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0. Introduction

Let V be ann-dimensional real vector space endowed with a raréttice I". The
dual lattice I'* = Hom(I".Z) is naturally a subset of the dual vector spdcé. Let
® = [B1, B2, ..., Bn] be a sequence of not necessarily distinct elements-gfwhich
spanV* and lie entirely in an open halfspacewf. In what follows, the order of elements
in the sequence will not matter.

The closed con&(®) generated by the elements &f is an acute convex cone,
divided into open conic chambers by the— 1)-dimensional cones generated by linearly
independentz — 1)-tuples of elements ab. Denote byZ® the sublattice of"* generated
by @. Pick a vector € V* in the coneC(®), and denote byl (a) C Rﬁ the convex
polytope consisting of all solutions= (x1, x2, ..., xy) of the equationz,’g’zlxkﬂk =a
in nonnegative reahumbersx;. This is a closed convex polytope called thartition
polytopeassociated t@ anda. Conversely, any closed convex polytope can be realized as
a partition polytope.

If A € I'*, then the vertices of the partition polytopks (1) have rational coordinates.
We denote byg (1) the number of points with integral coordinatediig (1). Thustg (A)
is the number of solutions of the equati@{f’zlxkﬂk = A in nonnegative integers,. The
function 2 — 14 (1) is called thevector partition functionassociated tab. Obviously,
tp (1) vanishes ifs does not belong t@'(®) N Z®.
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Let ERRY) be the ring of complex functions dR" generated by exponentials and
polynomials. Thus any’ € EP(RY) is of the form

f00 =Y eYiXpix),

j=1

whereys, ...,y € CV, and the functionsPy, ..., P,, are polynomials with complex
coefficients. If the elementfy;,1 < j < m} are such that there exists an integer
with My; € 2xiZ", then the functionf is said to beperiodic-polynomialor sometimes
quasipolynomigl The restriction of such a function to any coset MZ" of Z¥ /M ZN
is plainly polynomial.

A generalization ofs (1) is the sum of the values of a functighe EP(RY) over the
integral points off 7y (1):

St el =Y. f@.

Eelly(MNZN

Indeed, if f = 1, the functionS[ f, @] is just the functiong. Such a suns|[ f, @] will be
called an Euler—MacLaurin sum.

In this paper, we will search for “explicit” formulae for the functien— S[f, @]())
onI*. Letusrecall some qualitative results about this function. We start with the following
result of Ehrhart: for a rational polytogé in R”, consider the functiok — #(kIT N7Z"),
where # stands for the cardinality of the sét Ehrhart proved that this function is
given by a periodic-polynomial formula for all integets> 0. More precisely (see [12]
and references therein), ¥/ is an integer such that all the vertices of the polytope
MII are inZ", then there exist polynomial function®;, 0 < j < M — 1, such that
HUITNZ) = Zﬁi o KM pi(k). If f is a polynomial, therS[ f, ®](1) consists of
summing up the values of a polynomial over the integral points of the rational polytope
ITe (). If fis an exponentiat — e¥X thenS[eY, ®](1) is the SUM ¢ ¢ 175 ()NZN ely-é):
such sums were evaluated “explicitly” by M. Brion [4] and by A.l. Barvinok [3] for generic
exponentials.

Assume first that consists of: = dimV linearly independent vectors @f*. Denote
by p the linear isomorphism fro” to V* defined byp(x) = >"_; x; ;. The setlls (1)
is nonempty if and only if. € C(®) NZ®. In this case, the sdly (A) coincides with
p~1(0), and our functiom. — S[f, ®](1) on I'* is just the functionk — f(p~1(1))
restricted toC (@) N Z®. In general, the map :RY — V* defined byp(x) = Z,N:lxzﬂi
is a surjection, and the following qualitative statement holds:

Theorem 0.1. For each conic chamber of the coneC (@), there exists an exponential-
polynomial functiorP[c, f, @] on V* such that for eachh € ¢ N I'*, we have

SLf, @10 =Plc, f, 1().

This theorem follows, for example, from [5], and there are many antecedents of this
result in particular cases. The periodic-polynomial behavieggf) on closures of conic
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chambers of the con@(®) is proved in [20]. If f is a polynomial function, then the sum
dem f(&) is a polynomial function ok for k > O if the vertices oflT have integral
coordinates [4,8,12]. Lefl1, I1», ..., I[1y be rational polytopes ifR". For a sequence
[k1, ..., ky] Of nonnegative integers, denote b1y + koll2 + - - - + ky [Ty the weighted
Minkowski sum of the polytopegl;. Then, as proved in [17], there exists an periodic-
polynomial function® on RY such that

#((kiTy + koTp + - - + knTIN) N Z7) = P(k1, ka, . .., kn).

We explain in Section 3.2 how to pass from the setting of Minkowski sums to the setting
of partition polytopes.

Most of the investigations of the functiofi f, @] [5,8,15], starting with the Euler—
MacLaurin formula evaluating the suEﬁ f (k) of the values of a functioyf at all integral
points of an interval A, B], were dedicated to the fascinating relationSyff, @](1) with
the integral of f on the polytopedis (@), whena varies neai.. This relation uses Todd
differential operators, which leads to a Riemann—Roch calculusffgr®] initiated by
Khovanskii and Pukhlikov [15]. In fact, there is a dictionary between rational polytopes
and line bundles on toric varieties, which inspired these results.

Introduce the convex polytope

N
O(@) =) [0, 1]B:.

i=1
We obtain a residue formula fdi{ f, @] which implies the following qualitative result.

Theorem 0.2. For each conic chamber of the coneC (@), there exists an exponential-
polynomial functiorP[c, f, @] on V* such that, for each € (¢ — O(®)) N I'*, we have

SLf, @10 =Plc, f, 21().

We assumed tha® linearly generated’*, hence the set — (J(&) containsc. In
particular, the functiong (1) is periodic-polynomial on the neighborhoed- CJ(®) of
the closure of the conic chamber(this neighborhood is usually much larger than
see the pictures in Appendix A). We give specific residue formulae on each of these
sectorsc — [(@). Our main theorems are Theorem 2.3 and its various corollaries: the
residue formulae of Theorem 3.1 fog (1) and the residue formulae of Theorem 3.8
for S[f,®](A). If f is a generic exponentiat — e¥YX) then the residue formula
of Theorem 3.7 implies that formula (3.4.1) of Brion and Vergne [5] holds on the
neighborhood — () of «.

The residue formula makes the exponential-polynomial behavi§f if@]()) in each
of these sectors clear. More specifically, in Section 2.2, we construct an exponential-
polynomial function E[ f, @] on the entire vector spacé* with values in a finite-
dimensional vector spack the space agimple elementsind linear functionald, : S — C
depending on the conic chambersuch thatS[f, ®1(x) = (J., E[f, ®](A)) for A in
a specified neighborhood of the chambedepending onf and containing — CJ(®).
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Moreover, from the comparison with the Jeffrey—Kirwan expression for the volume of
Iy (a), which is given by a very similar residue formula on each conic chamber (cf. [2]),
one immediately obtains the Riemann—Roch formula of [5,8,155{gt @].

Conversely, applying Todd operators to the Jeffrey—Kirwan residue expression, we
could deduce our main theorem from [8] or [5]. However, our present result is an explicit
formula which holds on a region larger tharand the path followed in the present article
to obtain this result is direct. Furthermore, our result has the advantage that it provides
independent and very similar residue formulae for volumes and for Ehrhart polynomials of
polytopes. These computations are quite efficient: we give a few illustrative examples in
Appendix A. We refer to [2] for examples of calculations of volumes by residue methods
and examples of application of change of variables in residue for expressions of Ehrhart
polynomials.

Our method is based on a detailed study of the generating function

1
[Tie (1 — %)

for the partition function or, more generally, of periodic meromorphic functions with poles
on an affine arrangement of hyperplanes. As a main tool, we will use a separation theorem
due to the first author [21]. We review these results in Section 1.

As stated before, the equatia$] f, ®1(1) = P[c, f, @](1) holds for A belonging
to a specified “neighborhood” of, which, in general, is strictly larger than This
neighborhood depends ofiand @. As a result the polynomial®[c, f, @](1) for two
neighboring chambers will coincide along a thick strip near their common boundary. We
illustrate our residue formula and this effect with an example here.

Example 1. We setV* = R? with standard basis vectors, e» and corresponding
coordinatesi, as. Let

Dy =[e1,e1,...,€1,€2,€2,...,€2,e1+e2,e1+e2,...,e1+e2],
where each vectan, ez, e1 + e is repeated-time. There are two chambers contained in

C(Pp): ¢c1={a1> a2 > 0}andcz = {a2 > a1 > 0}.
Our residue formula in this case reduces to the following iterated residues:

et dlzg dzp
Lo, (a1, a2) = 535(530 (1—e1)h(1l— e 22)h(1— e (atza))h ))

for any (a1, az) € S1., = ¢1 — O(Py), while

et dzg dzp
Loy, (a1, a2) = 535(530 (1—e1)h(1l— e 22)h(1— e (atza))h ))

for any (a1, az) € Sz, = co — O(Pp).
Pictures of the chambers and of the S€i&,), S1.n, S2.n, S1.n N S2.; are given on
Figs. 4-8 in Appendix A.
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Let us give the explicit result fok = 3. We denote by[c, @3] the polynomial function
of (a1, az), which coincides with the vector partition functiog, on the chamber.
The functioni[c1, @3] is equal to

1 5
ﬂ(azg )(7af — Tazaz + 2a5 + 21ay — 9az + 14),

so it vanishes along the lines = —1, —2, —3, —4, —5. By symmetry, the function

[[CZ, ®3] =7 5

1 /a1+5
14

) (Za% — Taiaz + 7a§ —9a1 + 21a + 14)

vanishes along the lineg = —1, —2, —3, —4, —5. These vanishing properties may be
deduced from the Ehrhart reciprocity Theorem. Our results show that the functions
t[e1, @3] andi[c2, P3] coincide on the integral points iy, N S2 ;. Indeed, we have

1/a1—ar+2
D3] — Pzl = —
tle1, @3] — t[c2, D3] 14< 5

> (242 + 3a1az + 2a5 + 21a1 + 21az + 59),
thus the two polynomial functiongcy, @3] and:[c2, @3] coincide along the lineg; —ap =
-2,-1,0,1,2.

1. Partial fraction decompositions
1.1. Complex hyperplane arrangements

Let E be an-dimensional complex vector space.dfe E* is a nonzero linear form
on E, then we denote by, the hyperplangz € E | (o, z) = 0}.

An arrangement4 of hyperplanes irE is a finite collection of hyperplanes. Thus one
may associate an arrangemettd) to any finite subsetr ¢ E* of nonzero linear forms;
this arrangement consists of the set of hyperplafgswherea varies inA. Conversely,
given an arrangemewt = {H1, ..., Hy} of hyperplanes, we choose for each hyperplane
H; € Aalinearformy; € E* such thatd; = H,,. Note that such a linear form is defined
only up to proportionality.

We will call a set{H;}"" ; of m hyperplanes irE independenif dim (" H; =n —m.
This is equivalent to saying that the corresponding linear forms are linearly independent.
We will say that an hyperplangg is dependenbn an arrangemer{lti}le, if the linear
form g defining Lo can be expressed as a linear combination of the fornid <i < R)
definingL;. An arrangementl = {Ha, ..., Hy} is calledessentialf (), H; = {0}. Writing
A = A(AQ), this condition means that the set of vectargenerates ™.

Let A ={H1,..., Hy} be an arrangement of hyperplanes atng= {«1,...,ay} be
a set of linear forms such thad = A(A). Let us denote byR 4 the ring of rational
functions onE with poles anngUfV=l H;. Then each element € R4 can be written

asF =P/ Hle Bi, whereP is a polynomial andgs, ..., Br] is a sequence of elements
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of A. The algebrar 4 is Z-graded by the degree. Denote ByA) the set ofn-element
subsets ofA which are bases df*. Giveno € B(A), we can form the following elements
of R4:

_
[laco @@

Clearly, the vector space spanned by the functign®r o € B(A) depends only ot.

fo(2) = (1.1)

Definition 1.1. The subspacs§ 4 of R 4 spanned by the functions;, o € B(4), is called
the space ofimple elementsf R 4:

Sq= Z Cfy.

oeB(A)
The vector spac§ 4 is contained in the homogeneous component of degreef R 4.

If A is not an essential arrangement, then the3get) is empty andS 4 = {0}.
We let vectora € E act onR 4 by differentiation:

d
& f(2) := §f(z tev)|
Then the following holds [6, Proposition 7].

Theorem 1.1. There is a direct sum decomposition

RA=<28URA>€BSA.

veE
As a corollary of this decomposition, we can define the projection map
Tresq: R4 — Sy,
called thetotal residue The following assertion is obvious.
Lemma 1.2. Assume tha# is a subset oB. Then
R4 C Rp, S4C Sg.
Furthermore, if f € R4, thenTrexz(f) belongs taS 4 and
Tresz(f) = Tresa(f).
We denote byRnhp the space of rational functions dnwith poles along hyperplanes.

In other words,Rnp is the union of the space® 4 as.A varies over all arrangements of
hyperplanes irE. The preceding lemma shows that the assignmentTee§res, f, for
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f € Ry, is well defined omRpp. For f € Rpp, the function Treg is a linear combination of
functionsf,, defined in (1.1), where the setis a basis of£* such thatd(o) is contained
in the set of poles off. The map Tres vanishes on the spagg(m) of homogeneous
fractions of degree: unlessn +nr = 0. In particular, ifp = f, P, whereP is a polynomial
ando is a basis of£*, then the total residue @f is P(0) f, .

The total residue also vanishes on all homogeneous elements of degrddhe form
P/]_[iRzl,B,», whereP is a homogeneous polynomial of degrRe- n and vectors{,B,»}iR:l
do not generat&™*.

Denote byﬁhp the space of formal meromorphic functions Bmear zero, with poles
along hyperplanes. In other words, any elemerﬁmcan be written a$’/]_[,R:1 Bi, where
P is a formal power series ari@y, ..., 8g] is a sequence of elements Bf. The total
residue extends to the spai@@p by defining

P Prr_
Tres<R7> =Tre %),
Hi:l Bi Hi:l Bi

whereP;r_, is the homogeneous componentbf degreeR — n.
For example, ifa € E*, then the element‘edenotes the power seri€s e a’ /k!

and the total residue of“;é]—[,ilﬁi is, by definition, equal to the total residue of
a®=" /(R —m)! T, B). Again, this total residue vanishes if the linear forfs} X,
do not sparE™.

Example 2. Consider the function

ezl
8(z1,22) = I enl_enl_e@a2
Thus we write
P . 71 22 71— 22 2
g=———— withP=¢1 .
2122(21 — 22)2 l-enl-e2\1-e 1)

To compute the total residue of we need the term of degree 2 in the expansior of

at the origin. This i) := 322 — $3z125. Then

P2 23 1 1
o= 5 +3 .
7122(z1 — 22) 12(z1—z2) z2(z1 — 22)

The total residue of the first fraction is equal to 0, and we obtain the answer

Tresg = ———.
¢ z2(z1 — 22)

The following statements follow from the discussion above. We will use them later.



302 A. Szenes, M. Vergne / Advances in Applied Mathematics 30 (2003) 295-342

Lemma 1.3. Consider the meromorphic functidghon E expressed as

e(a.,z)
F(z)= ’
H£V=1(1— u;e=(Bi2))
where[B1, ..., By is a sequence of elementsiof and the coefficients;, i =1,..., N,

are nonzero complex numbers. Then

e TresF =0if thosep; for whichu; = 1 do not spant™.
o Ifthe seto = {B; | u; = 1} forms a basis oE*, then

1 1
[1g,e0(Bi>2) Tpgo (1 — 1) :

(TresF)(z) =

1.2. Rational hyperplanes arrangements

Let V be a real vector space of dimensionFora € V*, we denote by, = {v e V |
{a, v) = 0}, this time, the real hyperplane determineddby

Again, letI” be aranks lattice inV and denote by™* c V* the dual lattice. This means
thatifa € I'* andy € I', then{(a, y) € Z. We denote byC[I"*] the ring of functions on
Ve generated by the exponential functians> 62, & e I'*.

Definition 1.2. An arrangement of real hyperplanes i is I'-rational if A = .4(A) for
some finite subset of I'*. We simply say tha# is rationalif I" has been fixed.

Given a rational arrangemeyt = {H1, ..., Hy} of hyperplanes, for each hyperplane
H; € Awe choose a linear form; € I'* such thatd; = H,,. If H, = Hg with bothe and
B in I'*, thenw andg are proportional with @ational coefficient of proportionality.

For anyu € C*, « € I'*, consider the meromorphic function éfr defined by

1
glo, ul(z) = 1 need
If u=¢€" with a € C, then the set of poles of the functigiia, u] is the set{z € V¢ |
(,z) +ae2inZ}.

Definition 1.3. We denote by !" the ring of meromorphic functions ovi- generated by
C[I"*] and by the functiong[«, 1], whereu varies inC* andw in I'*. Given a finite subset
A of nonzero elements af*, denote byM ™2 the ring of meromorphic functions ovic
generated by the rin@[I"*] and by the meromorphic functiog$e, 1], whereu varies in
C* and now is restricted to be a member of the finite get
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Thus, to be explicit, a functio € M can be written, by reducing to a common
denominator, as

Yees ce€S

F(z)=
[Teca (1 — uiele2))

where/ is a finite subset of *; uy, ¢z € C*, and the elements, are inI"*. If in addition
oy € A, then this function is im17 4.

If we write z = x + iy with x,y € V, then the functiony — F(x + iy) is periodic:
F(x+i(y +27y))= F(x +iy) foranyy e I'. Thus functiong” € M!" induce functions
on the complexified toru¥c/2ix I".

Lemma 1.4. Let A and A’ be two finite subsets df* such thatA(A) = A(A’). Then
we haveM T4 = MT4". Thus the ringM "4 depends only on the rational hyperplane
arrangement4(A).

Proof. Let us note the following identities:

1 1
L—ee) ~ [l - celke)’
1 1+ u€ + u?e® + ...+ un-Delh-Dz
1—ue 1—uren ’
1 ule?

1—uee  ulez-1

wheren, k € Z, anda, u, z € C.

These identities show that "4 does not change if we multiply one of the elements of
A by a nonzero integer. This implies the lemma since any two4et$’ C I'* such that
A(A) = A(A") may be transformed into each other by such an operation.

Now we can give the following definition:

Definition 1.4. Let A be al”-rational hyperplane arrangement in a vector spacBefine
MTA to be the ring "4, whereA C I'* is an arbitrary subset such that= A(A).

Itis clear that, if8 is a subset of, thenM !B is a subring ofi /A,
1.3. Behavior ato

Consider a functionF € M!". The function of the real variable — F(x + iy) is
2n I'-periodic. In this section, we study the behavior of the function of the real variable
x> F(x +iy) atoo.

Let zo € V¢ be not a pole off'. Then, for allv € V, the functions — F(zo + sv) is
well-defined when is a sufficiently large real number.
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Definition 1.5. Let F € M. Assume thatg € V¢ is not a pole ofF. Define[d(zq, F) to
be the set oft € V* such that for every € V, the functions — € (“?) F(zg+ sv) remains
bounded when is real and tends tg-co.

Example. Let F(z) = 1/(1 — €); pick zo ¢ 2inZ. ThenO(zo, F) = [0, 1]. Indeed, the
functioné (s, v) = e*?/(1 — €915) is bounded as tends tooo if and only 0< p < 1:
whenv = 0, the functiond (s, v) is the constant A(1 — €%); if v > 0, we obtain the
conditionu < 1; if v < 0, we obtain the conditiom > 0. Note that ifv # 0, then, for
w €10, 1], the functions — 6 (s, v) tends to 0 when tends taoo.

Definition 1.6. For two subsetst and B of a real vector space, we denote by B their
Minkowski sum:

A+B={a+blacA, be B}.
Note that the sum of convex sets is convex.

Proposition 1.5. Let F € M" be written in the form

Spes coes?
18, — w2y’

F(z) =

where! is a finite subset of *, «; are in I'*, and all the constants: andu; are nonzero
complex numbers. Assume thak V¢ is such thaf [~ ; (1 — u;€/*>%)) £ 0. Then

R
(zo, F) = {/L eV u+é&c Z[O, l)o; forall £ € I}. 1.2

i=1

Proof. The set described on the right-hand side of (1.2) is easily seen to be contained in
O(zo, F). Indeed, letu € V* be such thaj + £ belongs to the sezle[o, 1]a; for all
& € 1. We write F(z) = } ./ cg F& (2) with

elé:2)

[T (@ — wpelana)y

Fe(z) =

Let us show that for each € I, the functions - €' (“*) Fx (zo + sv) remains bounded
whens tends toco. We haveu + &€ = Zletiai with 0 < 1, < 1 and we may write
€<“*”)Fg (zo+ sv) as

¥ (u+é,v) o620 ﬁ esti (e, '
[TF1 (1 — ujeles zolesteint L 1T — e el

ol€.20)




A. Szenes, M. Vergne / Advances in Applied Mathematics 30 (2003) 295-342 305

As each of the factors on the right-hand side remains bounded steeis toco, we have
shown thaiu € O(zo, F).
We now prove the converse. Lgtbe such that the function

s> €WV F(z0 4 sv)

is bounded as — oo for any v € V. Assume that, nevertheless, there exist® the
set I such thatu + v is not in the convex polytopél := Zle[o, 1]a;. The vectors
ak = ) ek %, Wherek is a subset ofl, ..., R}, are all in the polytop€7. Thus there
existsw € V anda € R suchthat} ", o, w) < a for all subsetk of {1, 2, ..., R}, while
{(u+ v, w) > a. The set of such vectois is an open set iV .

We write

P(s,v)
D(s,v)’

eV F(zo+ sv) =

with

R
P(s,v) = Z ceels 0 WtE gand  D(s, v) = l_[(l — u,'e<°""zo+s”>).
£ i=1

Then

R
D@JO=[I@—M£MJ“”U=§:Q£WWW€WM%
i=1 k

for some constantsx. Note that the function — D(s, v) does not vanish identically,

as D(0,v) = [1X,(1 — u;€“-%), Thus for anyw such that(}"; ., @, w) < a, the

denominatorD(s, w) can be rewritten as a finite sum of exponentials hp€Pes with

distinct exponents; and nonzero coefficients,. We clearly have maxby) < a.
Consider now

P(s,w) =) cge&erlitsm),
§

Since the sefw € V | (u + v, w) > a, (D, i, w) < a} is open, we can choose an
elementwg in it such that the numberg: + &, wo) aredistinctfor all £ € I. Then the
numeratorP (s, wo) may be rewritten as a sum of exponentiﬁ@ cj€4* with nonzero
constants ;, and distinct exponents such that max(a;) > a. Thus the functiorF (s, wo)

is equal to the quotien}; c;e*/ )", hy€”*, which is equivalent tae* (M ¢~ Mm% br)
ass — 4oo (c # 0). The exponent is positive, hence the functior> F (s, wo) tends
to oo whens tends to+oo. This contradicts our assumption @ and the proof of
Proposition 1.5 is complete.O

Let F € M. As a consequence of Proposition 1.5, the[3@iy, F) is independent of
the choice of.
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Definition 1.7. Let F € M" andzg be an arbitrary element ¢f: which is not a pole of.
We denote by 1(F) the set(zo, F).

The setJ(F) is easy to determine, using any presentatiof @s a fraction.

Example 3. Let

1 1+¢€

Fo=1"e¢=1-e&

Using the first expression, we obtain(F) = [0, 1]. Using the second expression, we
obtaindJ(F) =[0,2]N[-1, 1].

Lemmal6.Let F e M andu € V*. Assume that is in the interior of J(F) and that
zois not a pole ofF. Then for all nonzerav € V, the functiors — €%V F(z9+ sv) tends
to zero when is real and tends te-oo.

Proof. ConsiderF € M! written as in Proposition 1.5 and let us return to the first
part of the proof of this proposition. If the interior &fi(F) is nonempty, then the
linear formsa; necessarily generaté*. Furthermore, ify is in the interior of (F),
then, for eacht € I, we can writeu + & = Zlet,-a,» with 0 < ; < 1. Each factor
e'ileiv) /(1 — y;el-20)es(@-v)) remains bounded whentends toco. Sincev is not equal

to O, there exists at least one linear foan with («;, v) # 0. The corresponding factor
tends to O when tends toco, and we obtain the lemma.o

Definition 1.8.

e Forp e V*, we denote by’ (1) the set ofF € MT such thai € (F). Similarly,
for u € V* and al"-rational arrangemerd, let

M A ={F e M™ | n e O(F)).

o Let F e M!" andu € O(F). A decompositionF = 3" F; of F into a sum of terms
from M1 will be called-admissiblef . € O(F;) for everyi.

We have the following obvious inclusions:
Lemmal7.LetF,G e M'. Then
OF)NOG) cOF +G) and O(F) +0(G) c O(FG).
Remark 1.1. A consequence of Proposition 1.5 is thatfif= ), ., P;/D is a sum of
fractions fromM ! with the same denominator, thehe M ! (u) if and only if P;/D e

MT (u) for eachi € I. However, for a decompositiof = >; Pi/D; with different
denominators, the inclusign); O(P;/D;) C O(F) is strict in general.
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2
1 1 1 |
0 1 0 1 10 1

Fig. 1. The set&1(F7), O(F2), andO(F3).

Fig. 2. The set§1(Fy), O(Fy), O(F3), and0(Fy) N O(F3).

Example 4. Set
1 1
F]_: A A F2= ’
(1—e1)(1— e2) (1 - e1ta)(1—e2)
1
F3

- (1-eat2)(1l—e21)’

Then we havery = F> — F3. Figure 1 shows the three parallelograim&y), C(F2) and
CI(F3). Clearly,[d(F2) N O(F3) is strictly smaller thaml(Fy) (cf. Fig. 2).

The following lemma will allow us to obtain admissible decompositions of certain
specific elements af7 " ().

Lemmal.8. Letay, ..., a, be nonzero linear forms, and leh = — (a1 + a2 + - - - + o).
Letus, ..., u, be nonzero complex numbers, and let

_ 1
]_[,r'=1(1 —ue)’
Setu=)7_1tic; e O(F)with0O<nn << <t <1
Assume that either the linear forg is not identically zero, or iftg = 0 then the product

ur---u, # 1. This ensures that the functigfh — u1 - - - u,.e~@-2))~1 js well defined as a
meromorphic function oc. Then we have

F:Xr:Fi
i=1
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where

. — a 1
_ (_1\i+l
=D (1—u1u2 ure %)H Jle) 2 H A

andu € O(F;) foreachl <i <r

Proof. The equalityF = ";_; F; is verified by multiplying by(1 — u1us - - - u,€-%). The
resulting formula in another form is

LMo 1Tl we . (1.3)
S IpA—ue) [Ty —uie)
It remains to check that € OI(F;) for eachi. We have
i—1 r
w= Zt]a, + tio; + Z tjoj = t,-ao—i-Z(tj — o + Z (tj —t)aj
Jj=i+1 j=1 j=i+1
where the coefficients ofwag, —a1, ..., —j—1,¢i+1,...,0, are between 0 and 1.

Considering the form of the functions, this is exactly the criterion of being inl(F;),
and the proof is complete.O

Remark 1.2. We would like to stress here that theadmissible decomposition @f given
in Lemma 1.8 depends on the position of the elemeimt CI(F) in an essential manner.

Example5. Let

1

Faw =g ea—e

andu = (u1, u2) iINnO(F),i.e.,0< uyp <land 0K w2 < 1. Thenifug < wo, we write
F=F—F

with

1 1
hG2) =g ama e and F2(z1.22) = (1—eit2)(1—e1)’

so thatu € C(F1) NO(F?).
If w1 > w2, then the roles of; andz; are reversed, and

F=F —F,



A. Szenes, M. Vergne / Advances in Applied Mathematics 30 (2003) 295-342 309

with

1 1
F} = .
(1 — exrtz2)(1 — 1) and Fj(z1,22) (1 — eat2)(1 — e22)

Fi(z1,22) =

Again, we havew € O(F)) NO(F).

Example 6. Let

1

F& = e a e

withu #v. Letu € [—1, 1]. Then if 0< u < 1, we write
F(z) = F1(z) — F2(2)
with

1 b= L 1
A—u1v) (1-ver)’ 2= A—u1v) (1—ue)

Fi(z) =

andu € O(F) NO(F2). If —1< u <0, then we exchange the roleszodind—z and write
F(z) = F1(z) — F5(2)
with

1 1 Fi e 1 1
A—uto) 1—ute?) 2= T ) A= vle )

Fi(z) =

where againu € O(F;) NO(FY).
1.4. Separating variables

Let I C V be a lattice of full rank andd be arl"-rational arrangement of hyperplanes
in V. Recall that givenu € V*, we definedMFA(y,) to be the subspace of functiofsin
MTA such thaiw € O(F).

Lemma 1.9 (The exchange lemma)et A = {H, ..., H,} be a rational arrangement of
hyperplanes and letly be a rational hyperplane, which is dependenténDenote byA;
the arrangementHo, Hi, ..., H;, ..., H,}, where we have replaced the hyperplaiieby
the hyperplanddy. Then, for any: € V*, we have

M A <YM ).
i=1
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Proof. The dependence aflp on A means that there are linear forms, ..., o, € I'*
with Hy = Hyy, Hy = Hy,y, ..., Hy = H,,,, such thateg may be expressed as a linear
combination of the rest of thes. By using multiples of these linear forms to describe our
hyperplanes and reordering the hyperplanegliif necessary, we may assume that the
relation takes the formg + a1 + - - - + o, = 0, wherer < m.

LetF e MF‘A(,U,). By Lemma 1.4, we may write

é R
F=) cp D=l_[l(l—u,-eﬁf),
j=

el

where [B1,...,8r] IS a sequence of not necessarily distinct elements of the set
{1, ..., oy} andce is a nonzero complex number fére 7. According to Remark 1.1,
each of the terms‘gD is in MF‘A(,U,), So we may assume thatis of the form é /D to
begin with.

We argue by induction on the lengihof the sequenci8y, . . ., Br]. Ifthe set{f; | 1 <
j < R} of elements occurring in the sequence is strictly smaller than thieeset. ., a, },
then one of the linear formg does not appear in the sequefgg ..., Br], and thusF' is
already in_7" 4 MTAi (w). Otherwise, reordering the sequence, we may assumgihat
a1, f2=0a2,.... B = . We write D' = [[_; (1 — i), D" =%, (1 — u;eb),
so thatD = D'D". As u € (F), we write u = ' + u” with 1" € Y'_4[0, 1]o; and
n'e—&+3 8, 400,118 Now

e 1¢ 1 . € o
=D WlthﬁeM (u/)andﬁeM ).

We may suppose that, after reordering the firstements of the sequence if necessary,
we haven' =Y ) oy With 0< 1y <o < --- < 1y

Using Lemma 1.8, we write /ID" = Y, _, F/, with u’ € O(F}). Thus we obtain
a pu-admissible decompositiorf ¢D = >;_; F/&¥/D". More explicitly, writing uo =
(u1---u,)~ 1, we obtain thes-admissible decomposition

= J— 1

-1 G
D o (L—ug e )
with

&
i@ —u e ) [T (A — @) [T5, (A —uyefi)

Gy =

For each 1< k < r, we haveu = o + py With 0 < <1 andpu;, € O(Gy). We can
apply our induction hypothesis 6 € MF‘A(/,L;() since the length of the denominator
of G is R — 1. We then obtain an admissible decompositionGafas >/ ; G;; with
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), € O(GL) andGi € MTAi, According to Lemma 1.7, the functia® /(1 — uy 'e=0)
isin MTA (o + wny) = MTAi (). Hence the proof is now completed

Clearly, if B c A then M"B(u) c MTA(w). The following crucial partial fraction
decomposition type result holds in the reverse direction:

Theorem 1.10 [21]. For eachu € V*, we have the equality

M Ay =Y M 3w,
where the sum is over all independent subarrangera@fit4.
Proof. We use induction on the numbar of elements inA. If A is linearly independent,
we are done. If not, we assume that the statement is known for arrangements with
N — 1 elements, and writel = {Hy,, Ho,, - .., Hay }. As A is not independent, there is
a hyperplane, sa#,, , which is dependent on the rest of the system
A" ={Hgy,, ..., Hyy_,}-
For1<i < (N —1) welet

Al ={Hay, Haps - - Hay - ., Hay ).

Note that each4d; hasN — 1 elements. A functiorF of MTA(w) may be written in the
form F = P/D with P =3, c:€ andD = D'Dy, where

R ny
D/=H(l—ujeﬂ-/) and DNzn(l—UjeplN).
j=1 j=1

In the factorization ofD’, the elementg; belong to the sefry, ..., an—1}.
Each of the term¢7: = € /D of F is in M A(1). We may splitu aspu = u’ + un,
with uy =tyay, 0<ry <ny and

é ’

o M.
Applying the exchange lemma t#,, and the systemd’, we obtain an admissible
decomposition of &/ D’ as a sum of elements’ e MTA (1). ThenF; is a sum of terms
of the form F//Dy, each of which is inv A (). Since the systerd! is composed

of N — 1 hyperplanes, we may conclude the proof of the theorem by our induction
hypothesis. O
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Remark 1.3. A fixed total order< on the arrangemem of hyperplanes in an-dimen-

sional vector space selects a subN&8C (A, <) of the set ofr-tuples of independent
hyperplanes inA. This subset is called theo-broken-circuit basiof 4 (cf. [21] for
details). The arguments used in the proof of the above theorem may be used to show that,
in fact,

M= Y M.
acNBC(A,<)

Moreover, the setd’ BC (A, <) are minimal with respect to this property.

Now we analyze the se¥3(11) when the arrangemeatis independent. Thus let
be a set ofn independent hyperplanes. We choages I'*, k=1, ..., m, such that=
{Hyy, ..., Hy,}. Theng = [aq, ..., a,] is @ sequence of linearly independent linear forms.
Leth =[hq, ho, ..., hy,] be a sequence of nonnegative integersaad(us, uz, ..., uy]
be a sequence of nonzero complex numbers. We introduce the function

&
1—1?1:1(1 —ujeriyhi’

g& . ¢,h,u)=

wheret € I'*.

Proposition 1.11. For an independent arrangememt= A(¢), each functionF e M3(u)
may be represented agaadmissible linear combination of the functiog&, ¢, h, u).

Proof. Clearly, it is sufficient to prove this statement for the cgge= 1. The general case
will follow by taking the product of the linear combinations for each participating linear
form.

Set¢ = {a} anda = A(¢). An elementF € M 3(w) is a linear combination of
elementsFy = & /D e M"3(u), whereD = ]_[l-Rzl(l —u;€”). We need to show that each
function F; may be represented as a linear combination of elemeng cf(.1) of the
form & /(1 — ve?)".

We use induction orR. If all the u; are equal, thenfe already has the required
form. If not, up to reordering, we can assume thatt uz. We write D = D12D’ with
D12 = (1 — u1€”)(1 — uze®). FactorF; as Fr = G/D12 with G = & /[[3(1 — u;€”),
and letu = u/ + u”, wherep' =ta with 0 <t <2 andu” € (G).

There are two cases: ifQ¢ < 1, we write

1 1 1,1 1
(1—u1e?)(1—uze?) 1- uzuzl) 1-we”) @1- uluz_l) (1—uze”)’

if 1 <r<2,wewrite

1 B -1 upte™ N -1 uy e
(1—ure®)(1—upe®) (1— uzuIl) (1—u2e*) (1-— ulugl) (1—u1e?)’
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In both cases, we obtainaadmissible decomposition of €D into a sumG1+ G, where

G —eg' and G —egl
1=cC1 2=20C2 .
Hi;ﬁl(l_ u; ) Hi;&Z(l_ u;€)

This allows us to reduce the number of factorginby one. Our statement now follows
by the inductive hypothesis.O

1.5. Essential arrangements and nonspecial elements

Now we formulate a version of Theorem 1.10 in a form which incorporates Proposi-
tion 1.11 and excludes some degenerate cases.

Let againI” be a lattice of full rank in the:-dimensional vector spac¥, and let
A={Hs,..., Hy} be an essential-rational arrangement of hyperplanesiin Fix a set
A of representative linear forms fof; thus we haved = A(A). Defineu € V* to be T -
specialwith respect tod if u =i+ Z,N:ltia,», wherer € I'*, 1; € R, a; € A and at most
n — 1 of the coefficients; are nonzero. This property depends both/dband onA. The
set of nonspecial elements ig & -invariant union of open polyhedral chamberg/ii.

Note that if F € MTA, then the boundary dfl(F) is contained in the set of special
elements. Thus ift is nonspecial and’ MTAw), thenu is in the interior of J(F). We
arrive at the following proposition.

Proposition 1.12. Let A be an essential arrangement of rational hyperplanes. Eet
MTA. Let u € O(F) be a nonspecial element. Then there exists a&sebnsisting of
independent:-tuples of hyperplanes and @-admissible decompositiof = )", Fa,
with Fa € MT3(w). Furthermore, choosing a basis= {a1, ..., ,,} such thata = A(c),
the functionF; is a linear combination of functions(&, o, h,u) with u + & = >"7"_; fia;
and0 < ¢t; < h;.

This proposition allows us to writ¢" as a linear combination of those functions
g(&,0,h,u), for which u belongs to the interior dfl(g (€, o, h, u)).

2. Expansion and inversion formula
2.1. Expansion of functions

Let V be a real vector space of dimensiorendowed with a latticd™. A choice of a
nonzero vectow in V induces a choice of an open half spacg C V* of linear forms
which take positive values on We fix such a half space and consider a finite subiset
of elements ofV} N I'*. We assume thatl linearly spans the vector spa&€ and thus
generates a closed acutalimensional con€ (A):

C(4)=) Rxoa.

aeA
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€2 — €3

0

Fig. 3. The chambers of the systeﬁj.

Recall that we denoted b§(A) the set of those subsets afwhich are bases df *.
Following [1], we will call a vector inV* singularwith respecttaA if it is in a coneC (v)
generated by a subsetc A of cardinality strictly less than. The set of singular vectors
will be denoted byCg;,; and the vectors in the complemefigy = V*\ C4,, will be called
regular. The connected components@@g are conic chambers callddly chambersThis
term is chosen to differentiate them from the smaller chambers cut out by special elements
defined in Section 1.5. We might call big chambers singhlgmberswhenever this does
not cause confusion.

A big chamber is an open cone. Note that there might be regular elements which are
specialin the sense of Section 1.5: if sughis written u = Z,N:ltia,», tieR,a; € Aand
at mostn — 1 of the coefficients; are nonzero, then at least one of the coefficients
strictly negative.

If ¢ is a big chamber and € B(A), then eithert € C(o) orcN C(o) = @. One of the
big chambers is the complement of the closed a6na); we denote it byx"!. Note that
this convention is slightly different from the convention adopted in [2], whfewas not
considered a chamber.

If ¢ is a big chamber contained @A), then the closure af may be represented as

é:ﬂC(a), cC C(o), o € B(A).

In particularc is a closed convex polyhedral cone.

Denote byC[I"*] the set of complex, formal, possibly infinite linear combinations of
the exponentials’e wherer € I'*. If ©® =Y, _;. m; € is an element o [I"*], then the
supportof @ is the set ol € I'* such thain;, # 0. The coefficientn;, of € in ©@ will be
denoted by Coefo, A).

Let CA[[I"*] be the subspace &[I"*] spanned by the elemen& with supports
contained in sets of the forrth4+ C(A), where! is a finite subset of *. This subspace
forms a ring which contains the ring[I"*] of finite linear combinations of element§,e
terl*.
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Consider the arrangement of hyperplankés= A(A) and recall the definition of the
algebraym ™A from Section 1. Every functioff € M can be written in the form

_ ZEEI Cé‘eé
[Thoa (@ — uxef)”

wherel is a finite subset of ™, ux, ce € C*, and the exponeng are inA.
Fora € A andu € C*, define the expansion

r+(1_1uea) _ iukeka’

k=0

where the right-hand side is interpreted as a formal series. This expansion map extends to
an injective ring homomorphism

rtimMI™ - Calr]

given by

o= (e ) [T (= )

tel k=1

We callr+(F) the expansion of.
The aim of this section is to give a residue formula for the coefficient Goeff), 1)
for F e MTA anda e I'*.

2.2. The residue transform
We start with a general definition of exponential-polynomial functions.
Definition 2.1.

e For aZ-moduleW and a fieldF, define the space of polynomial functiofR§W, )
to be the subring off-valued functions ori¥ generated by the additivie-valued
characters o.

e For aZ-moduleW and a fieldF, define the space of exponential-polynomial functions
ERP(W,T) to be the subring of-valued functions oriW generated by the additive
F-valued and multiplicativ&*-valued characters d¥.

Clearly, an exponential-polynomial function is a linear combination of multiplicative
characters (exponentials) with polynomial coefficients. Usually, we wilFsetC, and in
this case we will write EPW) for EP(W, ). In our applicationsW will be either a vector
space or a lattice.
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When W is a lattice of full rank in a vector spacg, a polynomial functionf on
W extends in an unique way to a polynomial function Bn Exponential-polynomial
functions also extend to exponential-polynomial functionskgrbut the extension is not
unique. For example, i = Z c R = E, then the functiom — (—1)"n is an exponential-
polynomial function onZ, which can be extended dR as the exponential-polynomial
functionx > €@&+D7xy for any integek.

WhenW is a lattice and a functiofi € ER(W) is such that the multiplicative characters
which appear in it take values in roots of unity, then such a function is cpbeiddic-
polynomialor sometimesguasipolynomial

We continue with the setup of a latticE c V, an arrangemen#d and a set of
linear formsA c I'* representingd. In this section we associate to afye MTA an
exponential-polynomial function of™* with values in the space of simple fractiofig.

According to Lemma 1.3, the total residue of a functio’ M4, written in the form

_ Zéel Cfeg
TR (A — urebr)’

vanishes unless the set of linear forfs | ux = 1} spans the vector spad&*. Let us
define the total residue of at some pointp € V¢ as the total residue of the function
z+— F(z— p). Thenwe observe that the total residugafiven in the above form vanishes
at p € Vc unless

(2.1)

the set of formg B¢ | €7 uy = 1} linearly spang/*.

The linear forms8; are all inI"*, hence the set S, I') of those pointy € V¢ which
satisfy this condition is invariant under translations by elements of the latticé .2
Consider two points irVc equivalent if they are related by such a translation, and choose
a set RSPF, I') containing exactly one point from each equivalence class of points in
SHF, I'). Itis clear from the definitions that the set R$R 1) is finite; we will call it a
reduced set of polesf F.
This definition of the set RSW, ") is somewhat informal: it depends on the
presentation of". The only properties that we will need from it are that
e the set RSPF, I') is finite;
e if p,g e RSRF,I")andp — g € 2xil", thenp =g¢;
o if the total residue ofF (z)G(z), whereG(z) is an entire function, does not vanish at
someqg € V¢, theng € 2zil" + RSRF, I').
Now we define a function[F, I']: I'* — S4 with values in the space of simple
fractions associated ta, whose value ak € I'* is the sum of all the total residues of
the functionz — €2 F(—z) taken at inequivalent points ivic. More precisely,

Definition 2.2. For F e M7 andx e I'*, we introduce

s[F, 1)) = Z Trege* P F(p —2)), (2.2)
peRSRF,I")

where the set RSP, I') is a reduced set of poles &f.
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Clearly, the definition does not depend on the choice of representativeag RSP

Lemma 2.1. The functiom. — s[F, I'](A) is an exponential-polynomial function dn*
with values in the space of simple fractiofs.

Proof. Let F € M4 be given in the form (2.1), and pick an element RSRF, I'). For
A € V* consider the total residue

Tre(e™ ¥ F(p - 2)).

The function &3 F(p — z) is in the spac@hp introduced at the end of Section 1.1.
As the total residue depends only on the component of degreaf this function, for the
purpose of the calculation of its total residue, we can replace the exponéhfiaby its
expansion truncated up to ordRr— n. Thus we have

F(p— z)).

The right-hand side here clearly depends polynomially aifius each term

Ron (A, z)
A, _ ’
Trefe™ ¥ F(p —2)) = Tre E B
j=1

Trege™ P F(p —2)) = e *P Trede™¥ F(p - 2)),

appearing in the definition off F, I'] is an exponential-polynomial function af As the
set RSRF, I') is finite, this completes the proof.c

Let us look at a few special cases.

Case l. Let F be of the form

_ delcées
[T —ef)’

i.e., let all constants; be equal to 1. For a basis = {«1, ..., a,} of V*, formed by
elements of the sequenggs, ..., Brl, the latticeZo is contained in"* and is usually
different fromrI™*. ConsidenZo)* C V, the dual lattice t&o:

(Za)*:{seV|(s,ak)EZforlékgn}.

If p e27i(Zo)*, then the set of linear form; | ef+-P) = 1} linearly spansv*, since

it containso. Then the set RS#, I') is a union of representatives of the finite groups
2ri(Zo)* /271 in Vi, aso varies over bases df* formed by thes;s. As a result, for

L eTI'* and p e RSRF, I'), the exponential &7’ is a root of unity. This implies that
the functions[F, I'] on the latticel™ is periodic-polynomial More precisely, ifnr is

an integer such thatrI" C Zo for all basess of V* formed by s, then the function
s[F, I'] is polynomialon all cosets of the form + np*.
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Case 2. There is an interesting special case of this setup, wijgn I'] is plainly
polynomial: the unimodular case.

We will call a subsetA ¢ I'* unimodular if every basiss € B(A) is aZ-basis ofl’*,
i.e., the parallelepipe}_, .. [0, 1]lo contains no elements of the latti¢& in its interior.

In this case, the integerr mentioned above may be taken to be equal to 1. We collect
what we have found in the following

Lemma2.2. Let

b el €
[Tia(1—ef)

Then the functiorh — s[F, I'](A) is a periodic-polynomial function o™*. If, further-
more, the elements of the sequef@e B2, .. ., Br] belong to a unimodular subset 6,
then the function. — s[F, I'1(A) is a polynomial.

Case 3. Assume, at the other extreme, that the constantse generic.
For p e RSRF, I'), denote by (p) the subset of the set of indic€s, 2, ..., R} given

by
ipm={jie(l2....R}|u;efirPh =1}

If the constants, are generic, then the sg;}, j € j(p), if nonempty, consists of exactly
n linearly independent elements 4f
We have

N p = (Bj,z)
e(k,z p) F (A,z—p) (&.p—2) ] y
( 2) € < E ce€ )7 | | LA
tel Hjej(p)<13j’ z) jei(p) ] — e (Bj:2)

1
< 1—emra
k¢j(p)

By Lemma 1.3, the total residue of this function is the simple fracﬂ)p&j(p) ﬂ]fl,
multiplied by the constant, which is obtained by settingo zero in the rest of the
expression. As a result we obtain the following explicit formula:

1 1
S[F. (0 = e(k,p)( Cge@,p)) ’
Z Z l_[ 1 — uyelPep) Hjej(p) Bi

pERSRF.IM) el kéj(p)

which expresses the function— s[F, I'](1) as a linear combination of exponentials.
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2.3. The residue formula

We start with recalling the notion of residue introduced by Jeffrey and Kirwan [14]. Let
againA be a set of vectors in an open halfspace ofiatimensional real vector spadg
and let4 = A(A). We assume that generaté/*. Fix a volume form vol orvV*. Given a
big chamber of Cég, one can construct a functiongl— J{c, f)vol on the space 4 of
simple fractions as follows. For a simple fraction

1
P e 5P
set
vol(e)~ L, if cc C(o),
J sy JoO IV =
{€. foval {o, if cNC(o)=0.

Here we denoted by vat) the volume of the parallelepiped
our chosen volume form.

Now we formulate our main result. L&t be a ranks lattice inV, and letl"* c V* be
its dual lattice. As before, we assume that- I'*. Denote by vof+ the measure o *
assigning volume 1 to a minimal parallelepiped spanned by elements.of

[0, 1] with respect to

aEo

Theorem 2.3. Let F € M4 and letTI(F)° be the interior of J(F). Then forx € I'* and
any big chambet such that(x + O(F)%) N ¢ # @, one has

Coeff(r*(F), 1) = J{c, s[F, I'I(V)) (2.3)

Vol
Before starting the proof, we analyze the one-dimensional caseVLetRe and
V* = Re* with latticesI” = Ze and I'* = Ze*; let A = {¢*}. There are two chambers
in this caser™ = R.ge* andc™ =R_ge*. We simply writeF (z) for a functionF (ze) on

Vc. ThenJ(ct, TresF)yol,.. = Res—q F(z) dz, while J (¢, TresF)yol,.. = 0.
Introduce the notation

1
= (R_1)!(k+1)(k+2)~'(k+(R—1)).

(k. R) = <k + (R — 1))

R-1
We have the following simple generating function gk, R):

Lemma 2.4.

Z

ek
ReS T e R L=k R).

Proof. Using the change of variablgs= €° in the calculation of the residue, we obtain
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ks £
Res—— _d;=Res—> > —Res>
=o(l—enf ~ JST(l—y HRy =iy — DR
1 R+k—1
Res%

R+k—-1

dy

dx =c(k, R). O
x=0 X

Now consider the function

Z

F(Z)zm’

wheret is an integer. The following explicit formula holds for the expansioof

rH(F) =€%) " clk, Rute”.

k=0

Hence we have

0 if A —&eZ-o,
Coeff(F, 1) = { (2.4)

W =Sc(A—&,R), if r—&eZso.
Note that the relation
Coeff(F, 1) =u’5c(L — &, R)

holds whenevek — & > —(R — 1), since both sides of this equality vanish for- & =
-1,-2,...,—(R-1).

Let us analyze our proposed formula (2.3) in this example. We first write out the element
s[F, I'](») explicitly. The functionF (z) has just one pol@ modulo 2riT"; it is given by
the equation 2= 1. Thus we have

er=6)z

_ A&
SIF, (A =u Tres(l_efz)R,

which leads to

_ ot 1
SIF, T\ = ' ~c(o— £, R)=.
Z

Now assume that € Z and we picked a chambersuch that(x + O(F)%) N ¢ is not
empty.
First we consider the case= ¢*. Here
It s[F, T10),,, . =u"Fc(h— &, R).

VO|I—~* -
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Since (A + O(F)%) N ¢t is nonempty, there existg € C(F)° such thath + u > 0. As
u~+ & =t with 0 <7 < R, this implies that. — & > —(R — 1). This is consistent with our
computation of CoeffF, 1) above.

Assume now thatx + O(F)%) N ¢~ is not empty. Now we have

=0.

VO|I—~* -

J(c<7 s[F, T'1(M))

Since(x + O(F)% N ¢~ is nonempty, there exisjs € (F)° such that. + o < 0. As
u~+ & =rwith 0 <t < R, thisimplies that. — & < 0. Again, this is consistent with (2.4).
We now return to the proof of the theorem.

Proof. If (» 4+ O(F)% N ¢ is nonempty, then we can choose a nonspecial element
O(F)° such that. + u € c.

By Proposition 1.12, there is@admissible decomposition ¢f as a sum of functions
g(&, o, h, u) with o € B(A). Furthermore, the elementstill belongs tdJ(g(&, o, h, u))°.
It is thus sufficient to prove the theorem in the c#se g (&, o, h, u).

Leto ={a1, a2, ...,a,} andé € I'*. Then we have

elé.2)
(1 — ule<alsz) )hl e (1 — une«xn;Z))hn '

F(z)=

Let C(o) be the cone generated bbyand Zo the sublattice off"™* generated by .
ThenC(o) N Zo is the set of elements € V* of the formi = Y7, ke, Wherek; are
nonnegative integers. Then it easily follows from the result (2.4) in the one-dimensional
case that we have

c P o, if k; <0 forsome, 1<i <n, ot
oe = . .
fiE2) {M];_lc(kl, hl)"'”ﬁnc(kna hp), Tki=21—h;, i=1...n, ( )

wherer — & =>""_ ki andk; € Z,i =1,...,n.
We now compute[F, I'](A). The set of poles S#, I') of the functionF is given by

SRF, I ={peVc | =ut, for 1<k <n). (2.6)

Choose an element in this set and again denote 0o )* the dual lattice t&Zo. Then
for any s € (Zo)*, the pointpg + 2irs of V¢ still satisfies &« -pot2ims) — u,jl. Thus
SRF, ') = po + 2in (Zo)*.

We have

elr—§.2)
]_[Z:l(l — e (a2 yhe "

SIF. T = Y. ¥4/ Tres
peRSRF.I)
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Since RSIPF, I') is a set of representatives of the set BF™) modulo the lattice 2i I,
using (2.6), we can write

Z el6—A.p) — gl§—A.po) Z 2im(E—r,m)

peERSRF,I) me(Zo)*/I"
This sumis nonzeroifandonly§f — 1 € Zo. If A —&§ =>"7_; kia; With k; € Z, then

el —r.po) — @ Xizakilei.po) — ”]il oy
L

We thus obtain:

e s[F,I'l(}) isequalto 0 ifx — & isnotinZo;
o IfA—&= Z?:lkiai with k; € Z, then

n
. 1
S, TN = |77/ Zo | Juf e(his hi) m—
i=1 Hi:la[

Now we proceed to computing the Jeffrey—Kirwan residues.\Let/"* and letc be
a chamber such thak + O(F)%) N ¢ # ¢. This means that there jg € V* such that
At uecandu + & IZ?:]_t,'O[,' with 0 <t < h;.

There are two cases: eithec C(o) orcNC (o) =0@. If ¢ € C(o), then we can conclude
thath —& =) ""_; x;a;, Wherex; are rational numbers angd > —h;,i =1,...,n. On the
other hand, we have

o J{c,s[F, I'l(M))vol+ = 0if A\ —& ¢ Zo.
o If A—& =311 kioy with k; € Z, thenJ (¢, s[F, I'](1))vol,.. factors:

\I*/Zo| = &,
—Lnufc(ki,hi).

n
) 1
k
|r* Zcr|| |u.’c(k',h-)J<c, 7> =
! TN e hoie VOIPe(0) [

i=1
It easy to see from the definitions that yelo) = |I"*/Zo |, hence

n

Ie,sUF, TI0) . = [ [ i elhi i),
i=1

This is consistent with the expression (2.5) for CoEffr), asi — & =Y i ki;, where
k; are integers ankl, > 1 — h;.

In the casec N C(o) = ¥, we can conclude that — & = Y !_; x;«;, Where at least
one of the numbers; is negative. This is again consistent with (2.5), since by definition
J{¢,s[F, I'](A))vol-~ = 0.

Thus we covered all cases and the theorem is proved.
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3. Ehrhart polynomials
3.1. Partition polytopes and the vector partition function

Let V be a real vector space of dimensiomendowed with a latticd™, and let® be a
sequence afiot necessarily distinalementggi, ..., By] of the dual lattice™ c V*. We
assume tha® generated’ *. Denote byp the surjective linear map froR” to the vector
spaceV* defined byp (wy) := B, 1<k < N, where{wy}Y_, is the standard basis &f" .

The mapp may be written as

N
p(x1. X2, xN) = Y _XiB;.
i=1

We denote b;C;; the closed convex cone RV generated by, ..., wy, and we set
C(®) := p(C}), the cone generated o1, . . ., Bn). We assume here that 1(0)NC}, =
{0}. Then 0 is not in the convex hull of the vect@iisandC (@) is an acute cone.

Definition 3.1. Fora € V*, we define theartition polytopells (a) by
Mg (a):=p~ta)NC}.

The setl1y (a) is the convex polytope consisting of all solutiang, x2, ..., xy) of the
equation

N
Y upi=a
k=1

in nonnegative real numbess. In particular, the polytopéls (a) is empty ifa is not in
the coneC (®).

When V = Re is one-dimensional, and = [b1e*, ..., bye™] whereb, are positive
integers, the polytopdiy(a) is the (N — 1)-dimensional simplex consisting of the
intersection of the hyperplarEf\’:l b;x; = a with the positive quadrant.

Denote byZ® the lattice inV* generated byp; naturallyZ® c I'*. Then the map
sends the standard lattiZéd’ ¢ R" to the latticeZ®.

For a general in the latticel™*, the vertices of the polytopH¢ (1) are only rational
rather than integral.

Example 7. SetV = Re with I' = Ze, 1 = 2¢* and 82 = 3e¢*. Let A be a nonnegative
integer. Then the polytopHg¢ (Le*) consists of the set(x1, x2) | x1 > 0, x2 >0, 2x1 +
3x2 = A}. The vertices of7(1) are(r/2,0) and(0, A/3), so they are integral if and only
if A is multiple of 6.

Let A ={a1,...,ar} be a set of linear forms from* such that
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e each element oft is apositivemultiple of an element of the sequenge
o for everyp; in @, there is a unique; € A which is a multiple ofg;.

Note that it is possible tha? < N.

For j a subset of{1,2,..., N}, we denote bijJr the closed convex cone iRY
generated by the séw; | j €j}, and byC(&;) the closed convex cone iri* generated by
theset{g; | jj}.

For A € I'*, denote by (1) the number of points with integral coordinated/iiy (1).
Thus (e (1) is the number of solutions of the equati@f{v:lxkﬂk = A in nonnegative
integersx;. The functiom. — (g (1) is called thevector partition functiorassociated ta@.
The numbety (1) is zero if A does not belong t@' (@) N Z®.

Recall the definition of the space of meromorphic functidHs* defined in Section 1.2
and the expansion mag defined in Section 2.1. Let

1
[Tl —efi)

Fp =
This function is in the ringMFA and, almost by definition, the expansioh(Fs) is the
generating function foty !

rH(Fo)= ) 1o(Ve-

rel™

We can thus apply Theorem 2.3 and obtain a residue formuleyf@n. We give this
formula below in a slightly more precise form.

Similarly to the notation introduced earlier, we denote B¢®) the set of linearly
independent-tuples of elements of the sequernkeFor each such basise B(®) of V*,
we denote byC (o) the cone generated by the elementsdaind byG (o, I') the lattice
2im (Zo)* so that

G, IN={peVc|efr =1 forall pec}.

Clearly, 2riI" ¢ G(o,I'), and we may choose a finite, reduced set of elements
RG(o, ') C G(o, I'), which is in one-to-one correspondence with the finite factor group
G(o,I')/2niT.

Given a chamber, we denote by3(®, ¢) the set ofo € B(®) such that ¢ C(o) and
define

G(®,¢, ") = U G(o,I') and RG(®,c, ") = U RG(o,T).
oeB(®,c) oeB(®,c)

Introduce the convex polytope

N
O(@) =) [0,1]8;.

i=1
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Now we are in position to formulate the appropriate version of our Theorem 2.3.

Theorem 3.1. Denote by[c, @] the periodic-polynomial function oR'* given by

A ,2)
Z — (% p <CTI’€S< Brop e Frt >>VO|F*.
peRG(®,c,T) H L1 (1 —elfi-pie(Bia)

Then, for any € (¢ — O(®)) N I'*, we have

Lo (W) = t[c, DI(M). (3.1)

Remark 3.1. We assumed tha® linearly generated’*, hence ifc is a big chamber
contained inC (@), then the set — (&) containsc. This means that the formula (3.1) is
in particular true fon € ¢ N I'*. The set™!' — (J(®) remains equal to"!! and does not
touch the boundary of (®).

Proof. The set being open, the set-[1(®) coincide withc —(2)°. The sum appearing
in the theorem is a restricted version of the sum in (2.2) definfiig, I"]. Note that the
set of poles S&p, I') appearing in that definition specializes to theLngtEB(@ G(o,I)
in our case.
Thusin order to deduce the statement of the theorem from Theorem 2.3, we only need to
check that ifp € V¢ is such that/ (¢, Trese*+? Fp (p — 2)))vol,.. dOes not vanish, thep
is necessarily irG (@, ¢, I'). Indeed, by Lemma 1.3, if Trés* ) Fo (p — z)) # 0, then the
setA(p) ={B € @ | (B, p) € 2niZ} has to sparV*. The functionz — €% Fg (p — z) is
inthe spacée\A(A(p)). Its total residue can be written as a sum of functignse S 4(a(p))
with o € B(A(p)). Now if

J(c, TreS(e“’Z)Fcp (p— Z))>V0|r* 70,

then there exists a basis € B(A(p)) such thatc € C(o). This implies thatp is in
GD,¢, ). O

Remark 3.2. To compute the residue formula of Theorem 3.1 fgri), a precise
determination of the s&RG (@, ¢, I') is not necessary. We can indeed sum over any bigger
set, the extra terms contributing 0 to the sum. For example, we can sum over a set of
representatives of the finite groupaf th roots of unity of the torus’c /2ix I", whereng

is such thatig I'* C Zo for anyo € B(®). In particular, if the systen® is unimodular,

then our set op’s reduces to a single poipt= 0. In this case, we obtain that the vector
partition functiorug (1) is given by the polynomial

<c Tres( )> .
1—1 1(1 e (Bi-)) vol -«

on each sectar — (D)) N T*.
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Let us comment on the novel aspects of Theorem 3.1. GlvenC(®) N I'*, the
functionk — (¢ (kA), k=0,1,2,..., counts the number of integral points in the dilated
polytopekIlg (A) of the rational polytopdle (A). Clearly, the ray{kA} remains in the
closure of a chamber of (@), andk — (¢ (kA) is a periodic polynomial function of
k called the Ehrhart periodic-polynomial [11] of the rational polytafe (A). When
V is one-dimensional, this case corresponds to enumeration of lattice points in rational
simplices and is the cornerstone of Ehrhart's work (see [12], and references there).
The vector partition function in this case is called the restricted partition function. Our
formula of Theorem 3.1 for the restricted partition function clearly coincides with results
summarized in Comtet [9, Théoréme B, page 122], since we use the same method of
generating functions and partial fraction decompositions, in a multivariate setting.

Theorem 3.1 gives an explicit residue formula for the number of integral points in the
polytopells (1), wheni now varies in the con€'(®). If ¢ is a big chamber contained in
C(®), this formula is periodic-polynomial on the “neighborhoad™ CI(®) of ¢. This is
somewhat surprising, as the combinatorial nature of the polyfgpé.) changes, when
crossing walls of the big chambers. Thus these different periodic-polynomial functions
for the vector partition function on different sectors coincide for neighboring chambers
in a strip containing their common boundary. Precisely, for two chamheasd ¢, the
periodic-polynomial functiond @, c1] and:[®, c2] are equal on the sét* N (c; — (D)) N
(c2 — O()). This implies some divisibility properties of the functigd, c¢1] — ([P, c2]
on adjacent chambers. We give some illustrative examples for these properfigsdafin
Appendix A.

The relation between the number of integral points and the volume of the polytope
Iy (1) has been the subject of several investigations (see, e.g., [5,7,8,10,13,18]), starting
with the fascinating results of Khovanskii and Pukhlikov [15].

Recall that in Baldoni and Vergne [2, Theorem 9], we discussed the Jeffrey—Kirwan
residue formula for the volume of the polytopks (a). Let ¢ be a big chamber contained
in C(®). Denote by[®, ¢, vol] the polynomial function

e(dsZ>
v[®, ¢, vol](a) = J<c,Tre<7>> .
H,NZ1<,3:', 2)/ Ivol

The volume of the polytopdiy(a) is given by a locally polynomial formula im.
Explicitly, for a varying in the closure of the big chamber

volumelTy)(a) = v[P, ¢, vol](a). (3.2)

The residue formula of Theorem 3.1 fo# (1) on the closure of the chambemay be
immediately deduced from the results of Brion and Vergne [5] or Cappell and Shaneson
[8] by applying Todd operators to the volume function given by the residue formula above
(3.2). It is satisfying, however, to obtain “explicit” and very similar formulae for volumes
of polytopes and for the number of integral points in polytopes by residue methods, in a
parallel way. It is puzzling to see that the formula for the number of points holds in a larger
set than we would guess from its continuous analogue, the volume function.
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3.2. Minkowski sum of rational convex polytopes and families of partition polytopes

In this section, we briefly describe how to realize any rational convex polytope as a
partition polytopelly (a).

Recall some standard conventions. Faces of a polyibpédimensiorr may have any
codimension from O te. A face of codimension 1 is calledfacet A face of dimension
0 is avertex a face of dimension 1 is aedge The polytopelT is said to be simple if
each vertex of is the source of exactly edges. Given a rational polytopg in a vector
space endowed with a lattie@ of full rank, a facef of IT is calledreticular if the affine
space spanned by contains a point o®b. In particular, a vertex is reticular if and only if
it belongs to®. A rational polytopdT is integralif all its vertices belong to the lattic®.

Let @ be again a sequence f linear forms[f, ..., By] generatingV* and lying
on the same side of a hyperplane. kdn the interior ofC(®), the polytopells (a) has
dimensionN — n.

We keep our earlier notations. For a basis B(®) of V*, we denote by, the map
from V* toRY defined by, (Bj) =wj forall ; € o. Clearly,p o v, is the identity onv*.

If B is notingo, the vectonwy — v, (Br) is in the subspacp—l(O).

Recall

Proposition 3.2[5]. Let¢ be a big chamber contained ©(®).

e For anya € ¢, the convex polytopEg¢ (a) is simple, with vertices, (a), o € B(®P, ¢).
These vertices are all distinct, and th& — r) edges ofl14 (a) with source at the
vertexv, (a) are the vectorsvy — vy (Br), wherepy ¢ o.

e If a € ¢, then the vertices of the convex polytafig (a) are the pointsv, (a), o €
B(®, ¢). Some of these points may coincide.

Let A € C(®) N Z®. Consider the functiot — ¢ (kA), Wherek is a nonnegative
integer. Now we will see that our formula (3.1) for the Ehrhart periodic-polynomial
E[M](k) = 1o (k)) is actually polynomial ink if all the vertices oflTg (1) have integral
coordinates. More generally, we will show that our formula is compatible with some of the
results of [11,17,19] on the periodic-polynomial behavioFph] (k).

Lemma 3.3. If M is an integer such thatMIIs()) is integral, then E[A](k) =
Zzle g"Pg (k), where¢ varies overMth roots of unity andP; is a polynomial.

Proof. After Theorem 3.1, we have

Enky= Y e P pg, i),
pERG(®,¢,T)

where

gk(r.z)
Py A1 (k) = J<c, Tres( )> .
@) MV, — etbire6a) ) |y,
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We show that all exponentials&-7) areMth roots of unity. For eacp € RG(®, ¢, I'),
there exists € B(®, ¢) such thatp is a solution of the equation&’e?) = 1 forall g; € o.
Sincec C C(o), we can writex = Zﬁ,ea x; Bi, where eachy; is a rational nonnegative
number. The point, (1) = Zﬂ,@ x;w; is a vertex of the polytopé&ls (1). If Mv, (L) is
integral, then all numberafx; are integers, so we havé/é-?) = 1 asp is a solution of
the equations'&-?) =1 forall g co. O

The notion of big chambers i6'(®) is closely related to the Minkowski sum of the
corresponding partition polytopes as follows.

Lemma3.4. Leta, b € C(®). The Minkowski sumiy (a) + I1g (b) of the polytopesiy (a)
and I1 (b) is equal to the polytopély (a + b) if and only if there exists a big chamber
contained inC(¢) such thatz, b € ¢.

Proof. Clearly the polytopdiy (a) + I1p (b) is a subset of the polytop@g (a + b).

Let ¢ be a chamber contained i6(®) such thata,b € ¢. Hencea + b is in ¢.
Let us prove thatllg(a + b) is equal tolly (a) + 1y (b). By the description of the
vertices given in Proposition 3.2, any elemenf the polytopelly (¢ + b) can be
written asZoeB(Qc) ts Ve (a + b), with > "1, = 1. Then we may writex = X1 + X2, with
X1 = Zaeg(q)’c) 1, Vs (a) andxy = Zoeg(m) t, Vs (b), With X1 € ITe (a) andXz € I1g (b).

Conversely, letu, b € C(®) such thatllg (a) + I1g (b) = I1p (a + b). Consider then
a chamber contained inC (&) such thatz + b € ¢. Let o such that ¢ C(o). The point
vy (a+Db), being inllp (a +b), can be written as; + X2 with X1 € Ty (a) andxz € g (b).
Since those coordinatesof (a + b) corresponding t@; ¢ o are equal to 0, we see that the
kth coordinate okj, X vanish wherg, ¢ o. This implies thak) = v, (@) andxz = vy (b).
Thusa, b € (", cp(s. C(0) =¢. The lemmais proved. O

When (A1, A2, ..., Ay) are elements of N I'*, andk; are nonnegative integers, the
polytopelly (k1h1+kor2+- - - +kshs) is arational convex polytope which is the weighted
Minkowski sumk1Te (A1) + -+ + kgI1p (Ag). AS (kir1 + --- + ksAg) Varies inc, the
functiontp (k121 + - - + kgAy) is a periodic-polynomial function of;. This extension
of Ehrhart’s result is well-known [16]. As in Lemma 3.3, if the polytogésg (Ax) have
integral vertices, then the functic@y, k2, ..., ks) > te (k1A1 + kodo + -+ + kghy) IS @
polynomial function ofj, k2, .. ., k;.

Now recall briefly (cf. [5]) how any convex polytop@ can be embedded in a family
Iy (a) of partition polytopes.

Let E be a real vector space of dimensiarLet IT C E be a convex polytope. We can
always choos&V vectorsu; € E* and a sequence of real numbbrs: (h1, ho, ..., hx) €
R¥ such thatlT = I7(h), where

)y ={veE|(u v)+h >0 1<k <N}
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As IT is compact, the vectorg, generateE™*. We do not necessarily assume here that
this set of inequalities is minimal. Consider the miapR" — E* defined by

(X1, X2, ..., XN) P> X1u1 + xoup + -+ xyuy,

and letV be then = (N — r)-dimensional vector spadé = U ~1(0). The restrictiongs;
of the linear coordinates to the vector spac¥ form a system® of elements oV*. The
elementss; of the systemp satisfy the equatioku1, v)81 + - - + (un, v)Bnx = 0 for all
veE.

Lemma 3.5. The polytopdT (h) is isomorphic to the partition polytop8e (h181 + - - - +
hnBN)-

Proof. A point of the polytopellgy (h181 + --- + hyBy) is a point(ly, I, ..., Iy) € Ri’
suchthat 1+ lpB2+ - -+ InBn = h1B1+ - - + hyBn. This implies that there exists a
uniquev € E suchthat; —h; = (u;, v), so thatiuy, v) +hy =l > 0andvisinII(h). O

Assume now thafs is endowed with a lattic& and that the polytopéI is rational.
Then there exist vectotg, € ®* and integers;, such that

nhy={veE|(uv)+h >0 1<k< N}

We can always assume, adding superfluous elemegnt® ©* if necessary, that
(ur,v) € Z if and only if v € ®*. Then the set of integral points in the polytope
Mp(h1B1+ -+ + hnBw) is in bijection with the set of integral points i (h).

More generally, letl1y, I, ..., IT; be a set of rational convex polytopes #h The
Minkowski sumz 1Ty + 12112 + - - - + t,I1;, Where eachy is a nonnegative real number,
can be described as a gete E | (ux, v) + t1ht + t2h? + - - + t;hi > 0}. As before, we
consider the map/ : RY — E* defined by

(x1,Xx2,...,XN) > X1u1 + xoup + - - -+ XNUpN.

Let V = U~1(0) and® the system of linear forms obtained by the restrictions of the linear
coordinates. Then the points = Zh}'{ﬁk belong to the closure of a chamber contained in
C (@), and the familyr1 Ty + 1211 + - - - + t,I1; is @ member of the family of partitions
polytopesiie (a), wherea = 1111 + - - - + ty As Varies in the closure of a chamber contained
in C(P).

Thus the results of this article give, in particular, “explicit periodic-polynomial
formulae” for mixed enumerators as functions of the inequalities defining the family of
Minkowski polytopes1 /711 + - - - + t, 1.
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3.3. Sums of exponentials over partition polytopes

Consider now a point = (y1, y2, ..., yn) in CV and the exponential functiorVe! =
e ic1% overRYN . We consider the function

S, d1(1) = Z g8,

g€y ()NZN

Let

F@,y(Z) =

Hi'vzl(l —eV e</3j,2))'
Almost by definition, the expansion’ (Fg y) is the generating function fa¥[e”, @1:

rt(Foy)= Y Sl @](h)e".

rel™

Leto € B(®). We introduce the set
G(o,y, N = {p e Ve | alBjP) — e for all Bj € cr}.

Clearly, if y € 27il" and p € G(o,y,I'), thenp + y € G(o,y,I') and we may
choose a finite, reduced set of elemeRG(o,y, I') C G(o,y, I'), which is in one-to-
one correspondence with the finite cosegb,y, I')/2xi .

For a chamber, we defineRG (@, Y, ¢, I') to be the union of the se®G (o, y, I') over
all basesr € B(®) such that Cc C(0).

Applying our Theorem 2.3, we obtain:

Theorem 3.6. Let ¢ be a big chamber of a sequende= [, ..., Bx], and lety e CV.
Denote by[c, y, @] the exponential-polynomial function dfi* equal to

i p) eOhZ)
E e P Jle, Tre & .
I—L.=l(1_ elbi.p)gyig—(Fi.z)) Vol

PERG(D.Y,c,T)

Then, for anyx € (¢ — O(®)) N I'*, the function\ — S[€¥, ®](A) is given by the
exponential-polynomial formula

S[¢, @12 = [c,y, PI(V).

Let us compare this expression to the “explicit” formula of [3,4] for sums of
exponentials over the integral points of a convex polytope for sufficiently geyeric

Leto € B(®, ¢) and assume thatis sufficiently generic in the sense that for any basis
o € B(®,¢) and for everyp € G(o,y, I'), we have &elfi-P) =1 for all 8; € o, while
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ek elfer) £ 1 for all By ¢ o. Then, forp € G(o,y, I'), the functionz > Fe y(p — 2) is
equal to

1

— 1
Hﬂjea(l € ﬁjz)ﬂk%

1
(1 — evelbeP)e=(Br.2))’

and we obtain by Lemma 1.3

1 1
(1 — eveetBrp)) Hﬁ,@ ,3].'

Trege™ P Fpy(p—2) = *P ]
k¢o

Fory generic, all the subsets(o,y, I') are disjoint ass varies inB(®). Thus for
genericy we obtain a formula[e¥, #]()) as a linear combination of the pure exponential
functionsi — e~ *7) associated to the elements RG(®,y, ¢, I').

Theorem 3.7. Letc be a chamber angl a generic element &V . Let E[c, y, ®](1) be the
function ofi defined by

1

1 _
Z Vol (o) Z e 7 1_[ (1 — exelber)y’

oeB(®,¢) PERG(0y,T) Brgo
Then, fori € (¢ — O(®)) N I'*, we have the “explicit” formula
S[e', 1(») = Elc,y, ]1(A).

Remark 3.3. On the sett N I'*, it is possible to deduce this formula from the Baum—
Fulton—MacPherson equivariant Riemann—Roch formula applied to the (possibly singular)
toric variety and its holomorphic line bundle associated with the polytdg&x), at

least when this polytope is integral. This dictionary between toric varieties and rational
polytopes is used in several proofs of formulae for sums of functions over integral points
of convex integral polytopes [7,13,18].

Let us rewrite the formula of Theorem 3.7 in geometric terms in the case whisn
a unimodular system andis in an open chamberof C(®). First we note that for any
o € B(®,¢) each seiRG (o, Y, I') consists of just one element and the numbey-v@t)
is equal to 1. Thus the formula fd#[c, y, @] is simply indexed by the s& (&, ¢), which
also indexes the vertices of the polytafe (1). Leto € B(®, ¢) andp be an element such
that €#-7) = e forall i e 0. If A=)4 ., xifi, thene P = @2bico Vi — gl¥.va (1)
is the value of the exponential functiod at the vertexv, (A) of the polytopells (1).
Similarly, the edges:y = wy — s, () passing throughy, (1) are such that %) =
e’xelfr-P) Thus, for the simple polytop& s (1) associated to an unimodular syst@m
we obtain

e(y,v>

ey
e — )
Eelly (OnZY v [y @ =)
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wherev varies over the vertices of the polytopg (1) anda; (v) varies over the primitive
edges of the polytope with source at the vertefone may recognize here the localization
formula for the equivariant index applied to the smooth toric variety and its holomorphic
line bundle associated with the polytofi (1.).

Inthe general case, Theorem 3.7 implies formula (3.4.1) of Brion and Vergne [5]. Again,
our results here imply that this formula holds on a larger setspbn which the elements
vy (1) are not necessarily vertices of the polytapeg (A).

3.4. Summing the values of an exponential-polynomial function over partition polytopes

We denoteS[ f, @](A) = ZEG%(A)OZN f (&) for an exponential-polynomial functiofi
onRY. Recall the definition of the polynomial functions

dmm=aéﬁu+nu+am@+w—nx

(wherec(x, 1) = 1) which form a basis of polynomial functions &as# runs through the
positive integers. Let agaiil C V be a lattice in am-dimensional vector space, adgdbe

a sequencess, ..., Bn] of linear forms fromI™* lying on the same side of an hyperplane
and generating’*. Also, fixy = (y1, y2, ..., yv) € CV and leth = (h1, hp, ..., hy) be a
list of positive integers. Consider the exponential-polynomial functioR8rgiven by

N
fry ) =YX e, hi).
i=1
The generating function for the functidfj fi y, @] = dend)m fhy(&) is the function

1
1—1?/:1(1 — evielbisayhi )

Fqﬁ,y,h(Z) =

Note that the sefl(Fgp y n) is the setd(®,h) = Z,.N:l[o, 1]h; B;. It always contains
().
Theorem 2.3 states:

Theorem 3.8. Let ¢ be a chambery € CV and h € NV. Let P[c,y, h, ®] be the
exponential-polynomial function afi* equal to

—(A ) eOhZ)
E e WP jle, Tre ¥ .
Hi:l(l — elbi.P eyig—(Bi2)yhi VOl

PERG(D.y,c.I")

Then, for anyx € (¢ — O(@, h)) N I'*, the function. — S[ fhy, @1(1) is given by the
exponential-polynomial formula

Sliny, @1="Ple,y, h, 21(2).
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In particular, if ¢ is a chamber contained i@ (®), then for any exponential-polynomial
function f € EP(RY), the function > S[ £, @](%) is given by an exponential-polynomial
functionP[c, f, @] for 1 € (¢ — O(P)) N I'*. The sefc — J(®)) containsc.
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Appendix A. Examples

Let V be a two-dimensional real vector space with bésise,); then the dual vector
spaceV* has basis], 5. Sometimes we denote a vectofe] + aze; in V* simply
by (a1, a); similarly (z1, z2) stands forzie1 + z2¢2 in V. We take the latticd™ to be
Ze1 @ Ze.

A.l. The arrangement,
Let
D= {ei, e, ey +e;}.

The spaceR 4(¢) consists of rational functionf(z1, z2) on V¢ with denominator a product
of powers of the linear formsy, z2, z1 + z2. The systen® is unimodular.

The closed con€'(®) generated byp is the first quadraniz; > 0, az > 0}. There are
three big chambers for the systen the exterior of the con€ (@) denoted byc"!, the
chamber! = {a» > 0, a1 > az} and the chambe? = {a1 > 0, a2 > a1}.

The linear forms/ (¢1, da) and J (c2, da) are easily computed. For a rational function
f(z1, z2) in the spaceR 4(¢), We have

J{(c1, Tresfvol« = ZRengeg(f(Zl, z2) dz1 dz2),
(2=V11=

Cy

G

€

Cnull

Fig. 4. The chambers.
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Fig. 5. The polytopél(®).

6

Fig. 6. The polyhedror§y ,.
while
J(c2, Tresf vol . = RegReg(f(Zl, 22) dz1 dz2).
1=V 2=

We denote byp, the system of 8 vectors where each linear foraj, e3, e] + ¢ has
multiplicity n.

The polytopeJ(®) is the convex hull of the six points @y, 3, 27 + €3, 2e5 + 7,
2e} + 2e5. The polytope(®,) is the dilated convex polytope 1(®).

The setS1, = ¢1 — 0(®,) is the interior of the polyhedron determined by the
inequalities

ar» > —2n, ai = —2n, ai—az = —n.
The partition functiong, (1) is given by a polynomial formulgcs, @,1(1) whena varies
in the setSy , N Z2.
The setSy, = ¢ — O(®,) is the interior of the polyhedron determined by the
inequalities

ai > —2n, az > —2n, az —ai = —n.
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e -6

Fig. 7. The polyhedrorsy , .

The partition functiong, (1) is given by a polynomial functioricp, @,1(1) whena varies
in the setS, , N Z2.
We see that the sef"' 0§51, contains the2n — 1) half-linesp; + te}, wheret >0
and
1—n—jer—jes, ifl
T P (a2
(1—2n)ej — jes, if n

The function[c, @, ] vanishes on all the integral points containedt' N S1.n,asthe
partition functionie, is identically 0 onc™! . The set of integral points in these half-lines
is Zariski dense in the affine line + j = 0, so that the polynomial functiotficy, @,,] is
divisible by(az2+1)(a2+2) - - - (a2+ (2n — 1)). Similarly the polynomial functionc, @,,]
is divisible by (a1 + 1)(a1 + 2) - - - (a1 + (2n — 1)). These divisibility properties are also
clear from the Ehrhart reciprocity formula.

_

-6

Fig. 8. The polyhedroy ,, N S ;.
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The setS1, N S2,, on which both formulae[c1, ®,] and:[c2, ®,] agree contains the
half linesgx + t (e + e3) with ¢ > 0, where

(1—2n— je}+ (1~ 2n)e5, f1—n<j<0,
q"_{(l—zn)e§+(1—2n+j)e§, fo<j<n—1

By the same density argument, we see that the polynomial fungtior®, ] — ¢[c2, @, ] IS
divisible by

(ar—az—(n—1)--(a1—az— V(@ —ax) (@1 —az+1) - (a1 —az+ (n - 1)).

Below we give the formulas for the cases= 1, 2, 3; the functionsi[c1, ®,] and
t[c2, @,] can easily be computed from our formula, with some help from Maple. One can
easily see that the appropriate functions vanish on the lines indicated above. To simplify
our formulas we use binomial coefficients. Note t(fé,:t’") where we consider to be the
variable, vanishes at=—-m, ...,k —m — 1.

Case n=1.
ter, @1l = (a2 + 1), ez, @1l = (a1 +1).
We also have
ter, @1l — t[e2, P2] = (a2 — a1),

which vanishes on the lin® = a;.

2eo

Fig. 9. The chambers.
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Case n=2.
1 +3 1 +3
der, @2l == (27 ) @ar—az+2),  ilea dal== (T ) @a2—a1+2.
2 3 2 3
Again, we see that the function
1/a1—ax+1
(fer, D21 — dlc2, ¢z]=§< ' 32 )(a1+a2+4)

vanishes on the linag, —a» = -1, 0, 1.
The example ofi = 3 is described in the introduction.
A.2. A nonunimodular example
Keeping the same vector space and lattice, we now consider a nonunimodular system
® = {ef, e3,e1 + 2e;}.

The closed con€ (@) generated byp is still the first quadranfa; > 0, az > 0}.

Again, there are three open chambers for the sysbefhe exterior of the con€ ()
denoted by the chambet! = {ay > 0, 2a1 > a»} and the chambef = {a1 > 0, a» >
2a1}.

The setRG (P, ¢1, I') consists of the elemen{g0, 0), (0, im)}. The setRG(®, ¢2, I')
is reduced to the elemef(0, 0)}.

The polytope (@) is the convex hull of the six points €5, e3, 2e3 + 2e3, 3¢5 + 7,
2e} + 3e5.

We consider the system,, where each of the three vecta§ e5, ande] + 2¢5 has
multiplicity n.

0 1 2

Fig. 10. The polytop&l(®).
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Fig. 11. The polyhedroy ;.

The setS1, = ¢1 — 0(®,) is the interior of the polyhedron determined by the
inequalities

az > —3n, ai = —2n, 2a1 —az > —2n.

The partition functiong, (1) is given by a periodic-polynomial formulgs, @, 1(A) when
A varies in the sefS1, N 72. By our results, the periodic-polynomidky, @,] is of the
form P(a1, az) + expiraz) Q(a1, az) where P (a1, a2) and Q(a1, a2) are polynomials.
We denote by{c1, @,, everi(a1, az) the polynomial functiorP (a1, a2) + Q (a1, az) onR?,
which is equal ta[c1, @, ](a1, a2) whenay is an even integer, and b1, @, odd| (a1, a)
the polynomial functionP (a1, az) — Q(a1, a2) on R2, which is equal ta[cy, @,](a1, az)
whena is an odd integer.

The setSy, = ¢ — O(®,) is the interior of the polyhedron determined by the
inequalities

ai > —2n, az > —3n, 2a1 — az < n.

The partition functiong, (1) is given by a polynomial formulgcz, ®,1(1) whena varies
in the setS, , N Z2.

For the same reasons as before, the periodic-polynafitigl®,] vanishes on the
linesax = —-1,-2,...,—(3n — 1), while the polynomiak[c2, ®,] vanishes on the lines
ap = -1,-2,...,—(2n — 1); the function:[c1, ®,] — t[c2, ®,] vanishes on the lines
(2ay —ap +k) =0 for —(n — 1) <k < (2n — 1). Note that ifk is even, then ther
coordinate of an integral point on the litiea; — a2 + k) = 0 is even, while ifk is odd,
then this coordinate is odd.
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n=3n=2n=1
-6
F2
—6 0 .
7 2
— r—6

Fig. 12. The polyhedrosy ;.

n=2

n=3

—6

—

Fig. 13. The polyhedrosy , N S ;.

We verify these properties far=1, 2, 3.

Case n=1.

eirmz

a 3

’

339
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hence
1 1
t[c1,even = E(az +2) and t[c1,0dd = E(az +1).

Thus the function[c1, ®@1] vanishes on the lineg = —1, a» = —2 as stated.
In the other chamber, we havie,, @1] = (a1 + 1). This function vanishes on the line
a1 =-1.Then

1
L[C]_, ¢11 eveﬂ - [[CZ, ¢l] = E(aZ - 2al)1
which vanishes when@ — a2 = 0. Also
1
t[eg, @1, 0dd — ([cq, P1] = _E(zal —ax+1),

which vanishes whend — a2 + 1 =0.

Case n=2. Here
1
tle1, 2, even = o (az +2)(az + 4) (4araz — a4+ 12a1 + 2a + 12)
and
1
t[c1, @2, 0dd| = 9—6(az + 1)(a2 + 3)(az2 + 5)(4ay — az + 5).
Thus the periodic-polynomial functiafx, ®2] vanishes on all the linegp = —1, —2, —3,
—4,-5.
In the other chamber

1
tleo, P2] = —é(fll +D(a1+2)(a1+3)(a1—azx—1).

Thus the function[cy, ®2] vanishes on all the lineg = —1, —2, —3.
Now we have the polynomial formulas

1
te1, @2, ever] — e, P2l = g (2a1 — a2) (a1 —az +2) (4a? — a3 + 16a1 — 6ap + 4)
and

1
t[e1, @2, 0dd — ([co, 2] = 9—6(201 —ax—1)(2a1 —ax+1)
X (2a1 —az + 3)(2ay1+azx +7),

thus the function[cz, @2] —([c1, P2] vanishes on all the linesi2—a> = -3, -2, —-1,0, 1.
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Case n = 3. Here we have

1
tc1, P3, evVEN = ﬁo(az + 2)(a2+ 4 (az + 6) (a2 + 8)

x (28afaz — 14a1a3 + 2a3 + 70a? + 70ayap — 1943
+ 21041 + 44az + 140)

and

t[c1, @3, 0dd =

1
53760(az + D(a2+ 3)(az2+5)(az+7)

x (28a%a — 14ara3 + 2a3 + 1822 + 1darap — 1145
+ 63Qu1 — 52a + 481),

thus the function[cy, @3] vanishes fou, = -1, -2, -3, ..., —8.
In the other chamber

1
e, P3] = m(al +D(ar1+2)(ar+3)(ar+4(ar1+5)

x (82 — 14ayap + Tag — 15a1 + 21a + 14),

thus the function[c,, @3] vanishes fou; = -1, —2, —3, —4, —5.
Now the difference[c1, @3, ever] — ([c2, ®3] is given by

1
—ﬁo(Zal —ap—2)(2a1 — az2)(2a1 — az + 2)(2a1 — ax + 4)

341

x (1643 + 4afap — 2a1a3 — 2a3 + 178% + 18a1ap — 2% + 59811 — 68a; + 484),

and[c1, @3, odd] — t[c2, 3] by

1
T (241 —ap — 1)(2a1 — az + 1) (2a1 — 21 —
53760(201 az — 1)(2a1 — az +1)(2a1 — a2 + 3)(2a1 — a2 + 5)

x (1643 + 4afap — 2a1a5 — 2a3 + 146a% — 6ayap — 37a3 + 29811 — 212, — 217).

Thus the function[c1, @3] — t[c2, @3] vanishes on the lines

2a1 —ap2=-5,-4,-3,-2,-1,0,1,2.
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