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Abstract

The study demonstrates that the minimization of ammonia volatilization and urea recovery could be coupled through the use of physical
adsorption processes in continuous packed-bed columns. The potential of using microwave activated coconut shell based activated carbon toward
the recovery of urea from cattle urine was investigated. The prepared carbon was immobilized onto etched glass beads to investigate the effect of
initial concentration, flow rate and size of carbon support in a continuous, down-flow mode packed column. Further, to describe the sorption
behavior, the experimental data were tested against different kinetic models. The analysis of the breakthrough curves allowed identification of the
favorable operating parameters as: sorbate flow (8 L·h−1), initial urea concentration (60%) and glass bead support size (ϕ 1.5 cm). An equilibrium
sorption of 802.8 mg·g−1 and up to 80% urea recovery was observed. Regeneration studies allowed for nearly 95% urea recovery with sorbent
capacity decreasing by 5% over seven cycles of sorption/desorption.
© 2016 Tomsk Polytechnic University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer review under responsibility of Tomsk Polytechnic University.
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1. Introduction

It has long been recognized that there are certain physical
limits on the global availability of economically-valuable
natural resources underlying their potential exhaustibility [1].
However, for effective stewardship of earth’s resources, it is
evident that the economy–environment interaction must
acknowledge these ecological constraints. Despite this under-
standing, our industrial activities seem to operate contrary to
what is required for them to be sustainable. This phenomenon is
clearly evident in the procurement of minerals and resources by
the fertilizer industry which has tripled its output since the
1960s [2]. While technological modernization of agriculture
has allowed its intensification commensurate with synthetic
fertilizer use bringing the obvious benefits of increased food

production, the ecological degradation accompanying this has
been extensive and well-documented [3–5]. On the other hand,
sustainability, a human construct, has seen its comprehension
and applicability to various circumstances evolves continuously
over time. Sustainability in agricultural production systems is
now being seen through the lens of resource recovery where
enhancing crop productivity through resources recovered from
wastes is seen as a potential solution to ensure food security
[6–9].

Cattle urine is one such resource where nutrient recovery
would be beneficial. Feedlot cattle is known to retain less than
20% of dietary nitrogen (N) indicating that more than 80% of it
finds its way in cattle excreta [10]. Although 60–80% of this N
is excreted as urine, it undergoes rapid conversion thereafter to
result in ammonia volatilization. This loss of ammonia to the
environment contributes to its increased atmospheric concen-
tration as ammonium sulfate ((NH4)2SO4), ammonium nitrate
(NH4NO3) and ammonium chloride (NH4Cl) that are subse-
quently removed by dry and/or wet acid deposition [11]. Atmo-
spheric mobilization and deposition of NH3 have disturbed the
nutrient balance of natural ecosystems [12], induced acute tox-
icity and secondary metabolic changes in vegetation [13], and
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caused adverse effects on human health [14], and also represent
a continued economic loss to the farmer as unavailable soil
nutrients.

Indeed, several studies have been performed on developing
pathways to minimize these losses; they have focused on
dietary manipulation [15–18], use of inhibitors [19,20] and
in-situ soil amendment with charcoal/biochar following the
application of urine [21,22]. The objective of these studies has
either been restricted to reducing ammonia volatilization or
increasing the availability of ammonia-N subsequent to urine
application in soils. However, the direct application of cattle
urine, a fast acting fertilizer, has its downsides of increased soil
salinity, acidity and conductivity and in some cases, crop losses

[23,24]. Enclosure experiments in various studies have indi-
cated that 4–41% of the N applied from cattle urine may vola-
tilize following its application on arable soils [25,26]. Hence,
this study argues that an alternative strategy to inhibit such
emissions while simultaneously recovering urea-N from cattle
urine (ex-situ) for subsequent use as fertilizer could be through
the use of physical adsorption processes.

Biosorption using activated carbon (AC) prepared from
renewable agro-waste can be seen as a promising method for
urea recovery [27–30]. In our earlier investigations, batch
experiments were performed to demonstrate the efficiency of
AC toward urea recovery from urine [31–33]. The principal
objective of the present study was to demonstrate a continuous
process to recover urea from cattle urine through adsorption
using AC prepared from coconut shells. To perform this, we
focus on cyclic sorption/desorption that employs packed-bed
column which makes effective utilization of concentration dif-
ference, adsorbent capacity and, hence, results in better quality
effluent streams [34]. Moreover, a continuous packed-bed
column also has process engineering advantages of ease in
scale-up of the investigated procedure and can treat high
volumes of influent streams using a definite quantity of adsor-
bent. On the contrary, earlier studies have shown that regenera-
tion of AC and the cost of the sorbent is relatively high, which
subsequently limits its application. To this effect, immobiliza-
tion of AC onto a supporting material offers an efficient solu-
tion to the problems involved in separation processes [35].
Given their low cost, mechanical strength, and ease of surface
modification, this study uses etched glass beads as the support
material [36]; indeed, glass beads have found application as a
support material for several other immobilization studies
[36–39]. In particular, immobilization is well suited for non-
destructive recovery of substances and is relatively resistant in
chemical environment [35,40–42]. Hence, this study employs
immobilization of the prepared AC onto etched glass beads to
ease post-experimental recovery of the adsorbed urea.

2. Materials and methods

2.1. Urine: collection and characterization

The urine specimen was collected from four Indian dairy
cows (diet consisted exclusively of grazed grass) while the
animal was indoor for milking. Collection was carried out two
to three times per day for a period of 7 consecutive days using
polyethylene buckets. The urine was immediately transferred to
the laboratory in sterile polypropylene containers and stored at
−15°C until required. Following the period of collection, all
samples were thawed, thoroughly mixed and immediately uti-
lized in the adsorption column. Initially, the urine was charac-
terized for its total-N and urea-N concentrations.

2.2. Sorbent preparation

2.2.1. Activated carbon
Activated carbon (AC) was prepared from coconut shells as

described in an earlier study [31]. Initially, coconut shells were
washed with distilled water, air dried at 110°C for 24 h in a tray
dryer and crushed in a roll mill to particle size fractions of

Nomenclature

A Area under break through curve [m2]
Cads Adsorbed urea concentration [g·L−1]
Cb Breakthrough concentration [mg·L−1]
Co Inlet sorbate concentration [g·L−1]
Ct Outlet sorbate concentration [g·L−1]
EBCT Empty bed contact time [min]
kAB Adams–Bohart kinetic constant [L·mg−1min−1]
kTh Thomas rate constant [L·mg−1]
kYN Yoon–Nelson rate constant [min−1]
Ka Rate constant [L·mg−1min−1]
mtotal Total amount of urea fed to the column [mg]
N Number of sorption runs
N0 Saturation concentration [mg·L−1]
qc Column capacity [mg]
qeq Equilibrium uptake or maximum column

capacity [mg·g−1]
qexp Experimental uptake or maximum column

capacity [mg·g−1]
qpred Predicted uptake or maximum column capacity

[mg·g−1]
q0 Maximum solid-phase concentration of the

solute [mg·g−1]
Q Flow rate [mL·min−1]
R2 Coefficient of determination
tb Breakthrough time [min]
te Bed exhaustion time [min]
ttotal Total flow time [min]
U0 Linear velocity from Adams–Bohart model

[cm·min−1]
v Flow rate [mL·min−1]
V Velocity [cm min−1]
Δt Mass transfer zone [min]
t or τexp Time required for 50% of adsorbate

break-through [min]
X Total mass of adsorbent in the column [g]
Υ Linear velocity [cm min−1]
Z Bed height [cm]
Zm Length of the mass transfer zone [cm]
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1–2 cm. Subsequently, they were subjected to microwave acti-
vation in a domestic microwave (CE104VD – Samsung, Malay-
sia) at an output power of 360 W for 15 min and further
carbonized in an industrial high temperature furnace (T-14/
HTF-1400, Technico, India) at 500 °C (heating rate of 22 °C
min−1) for 2 h. TheAC obtained was further reduced to a size of

100 mesh (1 mm) using a ball mill operated at 83 rev·min−1

(Deepthi Enterprise, Bangalore, India) and stored in plastic
air-tight containers for further analyses.

2.2.2. Immobilization
Initially, the procured glass beads (ϕ 1.5 and 2.2 cm) were

washed with double distilled water for 2 h. Subsequently, the
glass beads were etched with dilute hydrofluoric acid (5% v/v)
for 1 h. Slurry of synthetic epoxy resin in deionized water (10%
v/v) was prepared and continuously mixed for 30 min. The
etched glass beads were then immersed in the slurry for 15 min.
Following this, uniform epoxy coating was ensured by using a
Gel Rocker (Xitij Instruments Pvt. Ltd, Pune, India) for 20 min;
lastly, the AC prepared was surface coated and immobilized in
the Gel Rocker for 15 min and left for a while to ensure no air
bubbles are present. TheAC coated glass beads were oven dried
at 110 °C for 2 h and washed with doubled distilled water for
the removal of any free AC particles prior to their use in the
column. Thickness of theAC film on the glass beads was 2 mm.
The immobilization procedure followed is illustrated in Fig. 1.

2.3. Adsorption experiments

A Pyrex glass column of 80 cm height and internal diameter
of 4 cm served as the sorption unit (Fig. 2). The ends of the
column were provided with a sintered glass filter, stainless steel
sieve plate and glass wool. Glass beads immobilized with AC
were then randomly packed into the column. The column was
connected to two covered liquid-holding tanks to hold the
working solutions, cattle urine and deionized water. Prior to the
sorption experiment, the bed was rinsed with deionized water in

Immersion in epoxy 
resin slurry, 15 min

Beads are oven 
dried at 110°C

Removal of 
Fines with water 

Immobilized Activated Carbon on
Etched Glass Beads

Double     
Distilled 
Water 

Glass Beads 

Stirring, 2h Etching with HF 
(5% v/v), 1 h

Epoxy coating, 20 min

Carbon Coating, 15 min

Fig. 1. Schematic diagram for immobilization procedure of the AC.

Fig. 2. Schematic diagram for urea sorption onto immobilized AC in continuous packed column.
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up-flowmode until no air bubbles could be seen [43]. Following
this, sorption experiments were performed by pumping cattle
urine in downward flow mode using peristaltic pump (PP10EX,
Miclins, India). To estimate the effluent urea concentration, at
every 5 min time interval, 3 mL aliquots were withdrawn, fil-
tered through a 0.45 μm Ministat filter (Sartorius Stedim
Biotech GmbH, Germany) and monitored for change in absor-
bance (at 430 nm) by a UV-Vis spectrophotometer [44]. This
process was repeated until the establishment of sorption equi-
librium. An array of experiments was performed on the column
to understand the sorption dynamics by varying initial urea
concentration in urine (20%–2.3 g·L−1, 40%–4.6 g·L−1, 60%–
6.9 g·L−1, 80%–9.2 g·L−1 and 100%–11.5 g·L−1), inlet adsorbate
flow rate (2–10 L·h−1) and diameter of the glass beads (1.5 and
2.2 cm). Initial urea concentration was varied through dilution
of cattle urine with distilled water. The column was operated
under laboratory conditions at 23 ± 1°C; the temperature was
fixed based on the results of previous investigations where urea
uptake was found to decrease with increasing temperature [32].

2.4. Regeneration

Column regeneration is crucial to process economics. It
must allow for production of small volumes of sorbate concen-
trates to ease post-column urea recovery without damaging the
sorbent capacity making it reusable for several adsorption–
desorption cycles [45]. In order to recover the adsorbed urea,
regeneration studies were performed on the exhausted column.
Given the unsuitability of high temperature thermal regenera-
tion process or chemical reagents toward recovery of volatile
organics [46], the present study examines the use of deionized
water as a suitable desorption fluid. In our previous batch
experiments on carbon regeneration, deionized was shown to be
a promising solvent for urea desorption [33]. Hence, deionized
water was pumped in up-flow mode at 2 L·h−1 (based on initial
studies) through the saturated column with eluted urea concen-
tration measured similar to the procedure followed for the
adsorption runs. Regeneration was ceased when a 5% loss in
sorption capacity of the regeneratedAC was observed. In all the
experimental runs, this cut-off value (5%) was attained by the
end of the seventh adsorption–desorption cycle.

2.5. Dynamic column analysis

In a column adsorption system, maximum adsorption and
concentration of adsorbate molecules occur in the adsorbent
positioned closest to the inlet sorbate flow. As the sorbate solu-
tion passes through the packed column, this adsorption zone
moves further down [47]. After its breakthrough at the exhaus-
tion point, this zone moves out of the column where exit con-
centration becomes equal to that of the inlet feed. The time for
breakthrough and shape of the breakthrough curves are very
important to understand the dynamics and performance of the
column. The breakthrough curves were plotted to express the
relation between the ratio of effluent (Ct; mg·L−1) and feed urea
concentration (C0; mg·L−1) with time (t; min). The adsorbed
urea concentration (Cads; mg·L−1) was calculated as Cads = C0 -
Ct. Further, area under the breakthrough curve (A) obtained by

integrating the adsorbed urea concentration with time was used
to find the maximum column capacity (qc; g). The total
adsorbed urea in the column for a given flow rate (Q;
mL·min−1), inlet feed concentration and column operating time
(ttotal; min) was determined by Eq. 1 [48].

q
QA Q

C dtc ads

ttotal

= ⎛
⎝⎜

⎞
⎠⎟ = ∫1000 1000 0

(1)

The total urea sent (mtotal; g) to the column was calculated as
in Eq. 2 [49]. Further, the equilibrium urea uptake (qe; mg·g−1),
defined as the total amount of urea adsorbed by the column (qc;
mg·g−1) per gram of sorbent (X) at the end of total flow time,
was estimated by Eq. 3 [40]. The total urea adsorption (%) was
calculated from Eq. 4 [35].
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The mass transfer zone (Δt; min) is the difference between
the bed exhaustion time te (time for effluent urea concentration
to reach 95% of the influent concentration) and the break-
through time tb [50]. The length of the mass transfer zone (Zm)
was calculated by Eq. 5, where Z is the bed height [51]. The
empty bed residence time (EBRT; min) is the time required for
the sorbate solution to fill the empty column (Eq. 6).

Z Z
t

t
m

b

e

= ⋅ −⎛
⎝⎜

⎞
⎠⎟1 (5)

EBRT
Bed volume

Volumetric flow rate of the liquid
= (6)

2.6. Sorption modeling

To describe the sorption of various sorbate molecules,
several empirical models have been developed [40,47,52]. In
the present investigation, the dynamic behavior of the column
was predicted with Adams–Bohart, Thomas and Yoon–Nelson
models. The Adams–Bohart model describes the initial section
of the breakthrough curves between 10% and 50% of the satu-
ration points and assumes that adsorption rate is proportional to
both the residual capacity of the adsorbent and the concentra-
tion of the adsorbing species [53] and is expressed as in Eq. 7.

ln
C

C
k C t

k N Z

U
t

AB
AB

0
0

0

0

⎛
⎝⎜

⎞
⎠⎟ = − ⎛

⎝⎜
⎞
⎠⎟

(7)

where C0 and Ct (mg·L−1) are inlet and effluent urea
concentration, Uo is the linear velocity (cm·min−1) defined as
the ratio of volumetric flow rate to bed cross-sectional area, kAB

is the kinetic constant (L·mg−1min−1), and N0 is the saturation
concentration (mg·L−1). The Thomas model suited for systems
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where breakthrough occurs immediately following column
operation was used in its linearized form through Eq. 8 [54].
The kinetic coefficient kTh (L·mg−1h−1) and maximum solid-
phase concentration of urea in the column, qo (mg·g−1), were
determined by the plot of Ct/C0 versus time.

ln
C

C

k q m

Q
k C t

t

Th
Th

0 0
01−⎛

⎝⎜
⎞
⎠⎟ = ⎛

⎝⎜
⎞
⎠⎟ − (8)

TheYoon–Nelson model, widely used for single-component
systems, is based on the assumption that rate of decrease in
probability of sorption of adsorbate molecule is proportional to
the probability of the adsorbate adsorption and adsorbate break-
through on the adsorbent [55]. The linearized form of the model
was used as expressed in Eq. 9. A linear plot of ln(Ct /(C0 - Ct))
against time (t) was used to determine kYN, theYoon–Nelson rate
constant (min-1) and τ, the time required (min) for 50% of
adsorbate breakthrough.

ln
C

C C
k t kt

t
YN YN

0 −
⎛
⎝⎜

⎞
⎠⎟ = − τ (9)

2.7. Data analysis and processing

All the experiments were performed in triplicate. Urea
absorbance measurements were performed by UV-vis
spectrophotometry for all experimental runs at a photometric
accuracy of ±0.002 Abs, photometric repeatability of ±0.001
Abs and noise level of 0.002 Abs. The limit of detection (LoD)
and limit of quantitation (LoQ) were calculated based on standard
deviation of the responses and the slope of three independent
analytical curves to be 0.1002 and 0.303 mg·L−1, respectively.
Statistical analysis of the sorption runs was performed using
MATLAB® and the deviations were within 5%. For all
visualizations, mean values have been used and reported. Further,
in order to determine which sorption model best described the
urea sorption within the column, the coefficient of determination
(R2), root mean square error (RMSE) and chi-square (χ2)
were calculated (Eq. 10 and Eq. 11). qexp,i and qpre,i are the ‘ith’
experimental and predicted urea sorption capacity (mg·g−1),
respectively; n is the number of observations and N is the
number of constants in the sorption model. Further, to better
gauge the goodness of fit of the experimental data against
the sorption models, normalized deviation and normalized
standard deviation were also calculated as in Eq. 12 and Eq. 13
[56].
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n
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n

q q

q
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e exp
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∑100

(12)

Normalized Std Deviation
q q q

n
e exp e pred e exp=

−( ) )( ) ( ) ( )∑100
2

(13)

3. Results and discussion

3.1. Sorbate and sorbent characterization

The total N concentration of the urine samples determined
by Kjeldahl analysis was found to be 6.9 g·L−1 while urea-N
was 5.38 g·L−1. Initial urea concentration of the cattle urine was
hence found to be 11.5 g·L−1 and urea-N contributed to 77.9%
of the total N, a proportion consistent with observations made
in other studies [57,58]. It was observed that ca 16% of the N
gets lost as ammonia-N if urine is stored at room temperature;
however, no loss of ammonia-N was noticed during storage at
−15°C. Moreover, The physical and chemical properties of the
preparedACwere determined as described earlier [31] and have
been summarized in Table 1.

3.2. Influence of flow rate

Influence of flow rate (2–10 L·h−1) on the column
breakthrough was examined at an initial urea concentration of
60% for a column packed with 1.5 cm AC spheres (Fig. 3). All
flow rates considered in the study gave gentle breakthrough
curves for the prepared AC. As seen in the figure, breakthrough
occurs faster as flow rate increases, with breakthrough time
decreasing from 112 to 65 min. Moreover, the corresponding
percentage adsorption (or urea removal efficiency) was seen to
drop from 83.53 to 79.81%. This is expected, as lower flow rate
(or high EBRT) allows slower diffusion of the sorbate ensuring
that the sorbent has greater time to come in contact with the urea
molecules [40]. However, even at high flow rates, the contact
time was sufficient enough to allow efficient urea recovery from
the column (Table 2). In addition, the resultant column and
equilibrium adsorption capacity were found to increase as
flow rate increased from 2 L·h−1 (298.1 mg·g−1) to 10 L·h−1

(918.6 mg·g−1). This suggested that the process was external
mass transfer controlledwith higher flow rate decreasing the film
resistance [59]. Since the percentage urea removal did not differ

Table 1
Physical and chemical properties of the prepared AC.

Property Value

Apparent density (g·cm−3) 0.39
Yield (%) 25.81
pH 8.23
Electrical conductivity (dS·m−1) 0.12
Ash content (%) 0.63
Carbon (%) 49.51
Sulfur (%) 0.58
Hydrogen (%) 7.11
Nitrogen + oxygen (%)* 42.17
Surface area (BET; m2·g−1) 1032
Pore volume (cm3·g−1) 0.28
Size of AC support (ϕ, cm) 1.5, 2.2
Thickness of immobilized AC film (mm) 2

* Estimated by difference
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significantly for the flow rates investigated, through observations
of the column breakthrough times and equilibrium sorption
capacity, 8 L·h−1 is suggested as a good sorbate flow rate.

3.3. Influence of concentration

The effect of varying initial urea concentration in the sorbate
(20–100%) examined at a flow rate of 10 L·h−1 with AC immo-
bilized on glass spheres of 2.2 cm diameter is shown through
the breakthrough curve. As seen in Fig. 4, breakthrough time
decreased (123 to 46 min) with increasing urea concentration
and sharp breakthrough curves were observed at high concen-
tration, indicating the diffusion was concentration dependent
[40]. At higher inlet concentration, the urea loading rate
increases which subsequently increases the driving force for
mass transfer and decreases the adsorption zone length [45].

Moreover, the adsorption capacity is expected to increase due to
higher concentration difference, driving the mass transfer, and a
similar trend was observed with highest sorption (878.7 mg·g−1)
occurring at 100% feed concentration. In addition, as shown in
Table 2, the removal efficiency was higher for lower inlet urea
concentration, with inlet concentration of 20 and 100% result-
ing in 79.58 and 73.42% removal, respectively. The results were
in agreement with other studies on packed-bed adsorption
systems for AC [40,45,60]. Based on these observations, 60%
initial concentration is suggested as the operating condition for
urea removal from cattle urine.

3.4. Influence of carbon support

The effect of size ofAC support on the column breakthrough
was examined by varying the diameter of the etched glass beads

0

0.25

0.5

0.75

1

0 50 100 150 200 250
t (min)

Ct
 / 

C0
 

2 L/h

4 L/h

6 L/h

8 L/h

10 L/h

Fig. 3. Column breakthrough curves at various flow rates (C0: 60%, glass
sphere diameter: 1.5 cm).

Table 2
Effect of various process variables on operation of the immobilized sorption column.

Run Initial conc.
(%)

Flow rate
(L·h−1)

Support size
(cm)

tb

(min)
te

(min)
Δt
(min)

EBCT
(min)

qc

(g)
qe

†

(mg·g−1)
Adsorption
(%)

1 20 6 2.2 123 210 87 9.05 28 357.4 ± 4.23 79.58
2 40 98 160 62 9.05 46 580.3 ± 5.65 78.84
3 60 66 100 34 9.05 49 596.2 ± 4.95 77.47
4 80 51 85 34 9.05 52 658.3 ± 6.46 74.45
5 100 46 80 34 9.05 56 713.2 ± 6.26 73.42
6 20 10 1.5 116 190 74 5.43 42 538.6 ± 5.50 74.09
7 2.2 107 185 78 5.43 44 480.6 ± 4.16 73.82
8 60 1.5 65 100 35 5.43 80 918.6 ± 8.25 79.81
9 2.2 75 95 20 5.43 72 868.1 ± 7.82 78.06
10 100 1.5 41 80 39 5.43 92 991.5 ± 8.42 77.15
11 2.2 33 70 37 5.43 69 878.7 ± 6.18 62.16
12 60 2 1.5 112 180 68 27.1 28 298.1 ± 4.35 83.53
13 4 104 155 51 13.5 48 517.2 ± 5.85 82.13
14 6 85 130 45 9.05 61 660.9 ± 5.65 81.68
15 8 78 120 42 6.78 74 802.8 ± 7.78 80.55

† Values of mean ± standard error, n-3 per treatment group.

0

0.25

0.5

0.75

1

0 50 100 150 200 250
t (min)

Ct
 / 

C0

100%

80%

60%

40%

20%

Fig. 4. Column breakthrough curves at various inlet concentrations (glass
sphere size = ϕ 2.2 cm, flow rate = 6 L·h−1).
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(1.5 and 2.2 cm) at a flow rate of 10 L·h−1 and three different
initial urea concentrations (20, 60 and 100%). As seen through
the breakthrough curves (Fig. 5), a larger adsorbent support size
leads to an earlier breakthrough with the slope of the curves
increasing with a decrease in the diameter of the glass beads.
The smaller the diameter of the support, the higher is the total
external surface area per unit volume available for initial mass
transfer and, subsequently, urea sorption [59]. The larger the
support, the smaller is the surface area available and, hence,
initial mass transfer rate with an earlier breakthrough. As seen
in Table 2, for smaller support (ϕ 1.5 cm), the capacity was
higher due to faster rate of adsorption. As expected, the same
trend was also followed for varied inlet urea concentration.

3.5. Modeling the column breakthrough

The sorption data were tested against various kinetic models
to determine model parameters for urea adsorption on AC

immobilized onto glass beads and is presented in Table 3. As
seen, both kTh and q0 were found to increase with flow rate
although lesser urea removal occurs. Moreover, deviations of
the experimental data against the predicted values were
observed at higher flow rates. The increase in inlet concentra-
tion and size of the AC support allowed for higher urea adsorp-
tion. For the Thomas model, the correlation between Ct/C0 and
time was found to be significant (Eq. 8) with R2 values ranging
from 0.82 to 0.95. This is expected as the Thomas model suits
sorption where diffusion (both, external and internal) is not the
limiting step [35]. For theYoon–Nelson model, the rate velocity
constant (kYN) increased while time for 50% breakthrough (τ)
decreased for both, increasing flow rate and urea concentration.
Similar observations have been reported by Ahmad and
Hameed [40] as well as Aksu and Gönen [35]. Moreover, the
Yoon–Nelson model was able to provide good correlation to the
effect of AC support size, with τ values significantly similar to
experimental observations. The Adams–Bohart model as
applied through Eq. 7 was used to determine kAB and N0 values
along with the coefficient of determination (R2 > 0.86) as
shown in Table 3. N0 increased with sorbate flow rate and initial
urea concentration although no significant effect was seen with
change in AC support size except at 100% initial urea concen-
tration in the sorbate. Moreover, kAB was influenced by flow rate
further indicating that sorption kinetics was dominated by
external mass transfer in the initial stages.At various conditions
examined, both the Thomas andAdams–Bohart model provided
good fit (R2 > 0.82) to the column experimental data. For the
Thomas,Yoon–Nelson andAdams–Bohart models, the normal-
ized deviation was calculated as 5.52, 14.58 and 5.14 (Eq. 12)
and the normalized standard deviation was calculated as 7.04,
48.35 and 6.82 (Eq. 13), respectively. Hence it can be con-
cluded that the urea sorption process for the packed-bed
column was better described by the Adams–Bohart model.

3.6. Regeneration studies

Column regeneration studies were performed for seven
cycles of adsorption–desorption using deionized water pumped
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Fig. 5. Column breakthrough curves at various glass sphere sizes and inlet
concentration (flow rate = 10 L·h−1).

Table 3
Model parameters and goodness of fit of the experimental sorption data against various kinetic equations.

Run† Thomas model Yoon–Nelson model Adams–Bohart model

kTh q0 R2 RMSE χ2 kYN τ R2 RMSE χ2 kAB N0 R2 RMSE χ2

1 0.019 361.9 0.842 1.093 1.274 0.037 149.3 0.842 1.093 1.274 0.012 43.52 0.866 0.632 0.426
2 0.012 584.2 0.824 1.149 1.434 0.046 120.5 0.824 1.150 1.434 0.007 51.03 0.868 0.617 0.825
3 0.013 578.8 0.853 1.084 1.328 0.074 79.62 0.853 1.063 1.273 0.008 67.91 0.912 0.532 0.318
4 0.011 619.5 0.893 0.896 0.925 0.084 67.45 0.893 0.896 0.925 0.007 75.19 0.906 0.562 0.362
5 0.009 703.1 0.868 0.952 1.057 0.088 58.01 0.868 0.951 1.057 0.005 86.07 0.919 0.453 0.237
6 0.021 482.6 0.858 1.267 1.727 0.040 140.8 0.883 1.267 1.727 0.013 68.62 0.877 0.629 0.845
7 0.023 539.6 0.876 1.148 1.423 0.044 133.6 0.876 1.148 1.423 0.015 63.55 0.897 0.613 0.807
8 0.011 885.3 0.851 1.095 1.332 0.064 86.11 0.816 1.085 1.332 0.007 120.8 0.901 0.506 0.287
9 0.014 959.1 0.879 1.165 1.521 0.082 79.15 0.879 1.165 1.522 0.009 113.0 0.902 0.762 0.647
10 0.009 991.9 0.862 0.826 0.803 0.086 57.88 0.882 0.806 0.758 0.006 138.1 0.936 0.385 0.173
11 0.012 914.3 0.877 0.825 0.808 0.114 45.27 0.921 0.804 0.718 0.007 113.3 0.897 0.592 0.412
12 0.007 303.5 0.888 0.929 0.927 0.042 147.6 0.888 0.929 0.927 0.005 40.13 0.934 0.480 0.247
13 0.008 436.4 0.947 1.138 1.409 0.048 130.1 0.828 1.138 1.409 0.006 70.85 0.897 0.588 0.376
14 0.009 692.1 0.821 1.082 1.298 0.054 112.1 0.820 1.082 1.298 0.006 90.55 0.906 0.526 0.305
15 0.010 834.8 0.838 1.087 1.322 0.057 101.5 0.818 1.087 1.325 0.007 110.7 0.894 0.552 0.339

† Specific experimental conditions for each run have been provided in Table 2; R2: coefficient of determination; RMSE: root mean square error; χ2: chi-square.
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up-flow at 2 L·h−1. Fig. 6 shows the trend for collected volume
of eluent against the concentration of recovered urea from the
column. The results indicate a sharp increase in urea concen-
tration at the commencement of deionized water elution, with
maximum concentration of 9.94 g·mL−1 which was 11-fold the
inlet urea concentration. During the elution, 50% urea desorp-
tion was achieved using 55 mL eluent volume with urea recov-
ery attaining equilibrium at ~120 mL deionized water. It was
observed that nearly 95% of the adsorbed urea can be easily
eluted and recovered from the column indicating the reversible
nature of the urea sorption as well as the ability of the sorbent
to be used multiple times.A loss of 5% in uptake capacity of the
sorbent was observed at the end of seven cycles.

In order to recover or utilize the concentrated urea from the
eluant, two pathways are suggested: direct application (follow-
ing dilution with water) as a liquid fertilizer on arable land or
through drying and crystallization operations to produce solid
urea as this would ease its storage and transportation. It is
acknowledged here that the purpose of the regeneration experi-
ments was to demonstrate the reuse potential of the column as
well as show a pathway for urea recovery. Given the non-
selective nature of any physical adsorption process, further
purification would be required in order to meet regulatory stan-
dards or market specifications.

4. Conclusions

Coconut shell based AC immobilized onto etched glass
beads was effective in recovering urea from cattle urine. The
favorable operating parameters were sorbate flow: 8 L·h−1,
initial urea concentration: 60%, and glass bead support size:
1.5 cm. The column allowed an equilibrium adsorption of
802.8 mg·g−1, column capacity of 74.2 g and >80% urea recov-
ery. De-ionized water recovered nearly 95% of the adsorbed

urea during regeneration. Over seven sorption–desorption
cycles, loss in uptake capacity of sorbent was less than 5%.
Further, it is also the recommendation of this study that the
results obtained by various authors working on nutrient recov-
ery technologies in the purview of sustainable agriculture be
analyzed in a systems perspective and with the aid of tools like
life cycle analysis. A systemic analysis of the socio-economic
and environmental benefits as well as costs of the proposed
technological solutions against the conventional (industrial) fer-
tilizer manufacturing process would allow two significant con-
clusions to be drawn: (i) it would reveal where, and to what
extent, different steps in the nutrient cycle could be improved
by the proposed solution(s); (ii) further, it could potentially
establish the overall competitiveness of the solutions against
conventional processes and provide evidence to support the
notion of alternative fertilization.
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