contains the(2n− 1) half-linespj + te∗1, wheret � 0
and

pj =
{
(1− n− j)e∗1 − je∗2, if 1 � j � n,

(1− 2n)e∗1 − je∗2, if n� j � 2n− 1.
(A.1)

The functionι[c1,Φn] vanishes on all the integral points contained incnull ∩ S1,n, as the
partition functionιΦn is identically 0 oncnull . The set of integral points in these half-lines
is Zariski dense in the affine linea2 + j = 0, so that the polynomial functionι[c1,Φn] is
divisible by(a2+1)(a2+2) · · · (a2+(2n−1)). Similarly the polynomial functionι[c2,Φn]
is divisible by(a1 + 1)(a1 + 2) · · · (a1 + (2n− 1)). These divisibility properties are also
clear from the Ehrhart reciprocity formula.

Fig. 8. The polyhedronS1,n ∩ S2,n.
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The setS1,n ∩ S2,n on which both formulaeι[c1,Φn] andι[c2,Φn] agree contains the
half linesqk + t (e∗1 + e∗2) with t � 0, where

qk =
{
(1− 2n− j)e∗1 + (1− 2n)e∗2, if 1 − n� j � 0,

(1− 2n)e∗1 + (1− 2n+ j)e∗2, if 0 � j � n− 1.

By the same density argument, we see that the polynomial functionι[c1,Φn] − ι[c2,Φn] is
divisible by

(
a1 − a2 − (n− 1)

) · · · (a1 − a2 − 1)(a1 − a2)(a1 − a2 + 1) · · ·(a1 − a2 + (n− 1)
)
.

Below we give the formulas for the casesn = 1,2,3; the functionsι[c1,Φn] and
ι[c2,Φn] can easily be computed from our formula, with some help from Maple. One can
easily see that the appropriate functions vanish on the lines indicated above. To simplify
our formulas we use binomial coefficients. Note that

(
a+m
k

)
, where we considera to be the

variable, vanishes ata = −m, . . . , k −m− 1.

Case n= 1.

ι[c1,Φ1] = (a2 + 1), ι[c2,Φ1] = (a1 + 1).

We also have

ι[c1,Φ1] − ι[c2,Φ2] = (a2 − a1),

which vanishes on the linea2 = a1.

Fig. 9. The chambers.
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Case n= 2.

ι[c1,Φ2] = 1

2

(
a2 + 3

3

)
(2a1 − a2 + 2), ι[c2,Φ2] = 1

2

(
a1 + 3

3

)
(2a2 − a1 + 2).

Again, we see that the function

ι[c1,Φ2] − ι[c2,Φ2] = 1

2

(
a1 − a2 + 1

3

)
(a1 + a2 + 4)

vanishes on the linesa1 − a2 = −1,0,1.

The example ofn= 3 is described in the introduction.

A.2. A nonunimodular example

Keeping the same vector space and lattice, we now consider a nonunimodular system

Φ = {
e∗1, e

∗
2, e

∗
1 + 2e∗2

}
.

The closed coneC(Φ) generated byΦ is still the first quadrant{a1 � 0, a2 � 0}.
Again, there are three open chambers for the systemΦ: The exterior of the coneC(Φ)

denoted bycnull, the chamberc1 = {a2> 0, 2a1> a2} and the chamberc2 = {a1> 0, a2>

2a1}.
The setRG(Φ, c1,Γ ) consists of the elements{(0,0), (0, iπ)}. The setRG(Φ, c2,Γ )

is reduced to the element{(0,0)}.
The polytope�(Φ) is the convex hull of the six points 0,e∗1, e∗2, 2e∗1 + 2e∗2, 3e∗2 + e∗1,

2e∗1 + 3e∗2.
We consider the systemΦn, where each of the three vectorse∗1, e∗2, ande∗1 + 2e∗2 has

multiplicity n.

Fig. 10. The polytope�(Φ).
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Fig. 11. The polyhedronS1,n.

The setS1,n = c1 − �(Φn) is the interior of the polyhedron determined by the
inequalities

a2 � −3n, a1 � −2n, 2a1 − a2 � −2n.

The partition functionιΦn(λ) is given by a periodic-polynomial formulaι[c1,Φn](λ) when
λ varies in the setS1,n ∩ Z2. By our results, the periodic-polynomialι[c1,Φn] is of the
form P(a1, a2) + exp(iπa2)Q(a1, a2) whereP(a1, a2) andQ(a1, a2) are polynomials.
We denote byι[c1,Φn,even](a1, a2) the polynomial functionP(a1, a2)+Q(a1, a2) onR

2,
which is equal toι[c1,Φn](a1, a2) whena2 is an even integer, and byι[c1,Φn,odd](a1, a2)

the polynomial functionP(a1, a2)−Q(a1, a2) on R2, which is equal toι[c1,Φn](a1, a2)

whena2 is an odd integer.
The setS2,n = c2 − �(Φn) is the interior of the polyhedron determined by the

inequalities

a1 � −2n, a2 � −3n, 2a1 − a2 � n.

The partition functionιΦn(λ) is given by a polynomial formulaι[c2,Φn](λ) whenλ varies
in the setS2,n ∩ Z2.

For the same reasons as before, the periodic-polynomialι[c1,Φn] vanishes on the
lines a2 = −1,−2, . . . ,−(3n− 1), while the polynomialι[c2,Φn] vanishes on the lines
a1 = −1,−2, . . . ,−(2n − 1); the function ι[c1,Φn] − ι[c2,Φn] vanishes on the lines
(2a1 − a2 + k) = 0 for −(n − 1) � k � (2n − 1). Note that if k is even, then thea2
coordinate of an integral point on the line(2a1 − a2 + k) = 0 is even, while ifk is odd,
then this coordinate is odd.
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Fig. 12. The polyhedronS2,n.

Fig. 13. The polyhedronS1,n ∩ S2,n.

We verify these properties forn= 1,2,3.

Case n= 1.

ι[c1,Φ1] = a2

2
+ 3

4
+ eiπa2

4
,
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hence

ι[c1,even] = 1

2
(a2 + 2) and ι[c1,odd] = 1

2
(a2 + 1).

Thus the functionι[c1,Φ1] vanishes on the linesa2 = −1, a2 = −2 as stated.
In the other chamber, we haveι[c2,Φ1] = (a1 + 1). This function vanishes on the line

a1 = −1. Then

ι[c1,Φ1,even] − ι[c2,Φ1] = 1

2
(a2 − 2a1),

which vanishes when 2a1 − a2 = 0. Also

ι[c1,Φ1,odd] − ι[c1,Φ1] = −1

2
(2a1 − a2 + 1),

which vanishes when 2a1 − a2 + 1= 0.

Case n= 2. Here

ι[c1,Φ2,even] = 1

96
(a2 + 2)(a2 + 4)

(
4a1a2 − a2

2 + 12a1 + 2a2 + 12
)

and

ι[c1,Φ2,odd] = 1

96
(a2 + 1)(a2 + 3)(a2 + 5)(4a1 − a2 + 5).

Thus the periodic-polynomial functionι[c1,Φ2] vanishes on all the linesa2 = −1,−2,−3,
−4,−5.

In the other chamber

ι[c2,Φ2] = −1

6
(a1 + 1)(a1 + 2)(a1 + 3)(a1 − a2 − 1).

Thus the functionι[c2,Φ2] vanishes on all the linesa2 = −1,−2,−3.
Now we have the polynomial formulas

ι[c1,Φ2,even] − ι[c2,Φ2] = 1

96
(2a1 − a2)(2a1 − a2 + 2)

(
4a2

1 − a2
2 + 16a1 − 6a2 + 4

)
and

ι[c1,Φ2,odd] − ι[c2,Φ2] = 1

96
(2a1 − a2 − 1)(2a1 − a2 + 1)

× (2a1 − a2 + 3)(2a1 + a2 + 7),

thus the functionι[c2,Φ2]− ι[c1,Φ2] vanishes on all the lines 2a1−a2 = −3,−2,−1,0,1.
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Case n= 3. Here we have

ι[c1,Φ3,even] = 1

53760
(a2 + 2)(a2 + 4)(a2 + 6)(a2 + 8)

× (
28a2

1a2 − 14a1a
2
2 + 2a3

2 + 70a2
1 + 70a1a2 − 19a2

2

+ 210a1 + 44a2 + 140
)

and

ι[c1,Φ3,odd] = 1

53760
(a2 + 1)(a2 + 3)(a2 + 5)(a2 + 7)

× (
28a2

1a2 − 14a1a
2
2 + 2a3

2 + 182a2
1 + 14a1a2 − 11a2

2

+ 630a1 − 52a2 + 481
)
,

thus the functionι[c1,Φ3] vanishes fora2 = −1,−2,−3, . . . ,−8.
In the other chamber

ι[c2,Φ3] = 1

1680
(a1 + 1)(a1 + 2)(a1 + 3)(a1 + 4)(a1 + 5)

× (
8a2

1 − 14a1a2 + 7a2
2 − 15a1 + 21a2 + 14

)
,

thus the functionι[c2,Φ3] vanishes fora1 = −1,−2,−3,−4,−5.
Now the differenceι[c1,Φ3,even] − ι[c2,Φ3] is given by

− 1

53760
(2a1 − a2 − 2)(2a1 − a2)(2a1 − a2 + 2)(2a1 − a2 + 4)

× (
16a3

1 + 4a2
1a2 − 2a1a

2
2 − 2a3

2 + 178a2
1 + 18a1a2 − 29a2

2 + 598a1 − 68a2 + 484
)
,

andι[c1,Φ3,odd] − ι[c2,Φ3] by

− 1

53760
(2a1 − a2 − 1)(2a1 − a2 + 1)(2a1 − a2 + 3)(2a1 − a2 + 5)

× (
16a3

1 + 4a2
1a2 − 2a1a

2
2 − 2a3

2 + 146a2
1 − 6a1a2 − 37a2

2 + 298a1 − 212a2 − 217
)
.

Thus the functionι[c1,Φ3] − ι[c2,Φ3] vanishes on the lines

2a1 − a2 = −5,−4,−3,−2,−1,0,1,2.
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