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Almtract--The finite element method is used to describe the detailed properties of the atmospheric 
boundary layer by use of a high-resolution model and its bulk properties by use of a simple vertically 
integrated model. Features of the finite element method that can be exploited for applications to the 
atmospheric boundary layer include the capability to use different basis functions in different parts of the 
domain, ability to grid over irregular terrain, ease of using time-dependent basis functions and the natural 
way that surface boundary conditions and vertically integrated properties enter the model. 

1. I N T R O D U C T I O N  

The atmospheric boundary layer is that part of the atmosphere that is directly influenced by the 
turbulence generated by thermal and mechanical interaction with the earth's surface. The depth 
of  this boundary layer varies from about a 100 m under stable, nighttime conditions to over 3 km 
under highly convective daytime conditions at low latitudes. Above this region, stress on  the flow 
arising from the fluid interactions with the surface is assumed to be negligible. 

The atmospheric boundary layer is where we live, raise our crops, dispose of our air pollutants, 
put up our windmills, land our airplanes, build our buildings, beam our electromagnetic 
communication signals and carry on a host of other activities that are influenced by the mean and 
turbulent properties of the fluid environment. Furthermore, the boundary layer is the gateway for 
interchange of  heat, momentum, moisture and trace gases between the surface and the rest of  the 
atmosphere. Improved understanding of  the atmospheric boundary layer may be a key to extending 
the general predictability of  the atmosphere by replacing some of  the dependence on initial 
conditions with dependence on boundary conditions, thereby reducing the accuracy degradation 
of the initial-value problem. 

We have used the finite element method to produce numerical solutions to the boundary-layer 
equations for several flows of  interest. In Section 2, we present the basic equations for a 
high-resolution model of the atmospheric boundary layer, their formulation in the finite element 
representation and some applications we have made to one- and two-dimensional problems of 
interest in boundary-layer meteorology. In Section 3 we describe a vertically integrated model cast 
in the Galerkin finite element method and an application to the stable boundary layer. 

2. H I G H - R E S O L U T I O N  MODEL 

We have developed a high-resolution atmospheric boundary-layer model for application to 
problems requiring detailed knowledge of the structure of the mean and turbulent flow near the 
earth. The basic model we use is an extension of the two-dimensional finite element model 
developed by Chane t  al. [1]. We represent the mean two-dimensional (vertical and one horizontal) 
fluid properties of  the dry atmospheric boundary layer by the hydrostatic, incompressible 
Boussinesq equations, which are applicable to a fluid experiencing shallow convection with vertical 
scales of  motion about an order of magnitude less than horizontal scales. A brief outline of the 
model and its representation in the finite element formulation is presented below. 
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Governing Equations 

The fluid velocity components are represented by u, v and w (w being the vertical velocity), 0 
is the potential temperature, and rt is the Exner pressure function. Values of 0 and n are related 
to measured temperature (T) and pressure (p) by the following: 

- oXRd/c~ 
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where P0 is the surface reference pressure, Ra is the specific gas constant for dry air and eva is the 
specific heat capacity at constant pressure for dry air. The potential temperature and Exner 
function are decomposed into a steady, basic-state component (denoted by subscript zero) and a 
deviation (denoted by a prime): 

0 = 0 0 + 0 '  and n = n o + n ' .  

Velocity components are considered to have grid-volume mean values denoted by an over bar. The 
basic equations are then [2]: 

at  = - u ~x  - W ~z  - O o --~--~x + -~x \ c3 x ] + -~z K p + f ( 6 - -  v g ) , (1) 

a--i=-u~-W~z+~x[Kx~x)+~z\ azj+f(u,-a), (2) 
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The acceleration due to gravity is given by go, and the large-scale pressure gradient terra is replaced 
by the geostrophic-wind approximation (ug, vg). We have used the gradient transfer approximation 
to represent the dominant Reynold's stress terms. The vertical turbulent exchange coefficients, Kz, 
for momentum (K m) and heat (K h) are determined by the Kolmogorov equation, K = c g  1/21 [3], 
where E is the turbulence kinetic energy and l is a characteristic length scale determined 
diagnostically by the method of Therry and Lacarrere [4]. We use a value of 0.52 for c. The equation 
for g is 

O---t = -U-~x - "~z +-~x K~x Ox]  Oz r='-~z 

m K h g ° l - - a E 3 / 2 / l ,  (6) 
+ r z  ~ k a z / j  - - 00az  

where a = 0.14. The last three terms represent, respectively, generation of • by shear production, 
generation by buoyancy and dissipation. Transport by pressure velocity correlations are parame- 
terized by diffusion. The Kx diffusion terms in equations (1), (2), (5) and (6) represent horizontal 
smoothing, and have little physical basis. 

Finite Element  Representation 

The finite element method is used to approximate the' solution to the governing differential 
equations by use of the following expansions: 

9 
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and 

4 
~'(t, x, z) ~ ~(t, x, z) =- ~, ~(t)q~,(x, z), (8) 

i=1 

where q represents any of the five dependent variables u, v, w, 0' or E; ~'s represent the nine-node 
biquadratic shape functions; and ~b s represent the shape functions for pressure, which may be either 
bilinear (i = 1 . . . . .  4) or biquadratic (i = 1 . . . . .  9). The Galerkin method is applied to the 
prognostic equations and the least-squares method is applied to the diagnostic equations. We 
substitute equations (7) and (8) into equations (1)-(5), multiply by the appropriate shape function 
as weight, and integrate over the element domain, f~,, to obtain the following equations [5]: 

,=,L-d- f .~ '%dA +fi' \ ' dx + ' dz -~x -~x +Km dz dz IdA 

- ~  O°~'krf "JO~-~dA- rr f v . , j d A k = ,  j j n  ,~., d j n .  ( j : l , 2  . . . .  ,9), (9) 

F + K r  + + 
\ ' d x  ' d z  ~ x  Fz ~/ I 

- - - - i= l  + ej~Kx~xnx+K'-~zn')dl 
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, k =  R dz dx . . . .  

and 
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Green's theorem has been used on the diffusion terms to eliminate the second derivative. In the 
nonlinear terms, the advection speeds (unsubscripted u and w) in equations (9), (10) and (13) are 
taken as the values from the previous time step. The boundaries of the element domain, ~,, are 
given by F~ and F~, which represent, respectively, those portions of the boundary of the element 
on which the momentum fluxes 

I m dU dU dV m dV ] 
Kx ~x,K~, ~z in equation (9) and K~-~x'K" ~z in equation (10) 

and heat fluxes 

d0' h dO' 1 K~--~- x and K~-~- z in equation(13) 
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are specified. The equation for E is solved by the method of fractional steps, as described by 
Mailhot and Benoit [6], in which we first neglect advection and diffusion and find an intermediate 
value from 

Ot = PE 1/2 _ DE~/e, (14) 

where P is the coefficient of the production term and D is the coefficient of the dissipation term 
[3]. We then solve the equation 

ot- u -wN+Fx\ Oz] 
by use of the finite element method for the final value of E, which gives 

FdEi ffn fin (u~eOtPi w~eO~t'i Km O~JO~li +Km ~___j~i~ 1 i=t[_dt ~Pi~PjdA+Ei \ J c~x + J c~z + Ox Ox az Oz,]dA 
e • 

=fr ~PJ(K~x~xnx+Km~zn~) dl ( j = l , 2  . . . . .  9), (16) 

where F~ is that portion of the boundary of element e where the normal derivative of E is specified. 
A modified Crank-Nicholson scheme is used to convert the ordinary differential equations in time 
to algebraic equations [5]. 

Applications 

Stratified flow 
The model has been applied to both unstable and stably stratified flow in the atmospheric 

boundary layer. A summary of past reports and some recent results shows the versatility of the 
model. 

Unstableflow--the sea breeze. We have applied the finite element model to the time-dependent 
sea-breeze circulation. The domain consists of 105 nine-node elements (465 total nodes) covering 
a domain 89 km in the horizontal direction perpendicular to the coast and 2 km in the vertical. 
Nodal spacing in the vertical ranges from 4 m near the surface to 300 m near the top of the domain. 
In the horizontal direction, nodal spacing is 2.5 km near the shore and 4km at the domain 
boundary. We specify a surface roughness (z0) of 0.05 m over the land and 0.015 m over the sea. 
The initial wind field is driven from the top by a 2.5 m/s geostrophic wind in the off-shore direction. 
The initial temperature field is neutral from the surface to 160 m and stable (d0/dz = 0.0076 K/m) 
from 160 to 2000 m. We simulate heating over the land by specifying the surface temperature to 
have a sinusoidal time dependence, increasing from zero at t = 0 to a maximum amplitude of 10°C 
at t = 6 h. The surface temperature over the water is held constant in time. 

A sample of the results is shown in Fig. 1, where the wind field 5 h after sunrise is presented. 
The heating over the land has produced an increase in temperature that results in a maximum 
pressure gradient at the shore. At the time shown, the gradient has increased to the point that the 
initial left-to-right flow has been reversed immediately off-shore, creating on-shore flow and a 
sea-breeze front 7 km inland. The updraft maximum is located 2.5 km from the shore at about 
350 m above the surface and has a value in excess of 10 cm/s. These results show somewhat weaker 
on-shore flow than the earlier simulations of Chang et al. [5] who used a simpler turbulence scheme; 
but both simulations agree with our general understanding of the sea-breeze circulation. 

Stableflow--the nocturnal boundary layer. A simulation was made of the horizontally homoge- 
neous atmospheric boundary layer under conditions of constant nighttime surface cooling of 1 °C/h. 
The initial conditions consisted of a neutral temperature profile and a wind field driven by a 10 m/s 
wind at the top (1500m). As shown in Fig. 2, the model develops a nocturnal jet at 85m after 
about 6 h of cooling. Such a jet is frequently observed in the nocturnal boundary layer [7]. The 
height of the jet maximum, its development through the nighttime period and its maximum speed 
are dependent on large-scale conditions and the surface cooling rate. However, its general features 
are represented quite well by the model. 
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Fig.  1. Model results of the sea-breeze flow field 5 h after the onset of surface heating. An off-shore 
geostrophic wind of 2.5 m/s is assumed. Contours of horizontal velocity are given in m/s and contours 

of vertical velocity are given in cm/s. 
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Fig.  2. Model results of the evolution of the wind speed in the stable boundary layer with a surface cooling 
rate o f  l °C /h  applied starting at t = O. 
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Table 1. Parameters describing the stable boundary layer at steady state for a I °C/h surface cooling 
rate as reported by Wyngaard [8], Brost and Wyngaard [9], Zeman [10] and Russell and Takle [3] 

and as obtained from the finite element vertically integrated (FEVI) model 

Parameter Ref. [8] Ref. [9] Ref. [10] Ref. [3] FEVI 

u.(m/s) 0.16 0.18 0.19 0.185 0.17 
Q0(K m/s) -0.016 -0.020 -0.019 -0.0189 -0.015 
L(m) 25 25 28 28 27 
a(deg) 44 38 40 40 40 
h(m) 48 85 98 89 73 
d* 0.24 0.40 0.42 0.39 0.34 
h/L 2.0 3.4 3.5 3.2 2.7 
u , / fL 67 74 66 68 63 

Our model results are consistent with the results of other numerical models of the cooling 
boundary layer, as shown in Table 1 [8-10]. The model results compared in Table 1 are, 
respectively, the friction velocity, surface heat flux, Monin-Obukhov stability parameter, angular 
difference between the wind direction at the top and bottom of the boundary layer, height of the 
boundary layer and three boundary-layer parameters defined in terms of model-derived values [8]. 
The model of Wyngaard [8] is the most physically complete of those listed. The results of the model 
of Zeman [10] and those from the finite element integrated model are discussed in Section 3. 

Flow over irregular boundaries 

Flow over irregular boundaries creates the need for irregular grids and for accurate represent- 
ation of the effects of dynamic pressure caused by changes in roughness and interaction of the flow 
with the terrain. By use of isoparametric elements, we grid over irregular terrain and concentrate 
nodes in regions of large gradients. We have extended the procedure of Song et al. [11] for 
parameterizing nonhydrostatic terrain effects into our model. We have compared our model results 
with observations for flow over a low hill at a coastal site, as reported by Peterson et al. [12]. The 
results are shown in Figs 3a-3d. 

Figure 3a is a schematic diagram showing the locations of three 12-m masts having instruments 
at 1-, 2-, 3-, 5-, 8- and 12-m levels. The masts are located at distances of 10, 63, and 100 m from 
the shore. On-shore flow encounters an estimated roughness change from 0.01 to 1.0 cm. 

Measurements of horizontal wind speed taken on 17 October 1974 under near-neutral conditions 
are shown in Fig. 3b. Notable features of these profiles are that the low-level flow experiences a 
decrease in speed due to the increased roughness. At the upper levels, the speed is increased due 
to the increase in terrain elevation. This causes the profiles from downwind masts to cross the 
profile of mast 1: profile B crosses at 3 m and profile C crosses between 6 and 7 m. 

The results from a hydrostatic model simulation of this flow are shown in Fig. 3c. The reduction 
in speed at masts 2 and 3 is correctly simulated at low levels. However, the profiles do not cross, 
so the dynamic pressure effect of the hill is not simulated by the model. The results from the 
quasi-nonhydrostatic model, shown in Fig. 3d, demonstrate that this model does incorporate the 
dynamic effect of the rise in terrain and increase in height of the internal boundary layer away from 
the shore. In these results, profile B crosses A at about 2 m and profile C crosses A between 5 and 
6 m. These preliminary results suggest that, although the model may benefit from additional 
refinements, it does have the correct physical mechanism to account for the dynamical effect of 
terrain on the flow. 

Log-linear element 

Cross-stream gradients of streamwise velocity become large near the boundary for fluid flow over 
a rigid surface. Accurate representation of the flow in these regions requires either a special wall 
layer of assumed analytical solutions or extremely fine resolution of the grid. Takle and Leone [13] 
constructed a long-linear element for use near the surface in atmospheric boundary-layer flows to 
more accurately simulate the known functional form of the velocity and temperature profiles in 
this region. The element contained nine nodes with quadratic dependence in the streamwise 
direction and log-linear dependence in the cross-stream direction. The log-linear function, being 
a monotonically increasing function away from the boundary, eliminates the poor representation 
near the top of the boundary element arising for quadratic functions, but yet gives much more 
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Fig. 3a. Schematic representation of the terrain and 
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realistic gradients near the surface than linear basis functions. Applications to neutral and stably 
stratified atmospheric boundary layers showed that the number of nodes could be reduced by a 
factor of 2 by use of the log-linear element for neutral flow with no loss of accuracy. Furthermore, 
the coarser resolution permitted much larger timesteps to be taken [14]. For nonneutral flow, both 
velocity and temperature profiles were simulated very well by the log-linear element, although 
temperature was somewhat less accurately represented than velocity. 

Moving finite element method 

The moving finite element method was introduced by Miller and Miller [15] to allow 
computational nodes to migrate to regions of large gradient, thereby minimizing the total number 
of computational nodes required for a numerical solution of given accuracy. Gelinas et al. [16] and 
more recent works [17, 18] have expanded the theoretical framework for the moving finite element 
method. 
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The atmospheric boundary layer can, under certain conditions, develop regions of large gradients 
near the earth's surface or in the vicinity of the base of the warm, dry layer that frequently caps 
the atmospheric boundary layer over water (e.g. off the California coast). Kim [19] developed a 
moving finite element model from a fixed finite element code that solved equations (1)-(6). This 
problem is significantly more difficult than previous studies that used the moving finite element 
method because of the need to solve four equations [equations (1), (2), (5) and (6)] simultaneously, 
as opposed to the report of Gelinas et al. [16] wherein a single equation was solved. Any of the 
four equations may develop regions of large gradients, and not all in the same regions, so the 
migration of nodes is much more complex. Kim found the solution was subject to a rather 
complicated instability long after model initialization. A variable timestep and the use of 
regularization terms to prevent singularities in the mass matrix allowed for stable solutions out of 
3 h of simulated time, but solutions did not compare well with other model results or observations. 
The use of weight functions to force nodal position to depend primarily on one variable was 
suggested but not tested. This topic needs more research. Potential applications include movement 
of the sea-breeze frontal zone or movement associated with large-scale air-mass boundaries, with 
their accompanied unsettled weather. A simpler application that uses time-dependent basis 
functions is described in the following section. 

3. VERTICALLY INTEGRATED MODEL 

Hemispheric- or global-scale prediction models of the entire atmosphere rarely can accommodate 
such a large number of nodes in the boundary layer as described in the model of Section 2. For 
such application, the effect on the overlying atmosphere, rather than internal details of the 
boundary layer, are of primary interest. To address this need, bulk models or vertically integrated 
models that use finite difference techniques have been suggested [7, 10, 20, 21]. Such models are 
one-dimensional models that describe the dynamic and thermodynamic coupling of the earth's 
surface to the free atmosphere through properties such as those listed in Table 1. 

The daytime boundary layer is particularly well-described by a bulk model because of its 
relatively uniform vertical structure. The nighttime boundary layer, however, as pointed out by 
Zeman [10], is dominated by production of turbulence by vertical shear of the mean horizontal 
wind and suppression of turbulence by negative buoyancy. Accurate representation of the 
nocturnal boundary layer therefore requires gradients as well as mean values. The finite element 
method, being inherently an integral method, has advantages for this application. 

Model Equations 

We model the vertical structure of the nocturnal boundary layer with a finite element domain 
consisting of two elements and three nodes as shown in Fig. 4. The lower element is based at the 
top of the surface layer (z = hs) and extends to the top of the boundary layer, z = h (t). The top 
element represents the free atmosphere above the boundary layer. The size of the lower element 
is allowed to vary in time according to the physical processes within the boundary layer. 

T 
hT 

?-- 
h(t) 

%(t) -\ 
uh(t) 

J f/ 

o > 
WINOSPEED 

Fig. 4. Domain for the vertially integrated model. 
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Table 2. Variables and parameters 
in the basic equations for the verti- 

cally integrated model 

q Qq K* 

K = u f ( v  -- V.) K rn 

oV - f ( u  O- ul) K h 

The one-dimensional, horizontally homogeneous equations describing the boundary layer are of 
the form (see Table 2) 

Ot = Q Oz Kq N " (17) 

TO accommodate a boundary layer that deepens through the night, we expand the unknown 
variables in terms of linear basis functions, ~, which depend on both z and t, and for each element 
are given by 

2 

q(t, z) = ~ q~(t)dpi(t, z). (18) 
i = l  

By substituting this into the model equations, we obtain 

Ab,+4,¢ , -4 ,~z  K q -Qq,¢ ,  = R  q, (19) 

where R q is a smallresidual. Minimization of R q with respect to the.basis functions over the model 
domain according to the Galerkin procedure, 

fn  dp:R*dz = O, (20) 

renders the model equations into the form 

, . i  

where 6t = O¢i/c~t. The diffusion term can be integrated by parts to give 

i= 1 • i= 1 I~e d [~ e ) 
(22) 

where the first term on the r.h.s, is evaluated at the lower boundary where the turbulent fluxes are 
specified. Note that in the last term of equation (22), since K q is inside the integral, the 
z-dependence of the eddy diffusivity need not be specified. Rather, the integrated value over each 
element is all that is required. 

The following boundary condition is chosen for the top of the surface layer (bottom of the lowest 
element): 

, , _ q  0 ¢ , ( h s )  
Bq(h,)= -gq(~)q W o + ~  qt -~z =0, (23) 

where q'w~ is the turbulent flux of q at the top of the surface layer and g(~) is a function of the 
surface layer stability parameter, ~, which is given by the formula recommended by Barker and 
Baxter [22]. At the top boundary (z = hx), the wind velocity is specified to be equal to the free 
atmosphere geostrophic wind. The potential temperature is also specified at the top boundary. 
After integrating and simplifying, the model equations may be stated as 

.~q 1 dh 

+gq(~)q'w6 (24) 
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and 

hT -- hx - h~ h 6 h~ hx -- h 
"3 h, q(h)  = 3 Qq(h) [t](hs) - Qq(h,)] - ~ [q(hT) -- Qq(hx)] 

~l~q 1 dh 
- h - h------~ [q(h) - q(h,)] + 3-d-t [q(hx) - q(h,)]. (25) 

A separate equation is written for the entrainment rate (dh/dt) following the procedure proposed 
by Nieuwstadt and Tennekes [23]; the details for application to our model are reported 
elsewhere [24]. Equations (24) and (25) show how naturally entrainment and the vertically 
integrated diffusion enter the model. 

The temperature of the earth's surface is determined by using the surface energy budget of Brost 
and Wyngaard [9] that takes into account the downward i.r. radiation from the atmosphere, the 
upward i.r. radiation from the surface, upward sensible heat flux to the atmospber¢ and downward 
heat conduction into the soil. This budget treats conduction of heat into the soil by the force-restore 
method described by Deardorff [25]. Given the specific humidity, the downward flux of i.r. 
radiation may be specified by using the effective emissivity of Staley and Jurica [26]. 

The average eddy diffusivity over the boundary layer is determined from 

~m = Ck(1 __~)12S,  

where 

I I 4.7 $2 (t3u'~2 (~.v'~2 
7 = 005h + = + 

(26) 

(27) 

and Ck = 0.35, Ri~r = 1.0 [10], k = 0.4 and the bulk Richardson number, RiB, is related to the 
Monin-Obhukov stability parameter L, as given by Panofsky and Dutton [27]. We have taken the 
turbulent diffusivities for heat and momentum to be the same. 

Equation (21), modified by equation (22), can then be written in matrix form as 

Ak(~l¢ = AkQk "t- Ckq k , (28) 

from which the time tendencies are determined. The solution at step k + 1 is then approximated 
from 

~lk+~ = qk + qkAt" (29) 

Next, the time tendencies at step k + 1 are estimated from 

~k+|¢+, ~.~. A k + l ~ k +  1 .3L ~k+l~k+l, (30) 

where 

Ak+, = A(t]k+ l). (31) 

The final solution at step k + 1 is calculated by using 

qk+, = qk + [(1 -- 6)il k + 6 ¢  + ']At. (32) 

The value of 6 was taken to be 0.5. 

Model  Results 

The model equations were used to simulate the stable nighttime boundary layer by beginning 
with a neutral steady-state condition and imposing a surface cooling rate of 1.0 K/h. The functions 
for the surface flux used for these simulations were 

g"(~ )  = 0 .6  + 0 .419  • -m2'°¢ and  gV(¢)  = 0 .45  + 2 .80 e -16"9¢. (33) 

The results at a time 12 h after the onset of surface cooling are presented in Table 1. It is apparent 
from this table that the model performs very well in comparison with the high-resolution, physically 
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more complete model of Wyngaard [8] and the bulk model of Zeman [10]. Additional stable 
simulation and adaptation of the model to the daytime boundary layer will be reported in a 
forthcoming report [24]. 

4. S U M M A R Y  

We have described an adaptation of the finite element method to the problem of simulating the 
time-dependent behavior of the atmospheric boundary layer under conditions of surface heating 
or cooling and situations where the flow is subject to the dynamic influence of low terrain features. 
Features of the finite element method such as variable grid resolution, isoparametric elements, 
log-linear basis functions, time-dependent basis functions and vertically integrated properties can 
be exploited to advantage in such applications. Some techniques, such as the general application 
of the moving finite element method, require additional research into their potential advantage for 
boundary-layer modeling. For others, the advantages already are clear, such as the vertically 
integrated formulation which described gradients, entrainment and vertically integrated properties 
in a very natural way because of uniquenesses of the finite element method. 
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