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Abstract Increased nitric oxide (NO) production from hypoxic
mammalian neurons increases cerebral blood flow (CBF) but also
glutamatergic excitotoxicity and DNA fragmentation. Anoxia-
tolerant freshwater turtles have evolved NO-independent mecha-
nisms to increase CBF; however, the mechanism(s) of NO regu-
lation are not understood. In turtle cortex, anoxia or NMDAR
blockade depressed NO production by 27 ± 3% and 41 ± 5%,
respectively. NMDAR antagonists also reduced the subsequent
anoxic decrease in NO by 74 ± 6%, suggesting the majority of
the anoxic decrease is due to endogenous suppression of
NMDAR activity. Prevention of NO-mediated damage during
the transition to and from anoxia may be incidental to natural
reductions of NMDAR activity in the anoxic turtle cortex.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Cerebral blood flow (CBF) is generally elevated with hypox-

ia or hypercapnea in human and murine models [1,2]. In-

creased CBF is considered neuroprotective since it allows

greater delivery of glycolytic substrate and rapid removal of

acidic anaerobic end products from sensitive brain regions. Ni-

tric oxide (NO) is a signaling metabolite that plays a critical

role in the regulation of CBF in adult mammalian brain such

that: (1) CBF increases coordinately with increased NO pro-

duction in response to hypoxia and also following reoxygena-

tion; (2) NO scavengers or inhibition of nitric oxide synthases

(NOS) decrease CBF and abolish the hypoxic increase in CBF;

and (3) NO promoters increase CBF in normoxia and during
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hypoxia [3]. In murine models, ischemia induces rapid eleva-

tions in cerebral NO, increases NOS activity and elevates

NOS gene expression, and all of these events contribute to neu-

roprotective increases in CBF [4,5].

Although NO promotes enhanced CBF, there is consider-

able debate as to whether NO production is neurotoxic or neu-

roprotective in ischemic mammalian neurons [6]. For example,

in rat, mouse, gerbil and neonatal piglet brain, NO scavengers

or inhibition of neuronal or inducible NOS provide significant

neuroprotection and prevent DNA fragmentation and release

of apoptotic factors [7–10]. Furthermore, decreased NO for-

mation has been linked to improved behavioral testing perfor-

mance and neuroprotection in gerbils [11]. However, others

have reported that NO donors provide neuroprotection

against global and focal models of ischemia in adult rat brain,

reduce the extent of ischemic infarct damage in neo-natal rat

brain and reduce reactive oxygen species (ROS)-mediated

neurotoxicity [12–15]. These conflicting reports may be due

to the interaction of NO with numerous cellular systems simul-

taneously. For example, NO can act as a free radical scaven-

ger, ameliorating the deleterious effects of reactive oxygen

species [16]; however, NO can also interact with superoxide

to produce peroxynitrate, leading to DNA fragmentation

and cell degradation via apoptotic pathways [17].

In mammals, the neurotoxic effects of NO are primarily

mediated by excessive glutamatergic receptor activity. Ischemic

insults promote elevated glutamate release and over-activation

of N-methyl-DD-aspartate receptors (NMDARs), which is the

primary entry point of Ca2+ during ischemia and whose activa-

tion leads to excitotoxic cell death (ECD) in ischemic mamma-

lian neurons [18]. Neuronal NOS (nNOS) is associated with

the NMDAR scaffold protein – postsynaptic density 95

(PSD-95), and NMDAR activation leads to cytosolic Ca2+

accumulation and stimulation of nNOS-dependent NO pro-

duction [19,20]. NO is a powerful intra- and intercellular sig-

naling molecule and it enhances glutamate release from pre-

synaptic neurons, contributing significantly to the acceleration

of ECD [21,22]. Therefore, although enhanced NO production

promotes CBF and provides neuroprotection during ischemic

insults, the side effects of this mechanism are complex and

may lead to ECD or apoptotic events in afflicted neurons.

Certain facultative anaerobes, including freshwater turtles

(Chrysemys picta bellii and Trachemys scripta elegans), goldfish

(Carassius auratus) and the crucian carp (Carassius carassius)

are remarkably tolerant to anoxic insult and can survive with-

out oxygen for days at warm temperatures and months at

colder temperatures [23]. These organisms rely solely on
blished by Elsevier B.V. All rights reserved.
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glycolytic metabolism during anoxic episodes and are thus

dependent on maintained delivery of glycolytic substrate [24–

26]. Changes in CBF during anoxia and recovery have been

reported in both the red-eared slider and the crucian carp,

but changes in NO production have not been measured in

any facultative anaerobic species. In turtle, CBF increases

from 1.7- to 2.6-fold within the first hour of anoxia before

returning to pre-anoxia levels, presumably due to the onset

of a deeper metabolic depression which limits the need for en-

hanced glycolytic substrate delivery [27,28]. Furthermore, sec-

ondary increases in CBF of up to 80% were observed upon

reoxygenation, which may contribute to the removal of acidic

anaerobic end products. During normoxia, turtle CBF can be

mediated by adenosine or by acetylcholine via the activity of

NO; however during anoxia, adenosine alone affects the anoxic

increase in CBF while inhibition of NO synthesis or an NO do-

nor have no effect on anoxic CBF [28,29]. Similarly, in the an-

oxic crucian carp, CBF is increased by anoxia and this increase

is not prevented by NOS blockade. NO synthesis has an abso-

lute requirement for oxygen, thus the inability of NO drugs to

block the anoxic increase in CBF in these organisms is not sur-

prising.

Although inhibition of NO synthesis during anoxia did not

alter turtle CBF, NOS inhibition during normoxia led to a

complete cessation of CBF that recovered to control flow rates

within 15–20 min. The authors concluded that turtles possess a

CBF tonus that is NO-mediated similar to the constant

vasodilatory tonus observed in mammals [30], but that upon

suppression of this tonus, secondary CBF-regulating mecha-

nisms take over. This secondary mechanism may be responsi-

ble for anoxic increases in CBF, which are not susceptible to

NO-mediated signaling. Indeed, since these facultative anaer-

obes survive for months in a zero-oxygen environment, NO-

mediated regulation of CBF would be impossible and thus

the development of a non NO-based mechanism is an evolu-

tionary necessity. However, in their natural environment tur-

tles undergo frequent prolonged periods of intermittent

hypoxia while foraging or diving during which surges in NO

production may occur.

As discussed above, increased CBF is neuroprotective, but

there is debate as to whether increases in NO production are

neuroprotective or neurotoxic during anoxic insult and follow-

ing reoxygenation in mammals. Thus, the mechanism of CBF

regulation in the anoxic turtle is of interest because CBF is

greatly elevated during anoxia and following reoxygenation

independently of NO production, and because CBF becomes

effectively immune to NO signaling during anoxia. It is cur-

rently not known how the response of turtle brain to NO is

down-regulated during the transition to anoxia and this re-

sponse could be due to changes in the production of NO, either

via direct down-regulation of NOS or as a result of decreased

NMDAR-mediated Ca2+ influx during anoxia in the turtle cor-

tex. The aims of this study were to (1) determine the changes in

NO production from turtle cortex during normoxia and during

a normoxic to anoxic transition followed by reoxygenation

recovery. Furthermore, (2) we examined the ability of the

NOS inhibitor NG-nitro-LL-arginine methyl ester (LL-NAME:

0.5–5.0 mM) to decrease NO production during normoxia

[31]. Finally, (3) we examined the role of NMDAR activity

in NO production by blocking NMDARs with DLDL-2-amino-

5-phosphonopentanoic acid (APV: 60 lM) during normoxia

and during normoxic to anoxic transitions.
2. Materials and methods

This study conforms to the University of Toronto Animal Care com-
mittee Guide to the Care and Use of Experimental Animals, Volume 2
as determined by the Canadian Council on Animal Care regarding rel-
evant guidelines for the care of experimental animals. Adult western
painted turtles (C. picta bellii) were acquired from Niles Biological
Inc. (Sacramento, CA, USA). Turtles were housed together in an aqua-
tic facility equipped with heat lamps, basking platforms and a flow-
through dechlorinated pond maintained at 17 �C. Basic methods of
turtle cortical sheet isolation, aCSF preparation and anoxic experimen-
tal setup are published elsewhere [32]. Cellular NO was measured using
the fluorophore 4-amino-5-methylamino-2 0,7 0-difluorofluorescein
(DAF-FM: Molecular Probes, Eugene, OR, USA). Briefly, freshly dis-
sected cortical sheets were incubated in the dark at 4 �C in 5 lM DAF-
FM for two consecutive 1-h loading periods. Sheets were then placed
in a flow-through recording chamber and rinsed in dye-free aCSF at
22 �C for at least 20 min before the start of an experiment. The record-
ing chamber was equipped with a custom cuff placed around the objec-
tive to provide constant N2 gas distribution across the surface of the
bath during anoxic exposure. DAF-FM was excited for 0.1 s
(488 nm) using a DeltaRam X high-speed random access monochro-
mator and a LPS220B light source (PTI, NJ, USA). Fluorescent emis-
sions above 510 nm were isolated using an Olympus DM510 dichroic
mirror and fluorescent measurements were acquired (515–530 nm) at
10-s intervals to limit photo bleaching using an Olympus BX51W1
microscope and a QImaging Rolera MGi EMCCD camera (Roper Sci-
entific Inc., IL, USA). Baseline fluorescence was recorded for 10–
20 min and then the tissue was exposed to treatment aCSF for up to
80 min. The tissue was then reperfused with control aCSF. For each
experiment, 25 neurons were chosen at random and the average change
in fluorescence in these neurons 3 min after treatment onset was used
for statistical comparison. Data were analyzed using EasyRatioPro
software (PTI). Results were analyzed using a repeated measures
two-way ANOVA with a Holm–Sidak multiple comparisons test. Sig-
nificance was determined at P < 0.05 unless otherwise indicated, and
all data are expressed as mean ± S.E.M. (standard error of mean).
3. Results and discussion

For up to 2 h of normoxic recording DAF-FM fluorescence

decreased steadily at a low rate due to photo bleaching or dye

leakage but the rate of DAF-FM fluorescence decrease was

unchanging (n = 4, Fig. 1A and B). The specificity of the dye

for NO was confirmed by perfusion of either sodium nitro-

prusside (SNP: 0.1–10.0 mM) or LL-NAME onto normoxic cor-

tical sheets. Perfusion of the general NOS inhibitor LL-NAME

resulted in slow and small reduction in NO production of

5.8 ± 1.1% (n = 5, Fig. 1A and C), consistent with a low rate

of endogenous NOS activity in the turtle cortex. The NO-do-

nor SNP induced rapid and repeatable increases in DAF-FM

fluorescence of 22.6 ± 3.7% (n = 4, Fig. 1A and D). These re-

sponses to SNP or LL-NAME are consistent with similar con-

trol experiments in mammalian brain [33].

In cortical sheets exposed to anoxic aCSF, NO production

rapidly decreased 27.1 ± 3.1% with decreasing oxygen and

recovered to baseline levels immediately upon reoxygenation

(n = 5, Fig. 1A and E). These changes were rapid and repeat-

able in contrast to NO changes in ischemic mammalian brain

where low oxygen induces rapid increases in NO, likely due

to increases in glutamatergic-connected nNOS activity associ-

ated with excitotoxic Ca2+ entry and eventual apoptotic cell

death [34]. Since inhibition of inducible and neuronal NOS is

generally neuroprotective in mammals, we hypothesized that

NOS activity is naturally depressed in the anoxia-tolerant tur-

tle brain. To examine this hypothesis, we pre-incubated corti-

cal sheets with anoxic aCSF for 30 min and then treated them



Fig. 2. Anoxic changes in NO production and NOS activity in cortical
sheets. (A) Normalized changes in DAF-FM fluorescence from cortical
sheets undergoing NMDAR blockade with APV (60 lM) or a
normoxic to anoxic transitions in the presence of APV. Data are
expressed as means ± S.E.M. Asterisks indicate significant changes
from control baseline following treatment onset. Dagger indicates data
significantly different from anoxic control (see Fig. 1, P < 0.05). (B)
Raw data trace of DAF-FM fluorescence changes from a cortical sheet
undergoing treatments as specified by the solid bars under the
individual traces. Each trace represents the average of >25 neurons
from a single cortical sheet.

Fig. 1. NO production and NOS activity decrease with anoxia in
cortical sheets. (A) Normalized changes in normoxic DAF-FM
fluorescence from cortical sheets undergoing a normoxic to anoxic
transition or treatment with the general NOS inhibitor LL-NAME (0.5–
5 mM) or the NO donor SNP (0.1–10 mM). Data are expressed as
means ± S.E.M. Asterisks indicate significant changes from control
baseline following treatment onset. Dagger indicates significant differ-
ence (P < 0.05). (B–F) Raw data traces of DAF-FM fluorescence
changes from cortical sheets undergoing treatments as specified by the
solid bars under the individual traces. Each trace represents the
average of >25 neurons from a single cortical sheet.
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simultaneously with LL-NAME and anoxia. In these experi-

ments, no significant change in NO fluorescence was observed

after LL-NAME perfusion, suggesting NOS activity is depressed

in the anoxic turtle cortex (n = 4, Fig. 1A and F).

The decrease in NO formation during the transition to anox-

ia may be related to glutamatergic receptor activity in the an-

oxic turtle cortex. In mammals, the toxic effects of NO are

mediated by NMDARs, which induce NO formation in a man-

ner dependent on NMDAR-mediated Ca2+-influx. Further-

more, the surge of NO observed in ischemic murine brain is

abolished by glutamatergic receptor antagonists [35,36]. The

turtle brain expresses a number of adaptations that limit exci-

totoxic glutamatergic Ca2+ entry during anoxia, including

reduced glutamate release, depressed NMDAR and a-amino-
3-hydroxyl-5-methyl-4-acid receptor currents and removal of

NMDARs from the neuronal membrane with prolonged anox-

ia [37–39]. As a result of these mechanisms, toxic accumula-

tions of cytosolic Ca2+ and ECD are avoided during

prolonged anoxia. Therefore, regulation of NMDAR-medi-

ated Ca2+ entry may underlie the reduced NO production

observed during the transition to anoxia in turtle cortex.

To examine the role of NMDAR activity in the regulation of

NO production during anoxic transitions, we treated cortical

sheets with the NMDAR antagonist APV during normoxia

and then subsequently recorded NO fluorescence during a

normoxic to anoxic transition in the presence of APV. In

normoxic sheets, APV resulted in a 41.2 ± 4.9% depression

of NO production (n = 4, Fig. 2A and B). Subsequent anoxic

exposure of the same tissue resulted in a further small decrease

in NO production of 7.1 ± 2.3% that was �75% smaller than

the regular anoxia alone decrease in NO production

(P < 0.01, n = 4, Fig. 2A and B). These data suggest that the

decrease in NO production during the transition to anoxia is

due largely to depressed NMDAR activity in the cortex. The
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observation that the magnitude of the decrease of NO produc-

tion with APV was greater than with anoxia alone is likely due

to complete NMDAR inhibition by APV compared to the

�50% endogenous reduction in NMDAR activity in the an-

oxic cortex [39].

The primary neuroprotective mechanism mediated by de-

pressed glutamatergic activity is the prevention of toxic Ca2+

accumulation [40], but it is interesting to note that in the an-

oxic turtle cortex, depressed NMDAR activity may preclude

neuronal damage via a second mechanism: by limiting NO

accumulation and associated DNA fragmentation. In mam-

mals, NO contributes to detrimental feed-forward mechanisms

that accelerate ECD: NO production is promoted by

NMDAR-mediated Ca2+ entry and then acts as a retrograde

signal to enhance glutamate release and increase the over-acti-

vation of NMDARs [21,22]. Therefore, the evolution of NO-

independent mechanisms to increase CBF in the turtle cortex

allows neuroprotective increases in CBF without deleterious

elevations in NO and NMDAR activity that occur concomi-

tantly in mammals.

In summary, some facultative anaerobes utilize increased

CBF to enhance neuronal survival during anoxic exposure.

Enhanced CBF is also neuroprotective in mammals where it

is NO-dependent, however increased NO production leads to

elevated glutamate release and DNA fragmentation. Here we

measured for the first time in a facultative anaerobe changes

in NO production in response to anoxic perfusion and reoxy-

genation and NOS or NMDAR inhibition. The evolution of

NO-independent mechanisms of increased CBF allows these

organisms to suppress the production of NO and thus reduce

free radical damage and NO-dependent glutamate release

without compromising increased blood flow during the transi-

tion to and from anoxia. Furthermore, an NO-independent

mechanism would allow for regulation of CBF during pro-

longed anoxia when oxygen is not available and NO cannot

be formed.
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