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Abstract 

Given a finitely generated group H, the set Hom(H, SLzC) inherits the structure of an affine 

algebraic variety R(H) called the representation variety of H. Let a one-relator group with 

presentation G = (XI,. . ,xn, y; W(X) = yk) be given, where W(X) # 1 is in the free group on the 
generators {X}={XI,...,X,}, a nd k 2 2. In this paper a theorem will be proven allowing the 
computation of Dim (R(G)) in terms of subvarieties of the representation variety of the free group 
on n generators, R(&), arising from solutions to the equation W(X) = &I in SL2C. Conditions 
are given guaranteeing the reducibility of R(G). Finally, applications to the class of one-relator 
groups with non-trivial center are made. @ 1998 Elsevier Science B.V. All rights reserved. 

1991 Math. Subj. Cluss.: 20F 

0. Introduction 

Given a finitely generated group G equipped with a set, {X} = {xi,. . . ,x,}, of gener- 

ators one defines R(G) as the set of points {(&xi), . . ,p(xn))} E (.SL2C)“, where y is 

a representation of G in SL2C. The points of R(G) are in one-to-one correspondence 

with the representations of G in SLzC’; thus one can speak of representations of G as 

points of R(G), and points of R(G) as representations of G. It is well known that R(G) 

is an affine variety in affine complex space of dimension 4n. The defining equations 

of R(G) arise from the defining relations of G relative to the generating set (5). The 

variety R(G) is an invariant of the finitely generated presentation of G chosen. In other 
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words, two different finite set of generators of G give rise to isomorphic representation 

varieties. The ideas involved in this invariant can be traced back to the work of Poincare 

and others (see [8, 91). Culler and Shalen have employed R(G) in the study of the 

fundamental groups of three manifolds [4]. Baumslag and Shalen used a version of 

R(G) in establishing inequalities derived from a presentation and guaranteeing that 

groups satisfying them are infinite [3]. 

The invariant R(G) brings into combinatorial group theory the numerous invariants 

of algebraic geometry and commutative algebra associated with algebraic varieties. 

This abundance of structure deserves study. Invariants of particular interest are the 

dimension, and reducibility status of R(G). In fact, with these naive invariants surpris- 

ingly succinct proofs of some traditional theorems of combinatorial group theory were 

given (see [7]). Dimension, for example, plays a central role in the work of Culler 

and Shalen [4], and Baumslag and Shalen [3]. 

Let F, denote the free group of rank n; then R(F,) = (SLzC)“. It is well known that 

SLzC is an irreducible affine variety of dimension three, and consequently that (S&C)” 

is also irreducible and of dimension 3n. Finitely presented, one-relator groups can be 

considered the closest finitely presented groups to free groups of finite rank [I], thus 

making the study of R(G) for one-relator groups especially tractable. The justification 

for using SLzC, besides being a relatively easy affine group to work with lies in the 

fact that one-relator groups share a host of properties with free groups and that finitely 

generated free groups embed into SLzC. 

Let G be a presentation with n generators and r relations; then the number of 

variables involved in the description of R(G) is 4n, and the number of polynomials 

4r+n. Since R(G) C R(F,) it follows that Dim (R(G)) 5 3~2, and by using an elementary 

theorem involving the fibers of regular maps between algebraic varieties (see [ 111) that 

Dim (R(G)) > 3(n - r). However, to establish the dimension of R(G) precisely within 

those bounds can be impractical using existing computer-assisted techniques. Almost as 

difficult is to perform these computations for an arbitrary class of algebraic varieties. In 

this connection some examples illustrating the use of Theorem 0.2 and the sensitivity 

of R(G) in discriminating within classes of groups will be given. 

Let W # 1 be a freely reduced word in F,, involving all the generators {xl,. . . ,x,} 

of F,. To the free group F, add a new generator y, and now consider the relation 

IV= yk of the one-relator group 

G= (x, , . . . ,&I, y; w = Yk), 

where k 2 2 is a positive integer. 

(0.1) 

Observation 0.1 The relation W = yk gives rise to an equation in SLzC. Solutions to 

this equation are (n + 1 )-tuples of SLzC matrices (ml,. . . , m,+l ) such that the relation 

W = yk is satisfied when the (n + 1)-tuple is evaluated in W = yk under the obvious 

assignment xi + mi, for all xi E {xi,. . . ,xn}, and y + m,+l. Further, observe that the 

relation can also be used to give rise to an equation W = - yk in SLzC. Denote the 

SLzC solutions to the equations W = yk, and W = - yk by I,( W, k), and C,( - W, k), 
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respectively. Notice that z;,( W,k) and C,(- W,k) are affine algebraic varieties, also 

that the representation variety R(G) of the one-relator group in (0.1) is C,( IV, k). 

By I denote the 2 x 2 identity matrix, and let P+ and P_ be the two algebraic 

subvarieties of R(F,) given by 

P+={PIPER(F,),andp(W)=Z}, P- = {p 1 p E R(Fn ), and p( IV) = -I}. 

(0.2) 

Notice that the correspondence between points of R(F,,) and representations of F, was 

used in (0.2). 

Theorem 0.2. Zf k = 2, then 

(a) Dim(C,(W,k))=Max{Dim(P+),Dim(P_)+2, 3n) 5 3n + 1. 

(b) Dim(C,(-W,k))=Max{Dim(P_),Dim(P+)+2, 3n) 5 3n+ 1. 

If k > 3, then 

(a) Dim (C,( W, k)) = Max{Dim (P+) + 2, Dim (P-) + 2, 3n) < 3n + 1. 

(b) Dim(Z,(-W,k))=Max{Dim(P_)+2, Dim(P+)+2,3n} < 3n + 1. 

Corollary 0.3. If in Theorem 0.2a Max{Dim(P+) + 2,Dim(P_) + 2) > 3n, then 

C,( W, k) is a reducible variety. 

Corollary 0.3 has been stated for the case k > 3; a slightly modified version of 

the corollary holds in the case when k = 2. These versions and a similar corollary for 

C,( - W, k) are discussed in Section 2. 

Observe that Theorem 0.2 reduces a question about the representation variety of an 

n + 1 generated group into a question in the representation variety of the free group 

of rank n. This will prove quite useful. A further consequence of Corollary 0.3 is that 

an n + 1 generated group G satisfying its conditions is not free. Examples of groups 

satisfying the conditions of Corollary 0.3 abound. 

That the method used to obtain (0.1) can produce groups significantly different from 

free groups is easy to see. For example, consider groups of the type G,, = (x, y;xP = y’), 

where p, t are integers greater than one. This infinite class of groups consists of groups 

having non-trivial center and with the property “NZ” (that G/G’ is not isomorphic to 

the free abelian group of rank two). Incidentally, this class of groups contains an 

infinite number of groups satisfying the conditions of Corollary 0.3. 

The next result follows easily from Theorem 0.2. 

Theorem 0.4. Let Gpl = (a, b; ap = b’), where p, t > 2, then Dim (R(G)) = 4, and R(G) 

is reducible. 

A rather straightforward consequence obtained from Theorem 0.4 is that a one- 

relator group G with non-trivial center and with property NZ satisfies the inequality 

3 5 Dim (R(G)) < 4. The NZ condition for one-relator groups with non-trivial center 
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turns out to affect the invariant R(G) in crucial ways. To illustrate this you will be 

shown an infinite class of one-relator groups having non-trivial center, failing the NZ 

property, such that for each G in the class Dim (R(G)) > 5. 

Pietrowski, [13], showed that given a one-relator group G with non-trivial center 

and property NZ, that G can be presented as 

G= (x, PI _ 41 
,.‘.,Xm+l;X] -3 ‘X2 

P2 =xY2 xPm = xYm 
3 >..., m m+l )> (0.3) 

where pi, q; > 2 and (pl, qj) = 1 for i >j, and additionally that the isomorphism class 

of a group as in (0.3) is determined by the sequence (p,,ql, pz, q2,. . . , pm, q,,,) together 

with its mirror image (qm, pm,. . ,q2, pz,ql, ~1). Call the first of these sequences the p- 

sequence of G, and define its length to be m. The next result follows rather effortlessly. 

Theorem 0.5. (i) Zf G is an one-relator group with non-trivial center and having the 

property that its p-sequence is of length greater or equal to two, and that some p, 

and qj are each greater than 2, then Dim (R(G)) = 4. 

(ii) Zf the p-sequence of G is of length one, then Dim (R(G)) = 4. 

Corollary 0.6. For G as in the previous theorem, R(G) is reducible. 

Briefly, Section 1 contains elementary facts concerning solutions in SL2C to equa- 

tions of the type XP = A, where A E SL2 C, and several other lemmas playing a very 

important role in the proof of the main result. In Section 2, the main result, “Theorem 

0.2” is proved. Finally, in the section titled “Examples” some calculations are made, 

as well as the applications already mentioned in the introduction. 

1. 

This section contains preliminary material necessary in the proof of Theorem 0.2; it 

is here merely for self-containment; with few exceptions results will be stated without 

proofs as those can be obtained simply by using basic facts in the theory of matri- 

ces and algebraic varieties appearing in, for example, [5, 111. Some, like Lemma 1 .l, 

follow directly from the Jordan normal form. Others, like Lemma 1.7 hold in more 

general settings, but only the SL2C case is of interest here as that is the only affine 

group involved in this work. All algebraic varieties will be affine and not necessarily ir- 

reducible, unless otherwise stated. By j VI denote the number of irreducible components 

of a zero-dimensional variety V. 

Given A4 E SLzC, denote by Cent(M) the SL2C centralizer of M. Given a positive 

integer p and A4 E SL2 C, denote by Q( p, M) the affine variety {A 1 A E SL2 C, AP = M}. 

By Tr(A) indicate the trace of the matrix A. Finally, by Orb(A) designate the orbit 

under conjugation of an SL2C matrix A. Two matrices A and B are said to be similar 

if one can be conjugated to the other. Any two matrices A and B in SL2C similar over 

GL2C are also similar over SL2C. 
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Lemma 1.1. Ever-v matrix in SLzC is similar to one of the following matrices: 

w+ere, a # f 1. 

Corollary 1.2. If Tr(A) # 12, then A is diagonalizable. 

The coordinate ring of SLzC is the algebra A = C[t,, . . . , td]/J, where J is the ideal 

consisting of all polynomials in A = C[t, , . . , td] which vanish in SL2 C as a subvariety 

of complex affine four-dimensional space C4 given by the zeros of the polynomial 

t1t4 - t3t2 - 1. 

Lemma 1.3. Let B be a matrix of trace b, where b # f2. A matrix A E SL2C lies 

in Orb(B) iff it lies in the SLlC vanishing set of tl + t4 - 6, where the t,‘s are as 

above. 

Corollary 1.4. Let A E SL2 C be any matrix of a given trace b # 1k-2. Then any matrix 

B in SL2C having trace b is similar to A. 

Corollary 1.5. Let A E SLzC be of trace b # 3~2. Then the orbit of A under SL2 C 

conjugation is an irreducible algebraic variety of dimension two. 

Lemma 1.6. (i) If p=2, then DimR(p,I)=O, and lQ(p,/)l =2. 

(ii) If p > 2, then Dim sZ(p, I) = 2, and is reducible. 

(iii) For p > 2, Dim a( p, -I) = 2, and for p > 3 is reducible. 

Proof. (i) Suppose p = 2. Let A E SLzC be given. Then A2 = I implies A = A-‘. Thus, 

the only matrices in Q(p, I) are f I, and consequently, the reducibility and cardinality 

assertion follow. 

(ii) Assume that p > 2 is given. Then any matrix A of the form (“0 .!,) such that 

a # k 1 is a pth root of unity is a solution to the equation XP = I. Choose A such that 

Tr(A) # 412. Use Corollary 1.5 to obtain that Orb(A) is an affine variety of dimension 

two. Dim Q(p, I) is precisely two since SL2C is a three-dimensional irreducible va- 

riety properly containing Q(p,Z). To deduce the reducibility apply Corollary 1.5 and 

Lemma 1.3. 

(iii) For p = 2, A = (b ,!,) 1s a solution to the equation XP = -I; so are all matrices 

in Orb(A). By Corollary 1.5 the dimension of Orb(A) is two. Thus Dim Q(p, -I) > 2. 

That it is strictly smaller than three follows from the fact that Q( p, -I) # SL2C. When 

p > 2 the proof follows in an analogous fashion to the proof of (ii) above. To show 

reducibility when p > 3 use Lemma 1.3 and Corollary 1.5. 0 
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The next Lemma shall be used to determine the dimension of the varieties Q(p,M), 

for M a matrix in S&C other than 4~1. 

Lemma 1.7. Let 

and suppose A E C. Then SZ(p,M), where M = TAT-‘, is given by 

Lemma 1.8. (i) Let p 2 2 be any even integer, B = (;‘i), and ME Orb(B). Then 

Q(p,M) = 0. 
(ii) Let p > 3 be any odd integer, and M as in (i). Then Dim Q(p,M)= 0, and 

IQ(p,M>I = 1. 
(iii) Let p 2 2 be any integer, B= (A ;), and M E Orb(B). Then Dim Q( p, M) = 0, 

and IWp,M)l 1s one if p is odd and two if p is even. 
(iv) Let p 2 2 be an integer, and M E Orb(A), where A = (;I .!,) and a # *l; then 

Dim Q(p,M) = 0, and IG?(p,M)I = p. 

Proof. (i) The elementary divisor of M is the polynomial (1” - (- 1 ))2 and thus the 

elementary divisor for X E Q(p,M) is of the form (E, - ri)2, where $ = -1 (see [5]). 

Since X E SLzC such values ri must also meet the condition that r,’ = 1. This together 

implies that only ri = -1 is possible and only when p is an odd integer. 

(ii) For B as in (i) let X E Q(p, B); then its elementary divisor has the form (1b-ri)2, 

where rf = -1 and r-f = 1; so only ri = -1 is possible. Thus, X = TBT-‘. For p odd 

BP= (,“I). Thus, XP= TBPT-‘. It is easy to see that T is an upper triangular non- 

singular matrix. Thus, X is also upper triangular. So X = (ii_{), where y # 0. Now 

for p odd XP = (il-4’). So X = (-d “I’) is t h e single element of 52( p,B). It can 

be easily shown that Cent(B) is commutative and that sZ(p,B) lies in Cent(B). Thus, 

S, of Lemma 1.7 consists only of 0(p, B) which by the above consists of only one 

element. Thus, Dim S, = 0. 

(iii) Proofs of the following assertions will be necessary: 

(1) For p > 2 an even integer, Dim Q( p, B) = 0, and 152( p, B)I = 2. 

(2) For p > 2 an odd integer, Dim sZ(p, B) = 0, and IsZ(p, B)I = 1. 

Proof of (1). Let p be even and X in Q(p, B). By a similar argument to the above 

involving elementary divisors one obtains that for some T E SL2C, possibly differing 

depending on the case, either a: X = T(A I) T-’ or 6: X = T ([‘I) T-‘. The cases 

will be treated separately. Case a: Then XP = T (L T) T-’ implies that X = (‘0 T-I). So 
Dim 52(p, B) = 0 and is of cardinality one. Case b: Then XP = T( L r”) T-’ implies 

that X = (-d If-‘). Thus, Dim Q(p, B) = 0, and its cardinality is one. 
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Proof of (2). Let p be odd and X E Q(p,B). Then by similar arguments to the preced- 

ing, involving elementary divisors, one gets that X = T(A f) T-l, for some T E SL2C; 

so X”=T(; $-‘. Thus, X= (i&‘). Thus, Dim Q(p,B) = 0 and its cardinality is 

one. This concludes the proofs of (1) and (2). 

It is easy to show that Cent(B) is commutative and that Q(p,B) c Cent(B). Thus, 

the set S, of Lemma 1.7 has the same cardinality as Q(p,B), and as a consequence 

Dim (S,) = 0, concluding the proof of (iii). 

(iv) Begin by finding solutions to the equation Xp = A. Notice that the elementary 

divisors of A are (i - a) and (3, - a-’ ). Thus, the elementary divisors of X have to 

be of the form (2 - ei ), ()* - ~1’ ), where (~1 )P = a. Thus, there are only a finite 

number of conjugacy classes of matrices X with XJ’ =M. Cent(A) consists of dia- 

gonal non-singular matrices; so they commute with any diagonal matrix. Now applying 

Lemma 1.7 yields Dim SZ(p,M) = 0. The cardinality of SZ(p,M) is p, by Corol- 

lary 1.4. 0 

Corollary 1.9. For B E SLzC, Dim Q(p, B) > 0 only when B = I and p > 3, or B = -I 

and p > 2. 

Proof. This is a direct consequence of Lemmas 1.6 and 1.8. 0 

2. 

In this section first an intuitive feeling is given for how the proof of Theorem 0.2 is 

put together; then some preliminary definitions are introduced, and finally the theorem is 

proved, followed by proofs of the lemmas and minor results cited in the demonstration 

and not previously addressed in Section 1. 

Let V, W be two algebraic varieties (W is irreducible of known dimension larger 

than zero). Suppose that the dimension of V is desired, and that V = {(V - S) U (S)} 

where S is some subvariety of V; then Dim(V) = Max{Dim( V - S), Dim(S)}. If S is 

chosen in a clever way relative to some dominating regular map @ : V--f W with nice 

properties, then one can determine the dimension of {V - S} using a fibre theorem 

such as Proposition 2.5. Finally, to determine the dimension of V the dimension of S 

must be computed or bounded. In the proof of Theorem 0.2a, C( W,K) will play the 

role of V and R(F,) that of K Definition of the various parts involved is the goal of 

what follows. 

Denote the union of the SLzC solutions to the equations W = yk, W = - yk obtained 

from the relation in (0.1) by C,(* W,k); consult Observation 0.1. By F, 

denote the free group on {xi,. . ,x,}. Let p be a representation of F, in SL2C. Define 

P(X) = P(X1 ), . . ., p(x,). A fruitful way of thinking of C,(* W, k) is as 

C,(iW,k)={(p(x),o)Ip~R(F,),a~~2(k,~p(W))}. (2.1) 
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Clearly, 

Now define a map 

@:C,(*W,k)+R(F,) (2.2) 

given by @(ml,. . ,m,,m,+l) = (ml,. . . ,m,). Notice that the map @ can be restricted 

to C,( IV, k) or Z,,-W, k). The context will render clear which restriction is being 

considered. Let S c C,( W, k) be defined as follows: 

s={(p(~),o)lp~R(F,),o~SZ(k,p(W)),p(W)= %I}. (2.3) 

Clearly, S = S+ US-, where S+ = {(p(X), a) 1 p E R(F,), o E Q(k, p( W)), p( W) = + I}, 

and S- = {(p(X), cr) 1 p E R(F,), 0 E 52(k, p( W)), p( W) = -Z}. Notice that S is a sub- 

variety of C,( IV, k). 

Observation 2.1. S+ = @(S+) x Q(k,l), and S_ = @(S_) x Q(k, -I). 

In the same way a subvariety S of C,( - W, k) can be defined: S- = {(p(JI), a) / p E R 

(Fn),aEQ(k,-p(W)),d@‘)= *II>. 1 n an analogous fashion, S- = ST U SI. 

Observation 2.2. S; = @(S+) x R(k, -I), and SI = Q(S) x Q(k,l). 

Clearly, @(S+), and @(S_) are affine varieties contained in 2T and -2T, respec- 

tively, where 2T and -2T are the following subvarieties of R(F,,): 

~T={~I~ER(F,),T~(~(W))=~}, and -2T={plp~R(F,),Tr(p(W))=-2). 

(2.4) 

Using Lemma 1.6 and Corollary 1.9, one can deduce that any point in the image of 

@ not having zero-dimensional inverse image lies in (2T U - 2T); this was precisely 

the justification for the selection of S and *2T. 

Remark 2.3. Describe two quasi-affine varieties k’ and b of R(F,) relative to C,( W, k) 

and C,(- W, k), respectively. Their description will depend on the parity of k in 

Z,( W, k) and Z,( - W, k), respectively. 

(a) For k even: k’= {R(F,) - {@(S)u - 2T}}, and ii= {R(F,) - {@(S-)u2T}}. 

(b) For k odd: k’={R(F,) - (P(S)}, and d={R(F,) - @(S-)}. 

Regardless of the parity of k, k’ and d: are non-empty and consequently of dimension 

3n (see Lemmas 2.7 and 2.9). The separation into “even” and “odd” is the result of 

the anomaly introduced by part (i) of Lemma 1.8. 
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The proof of Theorem 0.2 can now be given. So as to handle the various cases 

of the theorem systematically and compactly the following integer function is being 

introduced. 

f(x)= 
i 

1 if x#2, 

0 if x=2. 
(2.5) 

Proof of Theorem 0.2. (a) Notice that C,( W, k) = ((C,( W,k) - S) U S). Consequently, 

Dim (C,( W, k)) = Max{Dim (C,( W, k) - S),Dim (S)}. By Lemma 2.6 Dim (k’) = 

Dim (C,( W, k) - S) = 3n. In Corollary 2.8 it was established that Dim (S) 5 3n + 1. 

Thus, it is true that Dim(C,( W, k))=Max{Dim(C,( W, k) - S),Dim(S)} < 3n + 1. 

Notice that @(S+ ) = P+, and that @i(K) = P_. Now employing the function in (2.5) 

together with Observation 2.1 and Lemma 1.6 gives that Dim (S) = Max {Dim (P+) + 

2f(k), Dim (P-)+2}. Thus, Dim (C,( W, k)) = Max {Max{Dim (P+)+2f(k), Dim (P_) 

+2},3n} 5 3n+ 1. 

(b) Notice that Z,(- W, k) = ((&- W, k) - S-) US-). Consequently, Dim (zc,(- W, 

k)) = Max{Dim(C,(- W, k) - S-), Dim (S-)}. L emma 2.6, established that Dim (6) = 

Dim (C,(- W, k) - S-) = 3n. In Corollary 2.8 it was established that Dim (S-) 5 

3n + 1. Thus, it is true that Dim(,E,(-W,k))=Max{Dim(C,(-W,k) - S-), 

Dim (S-)} < 3n+l. Observe that @(A’;) = P+, and Q(F) = P_. Now by employing the 

function in (2.5) together with Observation 2.2 and Lemma 1.6, it follows that 

Dim (S-) = Max{Dim (P_) + 2f(k),Dim (P+) + 2). Thus, Dim (,T,(- W, k)) = 

Max{Max{Dim (P_) + 2f(k), Dim (P+) + 2}, 3n) < 3n + 1. 0 

The next proposition is used in the proof of Proposition 2.5. Its proof can be found 

in [ 111. Recall that a map between varieties @ : V + W is said to be almost sujective 

if the closure of Q(V) in W is K 

Proposition 2.4. Suppose that Q,: V + W is an almost surjective regular map between 

irreducible varieties. Let r = Dim (V) - Dim (W), then there exists an open set 0 c W 

such that 

(i) 0 c Q(V). 
(ii) For all irreducible closed subsets q c W such that q n 0 # 0 and for all com- 

ponents p of Q-‘(q) such that p n G-‘(O) # 0, Dim(p) = Dim (q) + r. 

Proposition 2.5. Let 4 : V + W be a regular map between two algebraic varieties, 

where W is irreducible and Dim(W) = n >O. Let VI and WI be two proper closed 

subvarieties of V and W, respectively, such that the restricted map 4 : V0 + WO, where 

V”=V-VI andW’=W-Wl,issuchthat 

(1) 4: V”+ W” is onto. 

(2) 4 has zero-dimensional fiber above each point of W”. 

(3) $!-I( WO) = v”. 

then Dim(Cl(W”))=Dim(Cl(Vo))= n, where CZ( W”) denotes the Zariski closure 

of wo. 
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Proof. Let V = % U -Y; U . . U 9% be the unique expression of V as a union of maxi- 

mal irreducible components, and let V6; = ?? - (VI n-Y;), for 1 < i < m. Notice 
&‘(WO)={V& . . . U V,“}. Let Vi be an element of {Vi U . . . U V,“} of maximal di- 

mension; Dim (VA) > n since V” maps onto W”. Restrict 4 to Vd; and notice that 4 has 

finite fiber in the image of its restriction. Also C1( V,) = c. Notice CZ(@(CI( VA))) = 

Wd;c W. Clearly, W,j is an irreducible subvariety of W. Let E = $(Cl( Vi)). By 

Proposition 2.4 there exists a non-empty Zariski open set 0 2 E. Let 0’ = (0 n ( Wi - 

WI)}; clearly 0’ C 0. Also &‘(O’) is dense in CI( Vi). Notice that for a point 

u E 0’, Dim (4-‘(u)) = 0. Set, d = &‘(O’), and notice that Dim (A) = Dim (CZ( Vi)). 

For any point p in d, Dim(c/-l(&p)))=O. Let $(p)=qEO’. Now q is a sin- 

gle point in 0’ and, by Proposition 2.4, Dim ($-l(q)) = Dim(q) + Dim(Cl( V,j)) - 

Dim (Wi). Since &l(q) is a finite number of points, and q is a single point, it fol- 

lows that 0 = 0 + Dim (Cl( VA)) - Dim ( Wi). Thus, Dim (Cl( Vd;)) = Dim (WA). Thus, 

Dim(Wi) > n. But Wi is a closed subvariety of W which happens to be an irre- 

ducible variety of dimension n. It follows thus that W,j = W, and consequently that 

Dim(CZ(Vd;))=n. 0 

Lemma 2.6. If 2, and b are as in Remark 2.3 then 

(i) @(C,(W,k) -S)=& andfor any point r~k; Dim(@-‘(r))=O. 

(ii) @(C,(-W,k) -S-)=6, andfor uny point r E d;,Dim(@-‘(r))=O. 

(iii) Dim (C,( W, k) - 5’) = Dim (k’) = 3n. 

(iv) Dim(C,(-W,k)-SP)=Dim(d)=3n. 

Proof. (i) and (ii) Bearing in mind the parity of k, (i) and (ii) are consequences of 

Corollary 1.9, the definition of the subvarieties S and S-, and the fact that matrices 

M other than -I with Tr(M) = -2 have the property that Q(p,M)= 8, whenever p 

is even (see Lemma 1.8). 

(iii) and (iv) Parts (iii) and (iv) follow directly from parts (i) and (ii) above, 

Proposition 2.5, the fact that Dim (R(F,)) = 3n, and that k’, 6 are quasi-affine subva- 

rieties of the irreducible variety R(F, ). 0 

Lemma 2.7. (i) Dim (@(S))<3n and 4(S+) is non-empty. 

(ii) Dim(@(S-))<3n and @(ST) is non-empty. 

Proof. (i) W is a non-trivial word in the free group on {XI,. . . ,x,}. Since a non- 

cyclic free group has a trivial center and embed into X&C (see [ 141) there exists 

some representation p E R(F,) with p(W) # il. But R(F,) is an irreducible variety of 

dimension 3n, and Q(S) a proper subvariety; it must be then that Dim (Q(S)) < 3n - 1. 

Observe that the trivial representation (I, Z, . , Z) lies in @(S+) and, that consequently, 

it is not empty. 

(ii) The proof of (ii) is essentially the same once Observation 2.2 is made. 0 
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Corollary 2.8. (i) Dim(S) 5 3n + 1. 

(ii) Dim(S-) < 3n + 1. 

Proof. (i) and (ii) These are direct consequences of Lemma 2.7, Observations 2.1 

and 2.2, together with Lemma 1.6. 0 

Lemma 2.9. (i) Dim(2T) < 3n - 1. 

(ii) Dim(-2T) 5 3n - 1. 

Proof. (i) and (ii) The trace conditions on 2T and -2T, respectively, give rise to 

two polynomial functions on R(F,) which are restrictions of polynomial functions in 

complex affine 4n-dimensional space. The varieties 2T and -2T are the respective 

vanishing sets of these polynomial functions. By [2, p. 981 there exists a p E R(F,,) 

with the property Tr(p( W)) # 2. Thus, 2T does not contain all of R(F,,). Notice that 

2T n R(F,) # Q) since the trivial representation lies in 2T. Thus, Dim (2T) 5 3n - 1. In 

a similar fashion, -2T does not contain all of R(F,), since the trivial representation 

is not in it. It follows then that Dim (-2T) < 3n - 1. 0 

Proposition 2.10. Let S be a proper subvariety of Some algebraic variety V. [f 
Dim( V - S) = n and Dim(S) > n, where n > 0 then V is reducible. 

Proof. Assume that V is irreducible. Let Dim( V -S) = n and Dim(S) = n. This implies 

that S is properly contained in V and has the same dimension as the presumedly 

irreducible variety V, a contradiction. On the other hand, If Dim(V - S)=n, and 

Dim(S)>n then V is reducible which is a contradiction. 0 

For the sake of compactness and generality, the statement and the proof of the next 

corollary will be made using the function introduced in (2.5). 

Corollary 0.3. Ifin Theorem 0.2a Max{Dim(P+)+2f(k), Dim(P_) +2} > 3n, then 

C,( W, k) is a reducible variety. 

Proof. Using Observation 2.1 and the fact that @(S+) = P+, and @(S_) = P-, it fol- 

lows that Dim(S) = Max{Dim (P+) + 2f(k), Dim(P_) + 2}, see (2.5). By Lemma 2.6, 

Dim(.Z,( W,k)-S) = 3n. Now, if Dim(S) > 3n an application of Proposition 2.10 yields 

the result. 0 

Again, in the statement of the next corollary the function in (2.5) is used. 

Corollary 2.11. Zfin Theorem 0.2b Max{Dim(P_)+2f(k),Dim(P+)+2} > 3n, then 

C,(- W, k) is a reducible variety. 

Proof. Use the above proof with minor modifications. 0 
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3. Examples 

Theorem 0.4. Let G huve presentation us in G = (a, b; ap = b’), where p, t > 2; then 

Dim (R(G)) = 4, and R(G) is reducible. 

Proof. Let @(S+) = {p 1 p E R(F, ) and p(aJ’) =I}, @(S_) = {p 1 p E R(F,) and p(aP) = 

-I}. By Lemma 1.6, Dim (@(S+)) = 2 if p >2, else if p = 2, Dim (@(S+)) = 0. By 

Lemma 1.6, Dim (Q(K)) = 2. Using the notation P+ = @(S+ ), P_ = @(S_ ) via The- 

orem 0.2 together with the function introduced in (2.5) it follows that Dim(R(G))= 

Max {Max{Dim(P+) + 2f(t),Dim(P_) + 2},3} (see (2.5)). Thus, Dim(R(G))= 

Max{4,3}, in other words. The reducibility follows from Corollary 0.3. 0 

If necessary, refer to the Introduction for the definitions of the “NZ property” and 

the “p-sequence” for a one-relator group with non-trivial center. 

Theorem 3.1. Let G be a one-relator group with non-trivial center having the NZ 

property; then 3 5 Dim (R(G)) < 4. 

Proof. By a result of Meskin et al. [lo] a group such as in (0.3) can also be presented 

as 

ff = (x,,x,+, I$? P2”‘Pm =Xti;“.4m, [xpf”‘Pk--I ,xz;;4m] 

= l,..., where k=2 ,..., m). (3.1) 

Notice that the group (3.1) is a proper quotient of a group G, that by Theorem 0.4 

has Dim (R(G)) = 4. So H is isomorphic to GIN where N is a normal subgroup of G. 

It follows then that Dim (R(H)) 5 Dim (R(G)) = 4. That 3 5 Dim (R(G)) follows from 

a result of Murasugi asserting that a one-relator group with non-trivial center (other 

than a finite cyclic group) is torsion free and two-generated (see [12]). Thus, the 

deficiency of G is one, and consequently, 3 < Dim (R(G)) (see [l 11). 0 

Next, an example will be given of infinite class of groups that are one-relator groups 

with non-trivial center failing to have the NZ property and with Dim (R(G)) 2 5. Let 

G, = (a, b; abma-’ = b”), (3.2) 

where m>3 is an integer. These non-abelian groups are one-relator groups with non- 

trivial center, and they are not isomorphic for different values of m. 
Consider the following class of groups 

pln = (x) * Znz, (3.3) 

consisting of the free product of an infinite cyclic group with a cyclic group of order 

m. Since the variety of representations of a free product is the product of the varieties 

of representations of the factors, R(P,,,) = (S&C) x Q(m,Z), and consequently, since 
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Q(m,I) is reducible, R(P,) is reducible of dimension five (see Lemma 1.6). In fact, 

the varieties are all non-isomorphic for different values of m. 

Observe that given p E R(P,) that p lies also in R(G,). Thus, R(P,) injects in R(G,), 

and consequently, Dim (R( G,)) > 5; that it is precisely five follows from the fact that 

a free group of rank two has an irreducible representation variety of dimension six, and 

consequently, no non-free group generated by two elements can have a representation 

variety of dimension six (see [7]). 

In the next theorem it will be shown that for the overwhelming majority of one- 

relator groups with non-trivial center and having the NZ property, the dimension of 

their representation variety is precisely four. 

Theorem 3.5. (i) If G is an one-relator group with non-trivial center and having the 

property that its p-sequence is of length greater or equal to two, and that some pi 

and qj are each greater than 2, then Dim (R(G)) = 4. 

(ii) If the p-sequence of G is of length one, then Dim (R(G)) = 4. 

Proof. (i) By [lo] G has a presentation as in (3.1). Consider the quotient of this presen- 

tation (3.1) by the normal subgroup N generated by the two elements 

x,? and ~2,~) where pi and q, are as in the theorem. Then, G/N” (x1,x,+1 / xf” = 1, 
‘I, 

%+I = 1). R(G/N) ” Q(pi,Z) x Q(qj,I) and is consequently a reducible variety of di- 

mension four (see Lemma 1.6). The fact that G maps onto a group with represen- 

tation variety of dimension four yields that Dim (R(G)) > 4, but by Theorem 3.1, 

Dim (R(G)) I 4. Thus, Dim (R(G)) = 4. 

(ii) If the p-sequence is of length one apply Theorem 0.4. 17 

Corollary 0.6. For G as in Theorem 0.5, R(G) is reducible. 

Proof. G maps onto a group G/N (see proof of Theorem 0.5) with a reducible 

algebraic variety of the same dimension as R(G); thus, R(G) must be reducible. 0 
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