Examples of non-archimedean Fréchet spaces without nuclear Köthe quotients

Wiesław Śliwa

Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, 61-614 Poznań, Poland

Received 26 July 2007
Available online 26 January 2008
Submitted by B. Cascales

Abstract
Let \mathbb{K} be a spherically complete non-archimedean valued field. We prove that the dual space l_∞ of the Banach space c_0 has a total strongly non-norming subspace M. Using this subspace M we construct a non-normable Fréchet space F of countable type with a continuous norm such that its strong dual F'_b is a strict LB-space. Next we show that F has no nuclear Köthe quotient.

© 2008 Elsevier Inc. All rights reserved.

Keywords: Strongly non-norming subspace in the dual of a non-archimedean Banach space; Strong dual of a non-archimedean Fréchet space; Strict non-archimedean LB-space

Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field \mathbb{K} which is complete under the metric induced by the valuation $|\cdot|: \mathbb{K} \to [0, \infty)$. For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we refer to [9,12], and [11].

Any infinite-dimensional Banach space E of countable type is isomorphic to the Banach space c_0 of all sequences in \mathbb{K} converging to zero with the sup-norm and any closed subspace of c_0 is complemented [11, Theorem 3.16].

By a Köthe space we mean an infinite-dimensional Fréchet space with a Schauder basis and with a continuous norm. A space E is nuclear if and only if E has no quotient isomorphic to c_0 [19, Theorem 2]. Thus E has a normable Köthe quotient if and only if E is not nuclear.

It is known that E has a quotient isomorphic to the nuclear Fréchet space $\mathbb{K}^\mathbb{N}$ of all sequences in \mathbb{K} with the topology of pointwise convergence [21, Theorem 3.1]. Clearly, $\mathbb{K}^\mathbb{N}$ has a Schauder basis but it is not a Köthe space, since it has no continuous norm. E has a non-normable quotient with a continuous norm if and only if E is not isomorphic to a countable product of Banach spaces [21, Theorem 3.7].
It arises a natural question whether any non-normable Fréchet space of countable type with a continuous norm has a non-normable Köthe quotient. Since any non-normable Köthe space has a nuclear Köthe quotient [19, Theorem 14], we ask whether any non-normable Fréchet space of countable type with a continuous norm has a nuclear Köthe quotient.

In this paper we prove that the answer to the above problem is negative if the field \mathbb{K} is spherically complete.

Let X be an infinite-dimensional Banach space and let W be a subspace in the dual space X' of X. We say that W is total if it is dense in $(X', \sigma(X', X))$. As in the archimedean case one verifies that W is total if and only if the following holds: if $x \in X$ is such that $f(x) = 0$ for all $f \in W$, then $x = 0$. By W^1 we denote the set of all elements $x' \in X'$ such that there exists a bounded net (x'_n) in W which converges to x' in $(X', \sigma(X', X))$. Clearly W^1 is a subspace in X'. We put $W^0 = W$ and $W^n = (W^{n-1})'$ for $n \in \mathbb{N}$. We say that W is strongly non-norming if $W^n \subsetneq X'$ for all $n \in \mathbb{N}$.

In this paper we prove that the dual l_∞ of c_0 has a total strongly non-norming subspace M if \mathbb{K} is spherically complete (Theorem 1). Using this space M we construct a non-normable Fréchet space F of countable type with a continuous norm, such that the strong dual $F'_\mathfrak{d}$ of F is a strict LB-space (Theorem 7). Next we show that F has no infinite-dimensional Fréchet–Montel quotient with a continuous norm (Theorem 10). In particular, F has no nuclear Köthe quotient.

In our paper we use some ideas of [6] and [8] (see also [1] and [2]).

Preliminaries

The field \mathbb{K} is spherically complete if any decreasing sequence of closed balls in \mathbb{K} has a non-empty intersection. We put $B_\mathbb{K} = \{\alpha \in \mathbb{K} : |\alpha| \leq 1\}$.

Let E be a linear space. If $A \subset E$ then $\text{lin} A$ denotes the linear hull of A. A set $A \subset E$ is absolutely convex if for all $\alpha, \beta \in B_\mathbb{K}$ and $x, y \in E$ we have $\alpha x + \beta y \in A$. If $A \subset E$ then the set $\text{co} A = \{\sum_{i=1}^n \alpha_i a_i : n \in \mathbb{N}, \alpha_1, \ldots, \alpha_n \in B_\mathbb{K}, a_1, \ldots, a_n \in A\}$ is the smallest absolutely convex subset of E that contains A. Let A be an absolutely convex set in E. We put $A^c = A$ if the valuation of \mathbb{K} is discrete, and $A^c = \bigcap\{\alpha A : \alpha \in \mathbb{K}, |\alpha| > 1\}$ otherwise. We say that A is edged if $A = A^c$.

We denote by $|\mathbb{K}|$ the closure of the set $|\mathbb{K}| = \{[\lambda] : \lambda \in \mathbb{K}\}$ in \mathbb{R}. A seminorm on a linear space E is a function $p : E \to |\mathbb{K}|$ such that $p(\alpha x) = |\alpha| p(x)$ for all $\alpha \in \mathbb{K}$, $x \in E$ and $p(x + y) \leq \max\{p(x), p(y)\}$ for all $x, y \in E$ (see [12, p. 189]).

A seminorm p on E is a norm if ker $p = \{0\}$.

In this paper by a locally convex space (lcs) we mean a Hausdorff locally convex space. The set of all continuous seminorms on a lcs E is denoted by $\mathcal{P}(E)$. A family $\mathcal{B} \subset \mathcal{P}(E)$ is a base in $\mathcal{P}(E)$ if for every $p \in \mathcal{P}(E)$ there exists $q \in \mathcal{B}$ with $q \preceq p$.

For any seminorm p on a lcs E the map $\overline{p} : E_p \to [0, \infty)$, $x + \ker p \to p(x)$ is a norm on $E_p = (E/\ker p)$.

A lcs E is of countable type if for any $p \in \mathcal{P}(E)$ the normed space (E_p, \overline{p}) contains a linearly dense countable subset.

Let E be a lcs. The topological dual of E we denote by E'. If $A \subset E$ and M is a subspace of E we set $A^0 = \{f \in E' : |f(x)| \leq 1 \text{ for } x \in A\}$ and $M^\perp = \{f \in E' : f(x) = 0 \text{ for } x \in M\}$. If $B \subset E'$ and W is a subspace of E' we put $\delta B = \{x \in E : |f(x)| \leq 1 \text{ for } f \in B\}$ and $\delta W = \{x \in E : f(x) = 0 \text{ for } f \in W\}$. It is easy to see that $M^\perp = M^0$ and $\delta W = \delta W^0$. A set $A \subset E$ is polar if $A = \delta(A^0)$.

A seminorm $p \in \mathcal{P}(E)$ is polar if the set $\{x \in E : p(x) \leq 1\}$ is polar.

If A is an absolutely convex subset in a lcs E then $\delta(A^0) = B^c$, where B is the closure of A in $(E, \sigma(E, E'))$ [12, Proposition 4.10].

A lcs E is strongly polar if every $p \in \mathcal{P}(E)$ is polar, and polar if some family of polar seminorms forms a base in $\mathcal{P}(E)$. A lcs E is strongly polar if and only if every absolutely convex closed edged subset in E is polar [12, Theorem 4.7]. Any lcs of countable type is strongly polar [12, Theorem 4.4]. If \mathbb{K} is spherically complete then any lcs over \mathbb{K} is strongly polar [12, p. 196]. If E is polar then E' separates points of E [12, Proposition 5.6].

A subset B of a lcs E is compactoid (or a compactoid) if for each neighbourhood U of 0 in E there exists a finite subset S of E such that $B \subset U + \text{co } S$.

Let E and F be locally convex spaces. The space of all linear continuous maps from E to F is denoted by $L(E, F)$. An operator $T \in L(E, F)$ is an isomorphism if T is injective, surjective and the inverse map T^{-1} is continuous. E is
isomorphic to F ($E \cong F$) if there exists an isomorphism $T : E \to F$. A linear map $T : E \to F$ is compact if there exists a neighbourhood U of 0 in E such that $T(U)$ is compactoid in F. A map $T \in L(E, F)$ is semi-Fredholm if $\ker T$ is finite-dimensional and $T(E)$ is closed in F.

Let E and F be Banach spaces. If $T, S \in L(E, F)$, T is semi-Fredholm and S is compact then $T + S$ is semi-Fredholm [14, Corollary 3.3].

A lcs E is nuclear if for any $p \in \mathcal{P}(E)$ there exists $q \in \mathcal{P}(E)$ with $q \geq p$ such that the map $\varphi_{p,q} : (E_q, \overline{\mathcal{P}}) \to (E_p, \overline{\mathcal{P}})$, $x + \ker q \to x + \ker p$ is compact.

Let E be a lcs. We write $\mathcal{B}(E)$ for the family of all bounded subsets of E. The strong dual of E, that is the topological dual of E with the strong topology $b(E', E)$, will be denoted by E'_b.

Any metrizable lcs E possesses a non-decreasing base (p_k) in $\mathcal{P}(E)$.

A Fréchet space is a metrizable complete lcs. Let (x_n) be a sequence in a Fréchet space E. The series $\sum_{n=1}^{\infty} x_n$ is convergent in E if and only if $\lim n x_n = 0$.

Let E be a Fréchet space with a continuous norm. Then the topology of E can be defined by a non-decreasing sequence $(\| \cdot \|_k)$ of norms. Denote by F_k the completion of the normed space $E_k = (E, \| \cdot \|_k)$, $k \in \mathbb{N}$. The identity map $i_k : E_{k+1} \to E_k$ has a unique continuous extension $\phi_k : E_{k+1} \to F_k$, $k \in \mathbb{N}$. The space E is said to be countably normed if the sequence of norms $(\| \cdot \|_k)$ can be chosen in such a way that each ϕ_k is injective.

A Fréchet space E is a Fréchet–Montel space if every bounded set in E is compactoid. A normable Fréchet space is a Banach space.

The Banach space of all bounded sequences in \mathbb{K} with the sup-norm is denoted by l_∞; it is isomorphic to the dual of c_0. For $S \subseteq \mathbb{N}$ we put $c_0(S) = \{ x = (x_n) \in c_0 : x_n = 0$ for $n \in (\mathbb{N} \setminus S) \}$ and $l_\infty(S) = \{ x = (x_n) \in l_\infty : x_n = 0$ for $n \in (\mathbb{N} \setminus S) \};$ clearly, $c_0(S)$ and $l_\infty(S)$ are closed subspaces of c_0 and l_∞, respectively.

A strict LB-space is a lcs (E, τ) which is the inductive limit of an inductive sequence $((E_n, \tau_n))$ of Banach spaces such that $\tau_n + 1 \mid E_n = \tau_n$ for all $n \in \mathbb{N}$. For fundamentals of inductive limits of locally convex spaces we refer to [5].

A sequence (x_n) in a lcs E is a basis in E if each $x \in E$ can be written uniquely as $x = \sum_{n=1}^{\infty} \alpha_n x_n$ with $(\alpha_n) \subset \mathbb{K}$. If additionally the coefficient functionals $f_n : E \to \mathbb{K}$, $x \to \alpha_n$ $(n \in \mathbb{N})$ are continuous, then (x_n) is a Schauder basis in E. Let $(x_n) \subset E$. By $[x_n] : n \in \mathbb{N}$ we denote the closed linear span of the set $[x_n] : n \in \mathbb{N}$ in E. If (x_n) is a (Schauder) basis in $[x_n]$, then it is called a (Schauder) basic sequence. Every infinite-dimensional Banach space has a Schauder basic sequence [11, Theorem 3.16].

Results

We start with the following result for Banach spaces (for the definition of strongly non-norming subspaces see Introduction).

Theorem 1. Assume that \mathbb{K} is spherically complete. Then the dual l_∞ of c_0 contains a total closed strongly non-norming subspace.

Proof. Let $X = c_0$ and let $i : X \to X''$ be the canonical injection. We will identify X' with l_∞.

(A) First we show inductively that for every $n \geq 0$ there is a total closed subspace M of X' with $M'' \subsetneq X'$. For $n = 0$ it is clear, since c_0 is a total closed subspace of X' and $c_0 \subsetneq X'$. Assume that it is true for some $n \geq 0$. Let N_1 and N_2 be infinite disjoint subsets of \mathbb{N} with $N_1 \cup N_2 = \mathbb{N}$. Let $h \in (i(c_0) + l_\infty(N_2)^\perp) \cap (l_\infty(N_1) + c_0(N_2))^\perp \subset l_\infty$. Then $h(x) = 0$ for $x \in l_\infty(N_1)$. There exist $f \in i(c_0)$ and $g \in l_\infty(N_2)^\perp$ with $f + g = h$. Since $f(x) = h(x) - g(x) = 0$ for $x \in c_0(N_2)$, we get $f \in i(c_0(N_1))$. Hence $h(x) = f(x) + g(x) = 0$ for $x \in l_\infty(N_2)$. Thus $h(x) = 0$ for all $x \in l_\infty$, so $h = 0$. We have shown that $i(c_0) + Y \subset Z = \{ 0 \}$ for $Y = c_0(N_1) \subset X$ and $Z = (l_\infty(N_1) + c_0(N_2))^\perp \subset X''$. Clearly $Y \cong c_0$. By the induction hypothesis, $Y'' = l_\infty(N_1)$ contains a total closed subspace V with $V'' \subsetneq Y''$. Put $W = V + l_\infty(N_2)$; clearly, W is a total closed subspace of l_∞ and $W'' = V'' + l_\infty(N_2) \subsetneq l_\infty = X''$.

The unit closed ball B of V is a metrizable absolutely convex compactoid in $(Y', \sigma(Y', Y))$ [18, Propositions 3.1 and 6.1]. Let $\alpha \in \mathbb{K}$ with $|\alpha| > 1$. Using [12, Proposition 8.2], we infer that there exists a linearly dense sequence $\{ y_k \}$ in $(Y', \sigma(Y', Y))$ with $\{ y_k \} \subset V$ such that $1 \leq \| y_k \| < |\alpha|$, $k \in \mathbb{N}$.

Clearly, Z is an infinite-dimensional closed subspace of $X'' = l_\infty$. Let (z_k) be a Schauder basic sequence in Z with $\| z_k \| \to 0$. The linear continuous operator $S : X' \to Y'$, $S(x) = \sum_k z_k(x') y_k$ is compact, since $\| z_k \| \| y_k \| \to 0$ [11, Theorem 4.40]. It is easy to see that $S : Y'' \to X'', S'(y'') = \sum_k y''(y_k) z_k$.
Let \(j : Y \to X \) be the inclusion map. Then \(j'(X') \to Y', \) \((j'(x'))(y) = y(x') \) and \(j'' : Y'' \to X'' \) \((j''(y''))(x') = y''(j''(x')) \). Hence \(\ker j'' = Y'' \) \(j'(X') = Y' \), \(\ker j'' = \{0\} \) and \(j''(Y'') = (\ker j'') \perp = (Y'' \perp) \) [17, Proposition 6.7 and its proof]. Thus \(j'' \) is semi-Fredholm. Put \(T : X' \to Y', \) \(T = S + j' \). Since \(S' \) is compact [14, Proposition 5.7], the operator \(T' : X' \to X'', \) \(T' = S' + j'' \) is semi-Fredholm [14, Corollary 3.3]. Thus \(T'(Y'') \) is closed in \(X'' \). Using [7, Theorem 12], we infer that \(\ker T' \) is closed in \(Y' \). It follows that \(T'(Y'') \) is closed in \((X'', \sigma(Y', X'')) \) and \(T'(Y'') = (\ker T') \perp \) (again by [17, Proposition 6.7 and its proof]). Put \(M = \ker T; \) then \(M = -T'(Y'') \) [12, Theorem 4.7].

Clearly, \(M \) is a closed subspace of \(X' \). We shall prove that \(M \) is total in \(X' \). Let \(x \in X \) with \(i(x) \in M = \overline{T}(Y'') \). For some \(y'' \in Y'' \) we have \(i(x) = S(y'') + j''(y'') \). Since \(S''(Y'') \subset Z \) and \(Z \cap (i(X) + (Y'' \perp)) = \{0\} \), we get \(\ker S''(Y'') = 0 \) and \(i(x) = j''(y'') \in (Y'' \perp) \); hence \(y''(y'') = 0 \), \(k \in \mathbb{N} \), and \((i(x))Y'' \perp = 0 \), thus \(x = x'' \). Hence \(M = \ker T \) is total in \(Y' \).

Using [13, Theorem 1.4], we infer that \(\sigma(Y', X) = b(Y', Y) \); hence \(j'(x') \to j'(x') \) in \(Y' \), so \(y''(j'(x')) \to y''(j'(x')) \) for all \(y'' \in Y'' \). For \(y'' \in \ker S' \), \(\alpha \in A \) we have \(y''(j'(x')) = (j''(y''))(x') = 0 \), since \(j''(\ker S') \subset T'(Y'') \) and \(M = -T'(Y'') \). Hence \(y''(j'(x')) = 0 \) for all \(y'' \in \ker S' \); so \(j'(x') \in \ker S' = \left(\{y'_k : k \in \mathbb{N}\}\right) \perp = \{y'_k : k \in \mathbb{N}\} \subset C \). Thus \(x' \in (j''(V)) = W \). We have proved that \(M1 \subset W \). Hence \(M^{n+1} \subset W \subset X' \).

(B) Let \((N_k) \) be a partition of \(A \) onto infinite subsets. Put \(X_k = (N_k) \) for \(k \in \mathbb{N} \). Denote by \(P_k \) the natural projection from \(l_\infty \) onto \(l_\infty(N_k) \); \(k \in \mathbb{N} \). Let \(M_k \) be a total closed subspace of \(X_k \) such that \(M_k \subset X_k \). Thus \(\sigma(Y', X) \) is absolutely convex, \(\sigma(Y', X) \) closed and form a neighbourhood base of zero in \(Y' \).

Using [13, Theorem 1.4], we infer that \(\sigma(Y', X) \) is absolutely convex, \(\sigma(Y', X) \) closed and form a neighbourhood base of zero in \(Y' \). Hence \(\sigma(Y', X) \) is absolutely convex, \(\sigma(Y', X) \) closed and form a neighbourhood base of zero in \(Y' \).

Suppose that \(x_k \in l_\infty \) \((P_k(x_k)) \in \prod_{k=1}^{\infty} M_k \); clearly \(V = \bigcap_{k=1}^{\infty} P_k^{-1}(M_k) \), so \(V \) is a closed subspace of \(l_\infty = \bigcap_{k=1}^{\infty} M_k \). Suppose that \(x_k \in l_\infty \) \((P_k(x_k)) = 0 \) for all \(v \in V \). Then \(x_k \in l_\infty \) \((P_k(x_k)) = 0 \) for all \(x_k \in M_k \subset V \), \(k \in \mathbb{N} \). Since \(M_k \) is total in \(l_\infty(N_k) = c_0(N_k) \), we get \(P_k(x_k) = 0 \), \(k \in \mathbb{N} \). Thus \(x = 0 \), so \(V \) is total in \(X' \). It is easy to see that

\[
\left\{ x' \in l_\infty : (P_k(x')) \in \prod_{k=1}^{\infty} W_k \right\} \subset \left\{ x' \in l_\infty : (P_k(x')) \in \prod_{k=1}^{\infty} \bigcup_{k=1}^{n} M_k \right\},
\]

if \(W_k \) is a subspace of \(l_\infty(N_k) \) for all \(k \in \mathbb{N} \). Hence, by induction, we get for \(n \in \mathbb{N} \), \(V^n \subset \{x' \in l_\infty : (P_k(x')) \in \prod_{k=1}^{\infty} M_k^n \} \), where \(M_k^n \subset M_k \). Thus \(P_k(V^n) \subset M_k^n \subset l_\infty \), so \(V^n \subset l_\infty \), \(n \in \mathbb{N} \). We have shown that \(V \) is a total closed strongly non-norming subspace of \(l_\infty = c_0 \). \(\square \)

Using the \(p \)-adic Banach–Alaoglu theorem [9, Theorem 4.2] and [4, Lemma 2.4], we get the following:

Proposition 2. Let \(E \) be a locally convex space of countable type and let \(U \) be a neighbourhood of zero in \(E \). Then \(U^\circ \) is an absolutely convex complete metrizable compactoid in \(E' \) \(\sigma(E', E) \).

If \(X \) is a closed absolutely convex subset of a locally convex space \(E \) and \(Y \) is an absolutely convex complete metrizable compactoid in \(E \) then the set \((X + Y)^\circ \) is closed in \(E \) [15, Theorem 1.4 and its proof]. Moreover for every absolutely convex subsets \(A, B \subset E \) we have \((A + B)^\circ = (A^\circ + B)^\circ \) [5, Lemma 0.1]. Hence, using Proposition 2, we get (by induction) the following:

Lemma 3. Let \(D \) be a subset of a locally convex space \(E \) of countable type and let \((U_k) \) be a sequence of neighbourhoods of zero in \(E \). Then the sets \((D^n + \sum_{k=1}^{\infty} U_k^n)^\circ, n \in \mathbb{N} \), are closed in \(E \) \(\sigma(E', E) \).

A lcs \(E \) is a (DF)-space if it has a fundamental sequence \((B_n) \) of bounded sets and for every sequence \((V_n) \) of absolutely convex neighbourhoods of zero in \(E \) such that the set \(V = \bigcap_{n=1}^{\infty} V_n \) is bornivorous, \(V \) is a neighbourhood of zero in \(E \).

Proposition 4. Let \(E \) be a metrizable locally convex space of countable type. Then the strong dual \(E' \) of \(E \) is a (DF)-space.
Let \((U_n)\) be a decreasing base of polar neighbourhoods of zero in \(E\). We put \(W_n = U_n^\circ\) for \(n \in \mathbb{N}\). By [5, Lemma 2.5.4(i)], a subset of \(E_b^\circ\) is bounded if and only if it is equicontinuous; so \((W_n)\) is a fundamental sequence of bounded subsets in \(E_b^\circ\).

Let \((V_n)\) be a sequence of absolutely convex neighbourhoods of zero in \(E_b^\circ\) such that the set \(V = \bigcap_{n=1}^\infty V_n\) is bornivorous in \(E_b^\circ\). We shall prove that \(V\) is a neighbourhood of zero in \(E_b^\circ\). Let \(n \in \mathbb{N}\). We have \(\alpha_n W_n \subset V\) for some \(\alpha_n \in (\mathbb{K} \setminus \{0\})\) and \(B_{\alpha_n}^\circ \subset V_n\) for some bounded subset \(B_{\alpha_n}\) in \(E\). Put \(H_n = B_{\alpha_n}^\circ + \sum_{k=1}^n \alpha_k W_k\); clearly \(H_n \subset V_n\). By Lemma 3 the set \(H_n^\circ\) is closed in \((E', \sigma(E', E))\); thus \((H_n^\circ)' = H_n^\circ\). Put \(H = \bigcap_{n=1}^\infty H_n\). For every \(k \in \mathbb{N}\) there exists \(\gamma_k \in \mathbb{K}\) with \(|\gamma_k| = |\alpha_k|\) such that \(\gamma_k W_k \subset \bigcap_{n=1}^k B_{\alpha_n}^\circ\); then \(\gamma_k W_k \subset H\). It follows that \(^{\circ}H\) is bounded in \(E\), so \((^{\circ}H)'\) is a neighbourhood of zero in \(E_b^\circ\). On the other hand, using [12, Proposition 4.10], we have \((^{\circ}H)' = (H')' = \bigcap_{n=1}^\infty H_n^\circ = \bigcap_{n=1}^\infty \alpha_k W_k \subset aH \subset aV\) for every \(\alpha \in \mathbb{K}\) with \(|\alpha| > 1\); so \(V\) is a neighbourhood of zero in \(E_b^\circ\). □

(C) Perez-Garcia and W.H. Schikhof proved recently the following:

Any absolutely convex subset \(A\) of a metrizable lcs of countable type is contained in the closed absolutely convex hull of some countably subset \(X\) of \(A\) [10].

Using this result we obtain

Proposition 5. Let \(G\) be a dense subspace of a metrizable locally convex space \(E\) of countable type. Then \(G_b^\circ\) is isomorphic to \(E_b^\circ\).

Proof. Let \(j : G \to E\) be the inclusion map. We shall prove that its adjoint \(j^\prime : E_b^\circ \to G_b^\circ\) is an isomorphism. The map \(j^\prime\) is injective and continuous, since \(G\) is dense in \(E\) and every bounded subset of \(G\) is bounded in \(E\); density of \(G\) also implies that \(j^\prime\) is surjective. To prove that \(j^\prime\) is open it is enough to show that every bounded subset \(A\) of \(E\) is contained in the closure of some bounded subset \(B\) of \(G\).

Let \(A\) be a bounded subset of \(E\). Then \(co A\) is bounded and has a countable subset \(X = \{x_n\} : n \in \mathbb{N}\) such that \(A\) is contained in the closed absolutely convex hull of \(X\) [10, Theorem 8.6.5]. Let \((U_n)\) be a decreasing base of absolutely convex neighbourhoods of zero in \(E\). Then for all \(n, k \in \mathbb{N}\) there exists \(z_{n,k} \in U_{n+k} \) such that \(x_n + z_{n,k} \in G\). Put \(Y = \{x_n + z_{n,k} : n, k \in \mathbb{N}\}\). Clearly, \(Y \subset G\) and \(X\) is contained in the closure of \(Y\) in \(E\). The set \(Z = \{z_{n,k} : n, k \in \mathbb{N}\}\) is bounded in \(E\). Indeed, for every \(m \in \mathbb{N}\) the set \(Z_m = \{z_{n,k} : n + k < m\}\) is finite and \(S_m = \{z_{n,k} : n + k \geq m\} \subset U_m\); so \(Z \subset \alpha_m U_m\) for some \(\alpha_m \in \mathbb{K}\). Thus \(X + Z\) is bounded in \(E\). Hence \(Y\) is bounded in \(G\), since \(Y \subset X + Z\). Clearly, \(A\) is contained in the closed absolutely convex hull of \(Y\) in \(E\). Then \(B = co Y\) meets the requirements. □

It is not hard to check the following:

Remark 6. Let \(\tau_1\) and \(\tau_2\) be locally convex topologies on a linear space \(X\). If \(\tau_1 \subset \tau_2\), then \(X_{\tau_1} \subset X_{\tau_2}\) and \(b(X_{\tau_2} \times X_{\tau_1}) X_{\tau_1} \subset b(X_{\tau_1} \times X_{\tau_1})\), where \(X_{\tau_i} = (X, \tau_i)\) for \(i = 1, 2\).

Now we can prove our next theorem.

Theorem 7. Assume that \(\mathbb{K}\) is spherically complete. Then there exists a non-normable countably normed Fréchet space \(F\) of countable type such that the strong dual \(F_b^\circ\) of \(F\) is a strict LB-space.

Proof. Let \(X = c_0\) and let \(M\) be a total closed strongly non-norming subspace of \(X'\). Denote by \(B\) the unit closed ball of \(X'\). We have \(M^k \subset M^k+1\) for \(k \in \mathbb{N}\). Indeed, if \(M^k = M^k+1\) for some \(k > 0\), then

\[
B \cap M^k \subset B \cap M^k + \sigma(X', X) \subset B \cap M^k+1 = B \cap M^k.
\]

Hence, by the \(p\)-adic Krein–Šmulian theorem [16, Corollary 5.2], we infer that \(M^k\) is closed in \((X', \sigma(X', X))\); a contradiction, because \(M^k\) is a proper \(\sigma(X', X)\)-dense subspace of \(X'\).

Put \(B_k = B \cap M^k\) for \(k > 0\). Let \(k \in \mathbb{N}\) and let \(|x|_k = \sup\{|f(x)| : f \in B_{k-1}\}\) for \(x \in X\). Clearly, \(|\cdot|_k\) is a norm on \(X\) and \(|x|_k \leq |x|\), \(x \in X\). Hence \(X_k \subset X'\), where \(X_k = (X, |\cdot|_k)\). It is easy to see that \((^{\circ}B_{k-1})^\circ = D_k^\circ\) and \(M^k = \text{lin} D_k\), where \(D_k\) is the closure of \(B_{k-1}\) in \(\sigma(X', X)\). It follows that \(X_k^\circ = M^k\).
Denote by F_k the completion of X_k. Since the identity map $i_k : X_{k+1} \to X_k$ is continuous, we can extend i_k to a continuous linear map $\phi_k : F_{k+1} \to F_k$. We shall prove that ϕ_k is injective. Let (x_n) be a Cauchy sequence in X_{k+1} which converges to 0 in X_k. Then $\|x_n\|_{k+1} \to a$ for some $a \geq 0$. Suppose that $a > 0$. Thus there exists $n_0 \in \mathbb{N}$ such that

$$\forall n \geq n_0 \exists f_n \in B_k : |f_n(x_n)| > 2^{-1} a.$$

Since $\|x_n\| \to 0$ we get $f(x_n) \to 0$ for any $f \in M_k$. Moreover

$$\exists n_1 \in \mathbb{N} : \|x_n - x_m\|_{k+1} \leq 2^{-1} a \quad \text{for all } n > m \geq n_1.$$

Hence $|f_n(x_n) - f_n(x_m)| \leq 2^{-1} a$ for all $n, m \geq n_1$. Let $n \geq n_1$; tending m to infinity we get $|f_n(x_n)| \leq 2^{-1} a$ for every $n \geq n_1$; a contradiction. Thus $\|x_n\|_{k+1} \to 0$. It follows that ϕ_k is injective.

Therefore we can assume that $X \subset F_{k+1} \subset F_k$ and ϕ_k+1 is the inclusion map. It is not hard to see that $F = \bigcap_{k=1}^{\infty} F_k$ with the linear topology generated by the sequence of norms $(\|\cdot\|_k|F)$ is a Fréchet space of countable type. Clearly, F is a countably normed Fréchet space.

Since $X_k = M_k \neq M_k^{k+1} = X_k^{k+1}$, we have that the norms $\|\cdot\|_k$ and $\|\cdot\|_{k+1}$ are not equivalent on X for any $k \in \mathbb{N}$; so F is a non-normable Fréchet space.

We shall prove that F_b' is a strict LB-space.

Let X_0 be the metrizable lcs $(X, (\|\cdot\|_k))$; clearly, X_0 is a dense subspace of F. By Proposition 5 the strong duals of F and X_0 are isomorphic, so it suffices to prove that the strong dual of X_0 is a strict LB-space.

Denote by G_k the closure of M^k in X'. We shall prove that

$$B \cap G_k \subset \{0\} \subset B \cap G_{k+1}.$$

If $f \in B \cap G_k$ and $f \neq 0$, then there exists $(f_n) \subset M^k$ with $\|f_n - f\| \to 0$. Hence $\|f_n\| = \|f\|$ for almost all $n \in \mathbb{N}$; so $f \in B \cap M^k = \overline{B_k} \subset \{0\}$. If $f \in (B_k)^0$, then $f \in M_{k+1}$ and $|f(x)| \leq \|x\|_{k+1} \leq \|x\|$ for all $x \in X$, so $f \in B \cap G_{k+1}$.

It follows that $G_k \subset X_{k+1}' \subset G_{k+1}$ and $b(X_{k+1}', X_{k+1})|G_k = b(X', X)|G_k$.

By Remark 6 we get $X_{k+1}' \subset X_0' \subset X'$, $b(X_0', X_0)|X_{k+1}' = b(X_{k+1}', X_{k+1})$ and $b(X', X)|X_0' \subset b(X', X)$. Hence we get

$$b(X_0', X_0)|G_k = b(X_{k+1}', X_{k+1})|G_k = b(X', X)|G_k \subset b(X_0', X_0)|G_k.$$

Thus $\bigcup_{k=1}^{\infty} G_k = \bigcup_{k=1}^{\infty} X_k' = X_0'$ and $b(X_0', X_0)|G_k = b(X', X)|G_k$ for all $k \in \mathbb{N}$.

Denote by τ the inductive limit topology on X_0' generated by the strict inductive sequence (G_k). We shall prove that $\tau = b(X_0', X_0')$. Clearly, $\tau \supset b(X_0', X_0')$. By [5, Theorem 1.4.7], we have $\tau|G_k = b(X', X)|G_k = b(X_0', X_0)|G_k$, $k \in \mathbb{N}$.

Let U be an absolutely convex neighbourhood of zero in X_0. Then there exists a sequence (U_k) of absolutely convex neighbourhoods of zero in $X_0 = (X_0', b(X_0', X_0'))$ such that $U_k \cap G_k \subset U \cap G_k$, $k \in \mathbb{N}$. Let $\mu \in \mathbb{K}$ with $|\mu| > 1$. Put $V_k = \mu^{-k}(B_k)$ and $S_k = V_k^0$, for $k \in \mathbb{N}$. The sequence (V_k) is a decreasing base of polar neighbourhoods of zero in X_0. Hence, by the proof of Proposition 4, (S_k) is an increasing fundamental sequence of bounded sets in X_0'. Since $S_k \subset X_k' \subset G_k$, we have $U_k \cap S_k \subset U \cap S_k$, $k \in \mathbb{N}$. The sets $W_k = S_k \cap U + U_k$, $k \in \mathbb{N}$, are absolutely convex neighbourhoods of zero in X_0'. Clearly, $S_k \cap W_k \subset S_k \cap U$ for $k \in \mathbb{N}$. The set $W = \bigcap_{k=1}^{\infty} W_k$ is bornivorous. Indeed, for every $k \in \mathbb{N}$ there exists $\alpha \in \mathbb{K}$ with $|\alpha| > 1$ such that $S_k \subset \alpha U_n$ for $1 \leq n \leq k$, then $S_k \subset \alpha (S_k \cap U)$, $\alpha = \alpha (S_k \cap U)$ for $n \geq k$, so $S_k \subset \alpha W_n$, for all $n \in \mathbb{N}$; hence $S_k \subset \alpha W$. By Proposition 4, X_0' is a (DF)-space, so W is a neighbourhood of zero in X_0'. Clearly, $X_0' = \bigcup_{k=1}^{\infty} S_k$ and $S_k \subset W \subset S_k \subset U$ for all $k \in \mathbb{N}$, so $W \subset U$. Thus U is a neighbourhood of zero in X_0'. Hence $b(X_0', X_0') = \tau$.

We have shown that X_0' is a strict LB-space. F_b' is isomorphic to X_0', so F_b' is a strict LB-space. \(\square\)

Proposition 8. Let X be a closed subspace of a Fréchet space E. If the quotient (E / X) is a Fréchet–Montel space, then its strong dual $(E / X)_b'$ is isomorphic to the closed subspace X^\perp of E_b'.
Proof. Let $\pi : E \to (E/X)$ be the quotient map. It is easily seen that the adjoint operator $\pi' : (E/X)' \to E_b'$ is a continuous linear injective map whose image is equal to X^\perp. Let A be a bounded subset of (E/X). Then A is a compactoid in (E/X), so there exists a compactoid B in E such that $\pi(B) = A$ [3, Proposition 2.5]. It is not hard to check that $(\pi(B))^\circ = (\pi')^{-1}(B^\circ)$, so $\pi'(A^\circ) = B^\circ \cap X^\perp$. Thus the map $\pi' : (E/X)' \to X^\perp$ is an isomorphism. □

To get our main result we need the following:

Proposition 9. If the strong dual E_b' of a Fréchet space E is a strict LB-space then E has no infinite-dimensional Fréchet–Montel quotient with a continuous norm.

Proof. Let $((E_n, \tau_n))$ be a strict inductive sequence of Banach spaces such that $\lim(E_n, \tau_n) = E'_b$. Then $b(E', E)E_n = \tau_n$ for $n \in \mathbb{N}$ [5, Theorem 1.4.7]. Suppose that E has a closed subspace X such that the quotient (E/X) is a Fréchet–Montel space with a continuous norm. By [20, Lemma 3 and its proof], the space $(E/X)'$ contains a linearly dense bounded subset A. Using Proposition 8 we infer that E'_b has a bounded subset B such that its closed linear span Y in E'_b is equal to X^\perp. Since the inductive sequence $((E_n, \tau_n))$ is regular [5, Theorem 1.4.13], there exists $n \in \mathbb{N}$ with $B \subset E_n$. Hence $X^\perp \subset E_n$, so X^\perp is a Banach space. By Proposition 8, $(E/X)'_b$ is a Banach space. The space $(E/X)'$ is reflexive [12, Theorem 10.3], so it is a Banach–Montel space. Thus $(E/X)'$ is finite-dimensional [5, Proposition 0.3]. □

By Theorem 7 and Proposition 9 we obtain

Theorem 10. Assume that \mathbb{K} is spherically complete. Then the countably normed Fréchet space F of Theorem 7 has no infinite-dimensional Fréchet–Montel quotient with a continuous norm. In particular, F has no nuclear Köthe quotient.

Finally we show the following:

Proposition 11. The strong dual E'_b of a (DF)-space E is a Fréchet space.

Proof. Let (B_n) be a fundamental sequence of bounded sets in E. Then (B_n°) is a base of neighbourhoods of zero in $G = E'_b$. Thus G is a metrizable locally convex space; we shall prove that G is complete. Let (f_n) be a Cauchy sequence in G. Then

$$(*) \quad \forall k \in \mathbb{N} \exists M_k \in \mathbb{N}: f_n - f_m \in B_k^\circ \text{ for all } n, m \geq M_k.$$

Let $x \in X$. Then for every $\alpha \in (\mathbb{K} \setminus \{0\})$ there exists $k(\alpha) \in \mathbb{N}$ such that $\alpha^{-1}x \in B_k(\alpha)$; hence $|f_n(x) - f_m(x)| \leq |\alpha|$ for all $n, m \geq M_k(\alpha)$. It follows that $(f_n(x))$ is a Cauchy sequence in \mathbb{K} for every $x \in E$. Thus there exists a linear functional f on E such that $f_n(x) \to f(x)$ for all $x \in E$. We shall prove that f is continuous. The sets $V_n = \{x \in E: |f_n(x)| \leq 1\}$, $n \in \mathbb{N}$, are absolutely convex neighbourhoods of zero in G. The sequence (f_n) is bounded in G, so for every $k \in \mathbb{N}$ there exists $\alpha_k \in \mathbb{K}$ with $\alpha_k \neq 0$ such that $(f_n) \subset (\alpha_k B_k)^\circ$. Hence $\alpha_k B_k \subset V_n$ for all $k, n \in \mathbb{N}$; so the set $V = \bigcap_{n=1}^\infty V_n$ is bornivorous in the (DF)-space E. Therefore V is a neighbourhood of zero in E. Thus f is continuous, since $|f(x)| \leq 1$ for all $x \in V$.

By $(*)$ we have $f_n - f \in B_k^\circ$ for every $k \in \mathbb{N}$ and every $n \geq M_k$. This means that $f_n \to f$ in G. We have shown that G is complete. Thus G is a Fréchet space. □

By Propositions 4 and 11 we obtain the following:

Corollary 12. The strong bidual of a metrizable locally convex space of countable type is a Fréchet space.

Acknowledgment

The author wishes to thank the referee for useful remarks and suggesting many improvements.
References