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Summary Osteoblasts originate from common progenitors, which are capable of differentiat-
ing into othermesenchymal cell lineages such as chondrocytes, myoblasts and adipocytes. Various
hormones and cytokines regulate osteoblast differentiation of mesenchymal progenitors to
osteoblasts. Among these, bone morphogenetic proteins (BMPs) are the most potent inducers
and stimulators of osteoblast differentiation: BMPs not only stimulate osteoprogenitors to
differentiate into mature osteoblasts but also induce non-osteogenic cells to differentiate into
osteoblast lineage cells. BMPs are important local factors that regulate Runx2, which is an
essential transcription factor for osteoblast differentiation. The Notch signaling pathway is
involved in a variety of cellular function, including cell proliferation, differentiation and
apoptosis. Notch signaling has a dual effect on osteoblast differentiation. In terms of stimulation,
functional Notch signaling is essential not only for BMP-2-induced osteoblast differentiation but
also for BMP signaling itself. CCN3/NOV, amember of the CCN family of proteins, exerts inhibitory
effects on BMP-2-induced osteoblast differentiation via its involvement in the BMP and Notch
signaling pathways. Thus, osteoblast differentiation is critically regulated by the intimate
interaction of various signaling molecules including BMP, Notch and CCN3/NOV.
# 2008 Japanese Association for Dental Science. Published by Elsevier Ireland. All rights reserved.
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1. Introduction

Skeletal tissue is composed of various types of mesenchymal
cells such as osteoblasts, chondrocytes, myocytes, and adi-
pocytes. These cells originate from common pluripotent
progenitors called mesenchymal stem cells [1]. During the
differentiation of these cell lineages, various hormones and
cytokines critically regulate osteoblast differentiation.
Among these, bone morphogenetic proteins (BMPs) are
strong inducers of osteoblast differentiation and bone for-
mation [2—4]. BMPs were originally identified as proteins
that induced ectopic bone formation when implanted into
muscular tissue [5]. Several lines of evidence have demon-
strated that BMP-2 induces or promotes the expression of
runt-related gene 2 [Runx2, alternatively called core-bind-
ing factor alpha 1 (Cbfa1)] [6—8] and osterix [9,10], which
are essential transcription factors for osteoblast differen-
tiation and bone formation [11—13], as well as osteoblast
differentiation markers such as alkaline phosphatase (ALP),
type I collagen and osteocalcin in various cells. Thus, BMPs
are key molecules in the regulation of osteoblast differen-
tiation.

The Notch signaling pathway is highly conserved among
species and plays a fundamental role in a wide variety of
processes during embryonic development and in the adult
[14]. The Notch gene encodes a single transmembrane
receptor member. The ligands for Notch including Delta1,
Delta3, Delta4, Jagged1, and Jagged2 are also transmem-
brane proteins, and Notch signaling mediates cell—cell
communication by regulating the choice of binary cell fate
and the maintenance of stem cell populations [15]. In
addition, it has been revealed that cross-talk between
Notch and BMP signaling tightly regulates the cell fate in
various types of cell lineages [16—19]. Although several
studies using osteoblastic cell lines have demonstrated that
Notch signaling is involved in the regulatory mechanism
underlining osteoblast differentiation, these remain con-
troversial [19—23].

The CCN family of proteins comprise the following six
members; CCN1/cysteine-rich 61(CYR61), CCN2/connective
tissue growth factor (CTGF), CCN3/nephroblastoma over-
expressed gene (NOV), CCN4/Wnt-induced secreted protein
1 (WISP1), CCN5/WISP2, and CCN6/WISP3. These proteins
have been demonstrated to possess a growth factor-like
activity and to regulate cell growth and tissue formation.
It has been reported that CCN proteins regulate the differ-
entiation of skeletal mesenchymal cells such as muscle cells
[24,25], chondrocytes [26,27] and osteoblasts [28—31].
Importantly, CTGF/CCN2 binds to BMP-4 and antagonizes
its action [32]. We have also demonstrated that CCN3/NOV
associates with Notch1, and that it inhibits myogenic differ-
entiation [24]. Since these reports highlight the importance
of CCN proteins in osteoblast differentiation, we investi-
gated the role of CCN3/NOV in osteoblast differentiation
[31]. Our study indicates that CCN3/NOV regulates osteo-
blast differentiation by interacting with BMP and Notch
signalings.

Thus, osteoblast differentiation is regulated by multiple
factors that interacting with BMPs. In this review, we will
describe the roles of BMP, Notch and CCN3/NOV in osteoblast
differentiation.

2. The role of BMPs in osteoblast
differentiation

2.1. BMP signaling pathway

BMPs bind to two types of serine—threonine receptor,
termed BMP type I receptor (BMPR-I) and type II receptors
[33]. Both types of receptor are necessary for the transduc-
tion of BMP signals. Four BMPR-I receptors [(TRS (ALK1),
ACVR1 (ALK2), BMPR-IA, and BMPR-IB)] have previously been
cloned. Three type II receptors (BMPR-II, ActR-IIA, and ActR-
IIB) are involved in the BMP signaling pathway. BMPR-I binds
BMPs directly in the absence of type II receptors. This is in
contrast to the transforming growth factor-beta (TGF-b)
type I receptor that does not bind ligands in the absence
of the TGF-b type II receptor [34,35]. BMPs preferentially
bind at the N-terminal extracellular domain of BMPR-I,
which is connected by a single transmembrane region to
the C-terminal cytoplasmic kinase domain. BMPR-I has a
cytoplasmic juxtamembrane region that is rich in glycine
and serine residues (GS domain). Ligand-binding phosphor-
ylates serines and threonines in the GS domain thereby
activating BMPR-II; this event transmits downstream BMP
signals through BMP-specific Smads andp38MAPK to regulate
BMP-responding genes.

A number of signal-transducing molecules of the TGF-b
superfamily, termed Smads, have previously been identified
(Fig. 1) [33,36,37]. To date, eight mammalian Smad pro-



Figure 1 BMP signaling via Smad pathway. BMP binding to
BMPR results in activation of BMPRs. Activated receptor complex
phosphorylates R-Smad (Smad1/5/8). Activated R-Smad associ-
ates with Co-Smad (Smad4), and this complex translocates into
nucleus. This complex bind to Smad binding element with tran-
scriptional coactivator or corepressor. BMP signal stimulates
expression of I-Smad (Smad6), which is capable of inhibiting
the phosphorylation of R-Smad. Adapted from Ref. [37].
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teins, Smad1 through Smad8, have been isolated [33,37].
These proteins are classified into three subgroups according
to their structures and functions [33]. The Smads belonging
to the first subgroup, referred to as pathway-restricted
Smads (R-Smads) are ligand-specific and activated by the
binding of ligands to type I receptors. Among these, Smad1,
Smad5 and Smad8 are involved in BMP signaling [37—41],
whereas Smad2 and Smad3 mediate TGF-b/activin signaling
[42,43]. The second subgroup of Smads comprises the com-
mon mediator Smads (C-Smads). Smad4 (also termed DPC-4)
belongs to this subgroup [42]. R-Smads are phosphorylated
by the serine/threonine kinase receptors that interact with
C-Smads, and then form a heterodimeric complex. This
complex is translocated into the nucleus and regulates
the transcription of target genes. The third subgroup of
Smads comprises the inhibitory Smads (I-Smads), Smad6
and Smad7 [42—45]. These Smads inhibit ligand activity by
stably binding to type I receptors. Smad6 binds to the TGF-b
type I receptor, the activin type IB receptor and BMPR-IB,
while Smad7 binds to the TGF-b type I receptor [44]. I-Smads
compete with R-Smads for the binding to type I receptors.
Smad6 also competes with Smad4 for the binding to acti-
vated Smad1 [45].

Various BMP antagonists regulate the action of BMPs at
extracellular region [46]. These antagonists bind to BMPs and
prevent specific binding to the cell surface receptors. Extra-
cellular BMP antagonists include noggin, chordin, follistatin,
follistatin-related gene, twisted gastrulation, and DAN family
members (Dan, Cerberus, gremlin, sclerostin/SOST). Indeed,
noggin, chordin and gremlin inhibit BMP-induced ALP activity
in W-20-17 bone marrow stromal cells and C3H10T1/2 cells
[47—50]. During mouse embryogenesis, noggin is expressed
not only in the node, notochord, and dorsal somite, but also
in the condensing cartilage and immature chondrocytes [50]
Noggin null mutant mice indicate that this molecule plays
important roles in the normal patterning of the neural tube,
somites and cartilage including joint formation [50].
2.2. Regulation of osteoblast differentiation by
BMPs

Various mesenchymal cell lines are useful for studying the
regulatory mechanism of osteoblast differentiation.
C3H10T1/2 clone 8 (C3H10T1/2), a fibroblastic cell line
derived from an early mouse embryo, comprises multipo-
tential mesenchymal cells. Untreated control C3H10T1/2
cells exhibit no or extremely low levels of phenotypic char-
acteristics related to osteoblasts, chondrocytes, myoblasts,
and adipocytes [51]. We were the first to demonstrate that
BMP-2 strongly enhances ALP activity, which is an early
marker of osteoblast differentiation [51]. Although control
C3H10T1/2 cells produced no osteocalcin, a marker appear-
ing at the late stage of osteoblast differentiation, BMP-7-
induced osteocalcin production by C3H10T1/2 cells [52].
These results indicated that BMP-2 and BMP-7 induce
C3H10T1/2 cells to differentiate into osteogenic lineage
cells. BMP-2, BMP-6, BMP-7, and GDF5 stimulates ROB-C26
cells, which are a committed osteoprogenitor cell line that
retains the potential to differentiation into myotubes and
adipocytes [53], to differentiate into osteoblasts [3]. These
results indicated that BMPs are important regulators of the
differentiation of osteoblasts from multipotent mesenchy-
mal cells.

There are several osteoblast precursor cell lines, the
differentiation potential of which is restricted to the osteo-
blast lineage. Among these, MC3T3-E1, which is a clonal
osteoblastic cell line derived from the calvariae of a late-
stage mouse embryo, is most frequently used to study osteo-
blast differentiation. This cell line expresses various osteo-
blast phenotypes including the formation of mineralized
bone nodules in long-term culture. BMP-2 and BMP-7 increase
ALP activity, PTH-responsiveness and osteocalcin production,
suggesting that BMPs promote the differentiation of osteo-
blast precursors to more mature osteoblasts.

Osteoblastic cells isolated from the calvariae of newborn
rats or the bone marrow of adult rats (primary osteoblasts)
provide a suitable model in which to explore the bone for-
mation process in vitro; these cells generate numerous
mineralized bone nodules when cultured in the presence
of b-glycerophosphate and ascorbic acid. Using these mod-
els, we demonstrated that the expression of BMP-2, BMP-4,
and their receptors (BMPR-IA, BMPR-IB, and BMPR-II) is clo-
sely related to bone nodule formation, suggesting that BMPs
play important roles in the process of bone nodule formation
through their receptors in a paracrine and/or autocrine
manner [54].

We were the first to report the inhibitory effects of BMP-2
on myogenic differentiation in the ROB-C26 cells, which are
an osteoblast precursor cell line with the capacity to differ-
entiate into myogenic cells [2]. BMP-2 also inhibits myogenic
differentiation in C2C12 myoblasts, while concomitantly
stimulating osteoblast differentiation in this cell line [4].
Thus, BMPs not only induce or promote osteoblast differen-
tiation in various stages of mesenchymal cell development,
but also regulate myogenesis in these cells.

Since BMP-2 knockout is embryonic lethal, Tsuji et al. [55]
recently generated transgenic mice in which BMP-2 was
inactivated in a limb-specific manner before the onset of
skeletal development using a Prx1cre enhancer. This avoided
the embryonic lethality that results from the global loss of
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BMP-2. These conditional knockout mice lacking BMP-2
synthesis in their limb bones exhibited few skeletal abnorm-
alities. This might be due to the compensatory effect of other
BMPs expressed in the developing limb. Interestingly, how-
ever, these mice suffer spontaneous fractures that do not
heal with time; it appears that earliest steps in the fracture
healing process are blocked. These results indicate that BMP-
2 expression during embryogenesis is not required for the
events that determine correct skeletal patterning and early
osteochondrogenesis, and that BMP-2 is a critical endogenous
factor necessary for fracture repair. Further studies using
conditional knockout mice specifically lacking BMP signaling
molecules in osteoblasts will provide more important infor-
mation concerning the function of BMPs in osteoblast differ-
entiation.

3. Role of Notch signaling in osteoblast
differentiation

3.1. The Notch signaling pathway

Notch receptors contain 36 epidermal growth factor (EGF)-
like repeats and 3 cysteine-rich Notch/LIN-12 repeats in a
large extracelullar domain, and also 7 tandem ankyrin
repeats, a proline/glutamine/serine/threonine-rich (PEST)
domain, and a transactivation domain (TAD) in an intracel-
lular region [15,56]. EGF repeats are involved in ligand
interaction, the prevention of constitutive activation, and
the lateral interaction for homodimerization [57]. Similar to
Notch receptors, Notch ligands also contain EGF repeats in
the extracellular domain, and in addition a unique cysteine-
rich N-terminal region referred to as the Delta/Serrate/Lag2
(DSL) domain. The interaction of Notch with the ligands
induces nuclear translocation of the intracellular domain
of Notch (NICD) as a result of proteolytic cleavage at the
juxtamembrane portion by g-secretase (Fig. 2) [56]. In the
Figure 2 Notch signaling pathway. Ligands of Delta or Jagged
family induce intramembranous cleavage of the Notch receptor
by g-secretase. The cleaved form of intracellular domain, NICD,
translocates into nucleus, and it replaces transcriptional core-
pressors with activators enabling transcription of target genes,
Hes and Hey by CSL.
nuclei, NICD interacts with CSL DNA-binding proteins, includ-
ing CBF1/RBP-J, and transactivates the target genes such as
Hes1 and Hey1(Fig. 2). As an alternative pathway, Notch
receptors have also been reported to transmit signals through
CSL-independent pathways by interacting with other signal-
ing molecules, such as MAP kinase, Src, and nuclear factor kB
(NF-kB) [39].

3.2. Expression of Notch and its ligands on
osteoblastic cells

To understand the role of Notch signaling in osteoblast
differentiation, it is important to determine the expression
profiles of Notch receptors and their ligands on osteoblastic
cells under both physiological and pathological conditions.
Our immunohistochemical studies using a mouse bone regen-
eration model revealed that Notch1 expression was weak in
normal femurs, but strong expression in mesenchymal cells,
including osteoblastic cells that had migrated into a bone
defect at 5 days after injury [19]. At this stage, Delta1 was
also expressed, and confocal microscopic analysis demon-
strated the extensive colocalization between Notch1 and
Delta1. Immunostaining of Jagged1 at day 10, at which time
reconstruction of cortical bone is taking place, demonstrate
that both Notch1 and Jagged1 also colocalize in the osteo-
blasts on the surface of the trabeculae. Immunohistochem-
istry using antibodies that recognize the active form of
Notch1 revealed that the Notch1 signal is activated in the
osteoblasts, and that chondrocytes appear around the sites of
injury [19]. Real-time PCR also demonstrated that the
expression of Notch1, Delta1, and Jagged1 was low before
injury but was temporarily up-regulated at day 5 after injury
(Fig. 3) [19]. These results indicate that the Notch1 signal is
activated in osteoblastic cells during bone regeneration via
the up-regulation of Delta1 and Jagged1. Moreover, the
concomitant expression of Notch1, Delta1 and Jagged1 sug-
gests the possibility of an autocrine and/or paracrine action
rather than a cell-to-cell signaling mechanism, which is
characterized by the contact-dependent inhibition model
of nervous system development [58,59].

Prior to investigating the function of Notch signaling in
osteoblast differentiation using various osteoblastic cells, we
Figure 3 Expression profile of mRNA for Notch1, Delta 1, and
Jagged 1 during bone regeneration. The expression level of these
mRNA is low before injury, but these mRNA is highly up-regulated
on day 5 after injury. Relative expression of each mRNA was
quantified by real-time RT-PCR. Adapted from Ref. [19].
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also confirmed the expression of the mRNA of Notch1—4,
Delta1, Delta3, Delta4, Jagged1, and Jagged2 by RT-PCR.
C3H10T1/2, MC3T3-E1, C2C12, and primary osteoblastic cells
isolated from newborn mice calvariae and from adult mouse
bone marrow expressed substantial levels of Notch1 and
Jagged1 mRNA; however, the expression of Notch3 and
Delta4 was extremely low [19]. These results indicate that
Notch signaling is involved in the regulation of various osteo-
blastic cells.

3.3. Notch signaling exerts diverse action on
osteoblast differentiation

There have been several reports that describe the role of
Notch signaling in osteoblasts differentiation. In 1999, Nof-
ziger et al. [20] reported using C2C12 cells that differentiate
into myoblasts and osteoblasts that Notch signaling inhibited
not only myogenesis but also osteogenesis induced by BMP-2.
These results are in agreement with the general concept that
Notch signaling blocks differentiation toward a primary dif-
ferentiation fate or that it forces the cell to remain in an
undifferentiated state [14,59]. Shindo et al. [60]. demon-
strated that using KusaANICD and KusaONICD, which stably
overexpress NICD that Notch signaling suppresses the osteo-
blastic differentiation of mesenchymal progenitor cells.
Sciaudone et al. [22] also demonstrated that constitutive
overexpression of NICD by retroviral transduction inhibited
osteoblast differentiation in ST2 and MC3T3-E1 cells.
Recently, these authors proposed that the inhibitory effects
of Notch signaling on osteoblast differentiation are induced
by the suppression of Wnt/beta-catenin signaling [23].

In contrast to the inhibitory effects of Notch signaling on
osteoblast differentiation, Tezuka et al. [21] demonstrated
using C3H10T1/2 and MC3T3-E1 cells that Notch signaling
stimulated osteoblast differentiation. We also demonstrated
the stimulatory effects of Notch signaling on the differentia-
tion [19]. We transiently overexpressed Delta1 and Jagged1
by adenoviral transduction in MC3T3-E1 cells. This induced no
apparent changes in osteoblast differentiation, but did aug-
ment BMP-2-induced osteoblast differentiation, including
bone nodule formation associated with the up-regulation
of Hes1, a direct target gene of the Notch pathway. In
addition, the injection of MC3T3-E1 cells overexpressing
Delta1 and Jagged1 into muscle enhanced BMP-2-induced
ectopic bone formation in vivo. When Notch signaling was
inhibited by the dominant negative extracellular domain of
Notch1, specific g-secretase inhibitor (L685,458) or siRNA
impaired BMP-2-induced osteoblast differentiation and the
promoter activity of Id-1, a target gene of the BMP pathway.
These results indicated the functional redundancy between
Delta1 and Jagged1 in osteoblastic differentiation, whereby
Delta1/Jagged1-activated Notch1 enhances BMP-2-induced
osteoblast differentiation. Furthermore, our data also sug-
gest that Notch signaling is essential not only for BMP-2-
induced osteoblast differentiation but also for BMP signaling
itself.

One interpretation of this dual action of Notch signaling
on osteoblast differentiation is that the effect of Notch
activation may differ depending on the period of activation;
transient and short-term activation of the Notch pathway
may enhance osteoblastic differentiation, whereas long-
term, continuous activation may lead to the inhibition of
osteoblastic commitment. Further studies will be necessary
in order to elucidate the culture period-dependent func-
tional difference of Notch signaling in osteoblastic differ-
entiation.

3.4. Cross-talk between Notch and BMP signaling
during osteoblast differentiation

In order to explore the mechanism underlying the coopera-
tive interaction between Notch and BMP signaling in osteo-
blast differentiation, we examined the cross-talk of BMPand
Notch signaling. Recent studies have revealed that Notch
and BMP/TGF-b cooperatively activate the opposite path-
way, such as Hes1 and Hes-5, or Smad target gene PAI-1
[17,61,62]. In the Notch pathway, NICD interacts with
Smad1/5, and recruits p300 and P/CAF to the transcription
machinery; this results in the cooperative activation of
Notch target genes such as Herp2 and Hes [17,62]. In our
study, however, Notch1 did not enhance BMP signaling lead-
ing to Id-1 expression. Furthermore, BMP-2 failed to induce
Hes-1 gene expression (unpublished data), indicating the
presence of other interaction mechanisms between BMPand
Notch. It is most likely that other Notch target genes, such as
Lfng, Hey1, and Tcf7 which could be up-regulated in C2C12
cells in response to BMP-2 [63], may be involved in the
cooperative interaction between BMP-2 and Notch in osteo-
blast differentiation, although Hey1, another target gene of
both Notch and BMP, may act as a negative regulator [64].
More importantly, we revealed that Notch activation is
required for BMP signaling [19]. The inhibition of Notch
signaling leads to a dramatic decrease of Id-1 promoter
activity, indicating that Notch signaling is required for
BMP signaling itself.

4. CCN3/NOV inhibits BMP-2-induced
osteoblast differentiation by interacting with
the BMP and Notch signaling pathways

4.1. The CCN family of proteins

The CCN family of proteins comprises the following six
members; CYR61, CCN2/CTGF, CCN3/NOV, CCN4/WISP1,
CCN5/WISP2, and CCN6/WISP3. Several lines of evidence
demonstrate that these proteins regulate the differentiation
of skeletal mesenchymal cells such as muscle cells [24—26],
chondrocytes [26,27], and osteoblasts [28—31].

The CCN family of proteins basically contain four con-
served modular domains with sequence similarities to
IGF-binding protein (IGFBP), von Willebrand type C (vWC),
thrombospondin type 1 (TSP1), and C-terminal cysteine knot
(CT) domains [25]. WISP2/CCN5 retains similar structure
lacking the CT domain. These modular structural domains
are shared among the members of the CCN family, with the
exception of proteins of CCN5/WISP2 that lacks the CT
module [26].

4.2. Biological activity of CCN3/NOV

The N-terminal truncated form of CCN3/NOV can transform
chicken embryonic fibroblasts by its oncogenic activity, and



Figure 4 A possible mechanism underlying the inhibitory
effects of CCN3/NOV on osteoblast differentiation. CCN3/NOV
binds to BMP-2, though extracellular binding of these two mole-
cules should be further confirmed, and inhibits phosphorylation
of Smad1/5/8. This effect attenuates BMP signaling, and down-
regulate Runx2 transcription. CCN3/NOV also Notch at extra-
cellular region, and increased NICD. NICD increases expression of
Hey1, and then Hey1 inhibit transcription of Runx2. Thus, the
inhibitory effects of CCN3/NOV on osteoblast differentiation are
mediate by interacting with both BMP and Notch signaling path-
ways.

Osteoblast differentiation by BMP, Notch and CCN3/NOV 53
aberrant expression of CCN3/NOV is associated with the
development of several tumors of different origins including
Wilms’ tumor, renal cell carcinoma, neuroblastoma, glioblas-
toma, adrenocortical carcinoma, and musculoskeletal
tumors [17—20]. During normal development, CCN3/NOV is
expressed in a wide variety of tissues including the noto-
chord, central nervous system, kidney, adrenal cortex, mus-
cle and cartilage. Several studies have demonstrated that
CCN3/NOV physically associates with fibulin 1C [65], rpb7
[66], connexin 43 [67], and Notch [24]. Although the biolo-
gical activities of CCN3/NOV are to a certain extent attrib-
uted to the interactions with these molecules, other factors
may interact with CCN3/NOV and are likely to regulate its
downstream reactions.

The expression of CCN3/NOV is detected in the dermo-
myotome [68]. Interestingly, the expression in the dermo-
myotome coincides with that of the transmembrane
receptor, Notch and its ligand, Delta. The expression of Notch
frequently overlaps with CCN3/NOV expression. For exam-
ple, both genes are expressed in chondrocytes and are
assumed to participate in cartilage formation [69]. CCN3/
NOV is also involved in vascular formation [70], and its role in
response to injury has been postulated, based on the promi-
nent upregulation of CCN3/NOV observed in smooth muscle
cells after balloon catheter injury of rat carotid arteries
[71,72]. In this experimental model, a remarkable up-reg-
ulation of Notch and its ligands has also been demonstrated
[72]. These observations suggest a hypothesis that CCN3/NOV
may exert some of its effects through the Notch signaling
pathway.

4.3. CCN3 inhibits osteoblast differentiation by
interacting with BMP signaling

Several reports [28—30] have indicated that the members of
the CCN family participate in regulating osteoblast differ-
entiation; however, the distinct role of CCN3 in osteoblast
differentiation has not been well documented. CTGF/CCN2
binds to BMP-4 and antagonizes its action [32]. It also inhibits
BMP-9-induced osteoblast differentiation [29]. These reports
prompted us to explore that CCN3 itself also interacts with
BMP and affects BMP signaling. In order to confirm this
hypothesis, we first overexpressed CCN3 in MC3T3-E1 osteo-
blastic cells by using adenoviruses with or without transduc-
tion with AdBMP-2 [32]. This experiment demonstrated that
the overexpression of CCN3 inhibited the expression of
osteoblast-related markers induced by BMP-2 such as Runx2,
osterix, ALP and osteocalcin. These results indicate that
CCN3 exerts an inhibitory effect on BMP-2-induced osteoblast
differentiation. To explore the mechanism involved in this
effect, we examined the interaction between CCN3 and BMP-
2, and revealed the direct physical association between
these two proteins. As of yet, however, we have not con-
firmed that NOV inhibits BMP-2 action by preventing it from
binding to BMP receptors [32]. Such a study is currently being
undertaken in our laboratories. In addition, the overexpres-
sion of CCN3 inhibited Smad1/5/8 phosphorylation and the
expression of Id1, Id2 and Id3, all of which are induced by
BMP-2 [32]. These findings indicate that CCN3 inhibits BMP-2-
induced osteoblast differentiation by its involvement in BMP
signaling (Fig. 4).
4.4. CCN3 interacts with the Notch signaling
pathway

We demonstrated that the C-terminal cysteine knot of CCN3
is associated with the EGF-like repeats of Notch1, and that it
inhibits myogenic differentiation in C2/4myoblasts [24]. This
suggests that the involvement of CCN3 in the Notch signaling
pathway also plays a role in the inhibitory effect of CCN3 on
BMP-2-induced osteoblast differentiation. To confirm this,
we performed western blot analysis to examine the expres-
sion of the cleaved Notch1 protein, which is an active form of
Notch [32]. This study revealed that the overexpression of
CCN3 elevated the expression level of cleaved Notch1, and
that simultaneous transduction with AdCCN3 and AdBMP-2
retained the expression level of cleaved Notch1 in MC3T3-E1
cells. Further, CCN3 increased the mRNA expression levels of
Hes1 and Hey1, which are involved in downstream Notch
signal transduction, and CCN3 also stimulated the promoter
activities of these genes [32]. These results indicate that
CCN3 is involved in Notch signaling during osteoblast differ-
entiation (Fig. 4).

Zamurovic et al. [64] reported that BMP-2 stimulated the
expression of Hey1 in osteoblastic cells, including MC3T3-E1
cells, and that Hey1 inhibited osteoblast differentiation by
abrogating the transcriptional activity of Runx2. These
results suggest that Hey1 is a negative regulator of BMP-
induced osteoblast differentiation. We revealed that the
overexpression of CCN3 promoted the mRNA expression
and promoter activity of Hey1, suggesting that Hey1 is
involved in the inhibitory effect of CCN3 on BMP-2-induced
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osteoblast differentiation [32]. This finding is supported by
our experiments using Hey1-deficient osteoblastic cells
(dHey1 cells); CCN3 induced no apparent inhibitory effects
on BMP-2-induced osteoblast differentiation in these cells
[32]. It will be an important issue to consider whether the
changes observed in dHey1 cells is due to Hey1 deficiency
and/or chromosomal abnormality of appropriate gene
expression during establishment of the cell lines. In order
to assess this possibility, we rescued the expression of Hey1
using adenovirus in dHey1 cells. This experiment confirmed
that the recovery of Hey1 expression in dHey1 cells sup-
pressed the osteoblast-related markers induced by AdBMP-2.
These results further supported Zamurovic’s proposal that
Hey1 is a negative regulator of BMP-induced osteoblast
differentiation [64]. Interestingly, Lee et al. [73] reported
that Hes1, which is another downstream transducer of Notch
signaling, stimulated Runx2 activity by cooperating with
retinoblastoma protein (pRb). In our study [32], although
CCN3 stimulated the expression of both Hes1 and Hey1 in
MC3T3-E1 cells, its stimulatory effect on Hey1 was greater
than that onHes1. It will be interesting to explore the distinct
roles of these two downstream transducers during osteoblast
differentiation.

Recently, Rydziel et al. [74] reported that CCN3 inhibited
osteoblast differentiation by inhibiting the BMP signaling
pathway. They suggested, however, that Notch signaling is
not involved in the inhibitory effect of CCN3 on osteoblast
differentiation. Further studies are required in order to
resolve these conflicting results on the role of Notch signaling
in the inhibitory effects of CCN3 on osteoblast differentia-
tion. Rydziel et al. [74] also reported that CCN3 transgenic
mice that specifically overexpressed CCN3 in osteoblasts
exhibited osteopenia due to reduced bone formation activity.
Our CCN3 transgenic mice also exhibited similar phenotypes
(unpublished results). These results indicate that CCN3/NOV
exerts inhibitory action on osteoblast differentiation in vitro
as well as in vivo. Since our studies revealed that the
expression of CCN3/NOV was dramatically up-regulated con-
comitant with the molecules involved in the Notch and BMP
signaling pathways at an early phase of bone regeneration
(unpublished results), it will be of great interest to investi-
gate the bone regeneration process in CCN3/NOV transgenic
and knockout mice. Such investigations are now under way in
our laboratory.

A recent report demonstrated that CCN3/NOV is a central
regulator of human primitive hematopoietic cells [75]. Since
the osteoblast lineage cells are essential to maintain hema-
topoietic stem cells in bone marrow [76], CCN3/NOV
expressed in osteoblast lineage cells might be involved in
regulation of hematopoietic stem cells.

5. Summary

After cloning of human BMP genes [77], the role of BMPs in
osteoblast differentiation has been extensively investigated
by using the recombinant proteins. Several lines of evidence
indicate that BMPs stimulate or enhance Runx2 expression
and activity in osteoprogenitors and osteoblastic cell. This
BMP-Runx2 axis plays crucial roles in osteoblast differentia-
tion and bone formation. In addition to these findings, recent
studies revealed that BMP signals cross talk with other signal-
ing pathways such as Notch and Wnt. Further studies con-
cerning cross talk of BMP-Runx2 axis and other signaling
pathways are required to clarify the regulatory mechanism
of osteoblast differentiation and bone formation. These
studies will provide important information on the molecular
mechanism of bone regeneration that will be useful for
developing effective therapeutic approach to bone repair.
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human Mad protein acting as a BMP-regulated transcriptional
activator. Nature 1996;381:620—3.

[41] Kretzschmar M, Liu F, Hata A, Doody J, Massagué J. The TGF-b
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