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On a Riemannian manifold the existence (and uniqueness) of subsonic gas 
flows with prescribed circulation has been previously established (Acta M&z. 
125 (1970), 57~ 73). If the manifold is a torus of revolution then the gas dynamics 
equation reduces to a oonlinear ordinary differential equation and the flow can 
be described explicitly. We show that, as the circulations arc increased, one 
obtains a complete family of solutions: smooth subsonic, smooth transonic, 
transonic with shocks, and smooth supersonic flows. 

Contents: I. Gas Dynamics on a Manifold and Some Classical Problems; 
II. The Mass Flow Relation for the Speed; III. Description of “de Laval” 
Flows; IV. Local Theory; V. Global Solutions; VI. The Case y = 3; VII. 
Description of Flows (Continued). 

1. GAS DYNAMICS ON A MANIFOLD AND SOME CLASSICAL PROBLEMS 

1 .I. Gas Dynamics on a Manifold 

If a steady flow on an orientable Riemannian manifold M is represented by a 
differential l-form W, whose components give the velocity components in the 
coordinate directions, then the requirement that the flow be irrotational (no 
circulation about curves homologous to zero) and the condition of conservation 
of mass lead to the first-order system of partial differential equations [8] 

dw =0, (I.la) 

S(w) = 0, (l.lb) 

where d is exterior differentiation, S the adjoint of d, and the density p a scalar 
valued function which, by analogy with the flow of a polytropic gas, is given 
explicitly by 
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involving the adiabetic constant y > 1. We shall call Q = Q(w) the speed of the 
flow (strictly speaking, it is the square of the speed but this convention eliminates 
the frequent occurrence of radicals). Locally, if the Biemannian metric on &I is 
given by the metric tensor gij , and the form w is given in terms of local coordi- 
nates by w = wi dxi, then Q = gi’w,wj . It is thus simply the square of the 
pointwise norm of the form W, thought of as a section of the cotangent bundle. 

1.2. Related Classical Problems 

In order to put our results in some perspective we recall several classical 
problems of transonic flow. More detail and further references can be found in 
[I, 3, 5, 111. 

The existence of smooth subsonic flows (Q < 2/(r + 1) everywhere) past a 
profile in the plane for a range 0 ,< Qm < Qc of prescribed speeds Qa at co was 
solved independently by Bers [2] and Shiffman [6]. As Qm tends to Qc (Qc depends 
on the obstacle) the speed of the flow tends somewhere to the sonic speed 
2/(r + 1). Comparable results for supersonic flows (Q > 2/(y + 1) everywhere) 
and for transonic flows do not exist, and are not expected to, because of the 
nonexistence theorems of Morawetz [4]. 

A second problem, of even more relevance to us here, is that of channel flow. 
Consider a de Lava1 nozzle in which one has an,entry section of decreasing cross 
section which, after attaining a minimum at the throat, increases in the exhaust 
section. Each section is assumed to be connected to a reservoir containing the 
gas at a constant pressure. Letting r denote the ratio of the exhaust reservoir 
pressure to the entry reservoir pressure, an approximate analysis (involving 
averaging over cross sections and assuming infinitely large reservoirs and 
entrance and exit cross sections) shows the following: If r = 1 then there is no 
flow (in the sense that Q = 0). There exist two constants 0 < r2 < rr < 1 such 
that if rr < Y < 1 then the flow is subsonic throughout the nozzle, having a 
maximum speed at the throat. If Y = rr then the flow is subsonic in the entry 
and exhaust sections but sonic at the throat. For ra < r < r1 the flow is the same 
in the entry section (as for Y = rJ but becomes supersonic entering the exhaust 
section and then undergoes a compression shock-the velocity decreasing (dis- 
continuously) from supersonic to subsonic speed. If Y = r2 then the shock 
occurs at the exit. That the velocity decreases across a discontinuity is required 
for nondecreasing entropy. 

1.3. The Circulation Problem 

In recent work we have considered gas flows on compact manifolds and com- 
pact manifolds with boundary [7-91. If circulations are prescribed on a homology 
basis (which amounts to prescribing the cohomology class of the form repre- 
senting the flow) then the existence of subsonic flows is established. The results 
are, in some sense, a combination of classical Hodge theory and the results 
described above of Bers and Shiffman for subsonic flow pat a profile. With 
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difficulties involving the singularity at co avoided, the (finite) boundary, if 
nonempty, presents no problem. 

We also showed [lo] that the maximum speed of a subsonic flow on a surface 
must be attained at a point of nonpositive Gauss curvature. For a torus of 
revolution, given explicitly, one could hope to describe the subsonic solutions 
whose existence is guaranteed by the results of [7] and to locate the points at 
which the maximum speed is attained. Surprisingly perhaps, we will see that the 
analysis which follows leads to a description not only of subsonic flows but of 
supersonic and transonic flows as well. 

In the following sections we will analyze completely global subsonic, super- 
sonic, and transonic flows which are symmetric on an axially symmetric torus. 

2. MASS FLOW RELATION FOR THE SPEED 

Let T be the torus obtained by rotating about the z-axis the simple closed 
curve r of class C2. If r is parametrized by x =f(~) and z = g(u) with 
0 < u < 277 andf(u) > 0, then (f’)2 + (g’)” # 0 and T is given parametrically 
by 

x = f(u) cos w, 

y =f(u) sin 7~, (2.1) 
z = g(u). 

The metric tensor on T is given by g,, = (f’)2 + (g’)“, g,, = g,, = 0, and 
g,, =fa. (For the “standard” torus with circular cross section, f(u) = 
1 + r cos u, g(u) = Y sin u (0 < r < 1), and g,, = r2.) 

The symmetry of T suggests the existence of p-harmonic forms w (i.e., w 
satisfying Eq. (1. I), where p is given by (1.2)) which are independent of the 
variable a. We write w = 01 du + /3 dv, where 01 and /I are thought of as periodic 
functions of u (period 2~). In fact, since w is closed (du = 0) we obtain imme- 
diately that /3 is constant. If in addition 6(pw) = 0 then the components of w 
must satisfy 

g (($y’pa) + ; ((*)‘;‘p/3) = 0. 

If, however, w is independent of v then the same is true of the speed, 

(2.2) 

(2.3) 

and hence also of the density p. As a result the second term in (2.2) drops out. 
It follows that 

g22P2a2 K -= 
g11 
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for some nonnegative constant K. Using (2.3) and setting g,, = f2 we obtain 
the mass flow relation for Q 

f"(Q - f12/f2)p2 = K > 0. 

For fixed ,9 this is a relation for Q as a function of u (and the parameter K). A 
solution Q = Q(u; /?, K) of (2.4) determines 01 by (2.3) and hence w itself. Note 
that, from (2.3) and recalling that Q < 2/(r - l), /3 must be in the range 
0 < /3 < (2/(r - l))‘/” minf. 

While we have, for simplicity, been speaking about a torus of revolution, the 
mass flow equation (2.4) has been obtained assuming only that gij is independent 
of z, and g,, = g,, = 0. Since any (abstractly defined) torus T on which the 
circle group acts as a group of isometries with an invariant circle can be para- 
metrized by coordinates u and v in such a way that the metric gij satisfies these 
assumptions, the derivation of (2.4) and our subsequent results hold without 
modification for such a torus (with f = g,,). 

3. DESCRIPTION OF “DE LAVAL" FLOWS 

3. I. The Basic Problem 

Consider the torus of revolution T given by Eqs. (2.1). Here, and again in 
Section 5, we make the additional “de Laval” assumption on f, 

f'<O for 0 < u < rr, 
(3.1) 

f'>O for7r<u<2rr, 

in which case, f has a unique maximum at u = 0 and a unique minimum at u = rr. 
This results in considerable simplification of the analysis which follows, since 
the extrema offplay an important role. In Section 7 we will discuss the necessary 
modifications if this assumption is dropped. That the extrema occur at 0 and 7r 
is, of course, just an arbitrary, but convenient, choice of parametrization. 

Given circulations c1 and cs in the u direction (V = constant) and the v 
direction (u = constant), respectively, we seek a differential l-form w satisfying 
(1.1) and (1.2) h h w ic is independent of the coordinate v. We have seen that the 
speed Q of such a form is given by (2.3) and satisfies the mass flow equation (2.4). 
Computing c2 over a curve along which u is constant gives ca = sr p dv = 2+3. 
This incidentally gives, by the last sentence of Section 2, an upper bound on c2 . 

We begin by disposing of some cases. If c1 = 0, then a solution is given by 
01 = 0, /3 = c,/2rr, in which case Q = p2/f a and K = 0. The flow is described 
by streamlines in the v direction along which the speed is constant. The maxi- 
mum speed is attained on the “inner” circle where u = r. For c2 not too large 
the flow is subsonic and this is in agreement with the maximum principle of [IO] 
mentioned above. As c2 is increased the speed eventually becomes sonic on this 
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circle and then a smoothly transonic flow develops with a supersonic band 
bounded by sonic lines (U = 7~ & 8, where 0 is an increasing function of ce). 
For ca still larger, the flow (in general) becomes supersonic everywhere. (See, 
however, the remarks at the end of Section 3.5.) 

There is, in some sense, another flow for which K = 0. The density p vanishes 
for Q equal to the maximum speed 2/(r - 1). F or any admissible /3 one can then 
find (Y from (2.3). For this degenerate case the speed is, of course, constant on T. 

Before proceeding to a discussion of the flows in the general case of prescribed 
circulations ci and ca we would like first to describe in detail the flows for the case 
ca = 0 (in which case /3 = 0). Although these results are, strictly speaking, 
contained in the general case, they are already nontrivial (as was not the case for 
ci = 0). Our main reason for describing this case separately, however, is a 
strong analogy with the classical problem of flow in a de Lava1 nozzle mentioned 
in Section I. 

By the remarks following (2.4), ‘t 1 suffices to find solutions Q = Q(U) of Eq. 
(2.4). First we seek solutions of the initial value problem at u = r and then, of 
the circulation problem. 

3.2. The Initial Value Problem for Q (c2 = 0) 

We will see (Theorem 5.1) that corresponding to any value Qn # 2/(r + I), 
0 < Q,, < 2/(r - I), there exists a unique solution of (2.4) with Q(V) = Qlr 
which is everywhere subsonic or supersonic accordingly as Q,, is less than or 
greater than 2/(r + 1). Th e curves are sketched as Q+(U) and Q-(U), respectively, 
in Fig. 1. 

2 
y-1 

2 
Y+’ 

Q 

I m ,, * 271 
FIG. I. Smooth solutions (C, = 0). 

If Q,, is the sonic value 2/(7 + 1), th en by Theorem 5.2 there is one solution 
which is subsonic everywhere except at rr, where it is sonic, and a second solution 
which is supersonic everywhere except at V, where it is sonic. These curves 

QS+ and Qs- are also shown in Fig. 1. In general, these solutions will have a 
discontinuity in the derivative dQ/du at u = V. However (Corollary 5.4), the 
left- and right-hand derivatives of the two solutions will always match in such 
a way that the curves meet smoothly as shown. It is important to note that both 
solutions correspond to the same value of K. This means that a piecewise conti- 
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nuous curve which agrees everywhere with either Qs+ or Qs- will still be a solution 
of Eq. (2.4). Such discontinuities correspond to shocks in the flow and the usual 
shock condition requiring an increase in entropy implies a decrease in velocity 
across the shock. It is thus clear that: (i) A solution can pass from the Q8- curve 
to the Qs+ curve only at u = r; (ii) only one discontinuity is possible from the Qs+ 
curve to the Qs- curve; and (iii) no discontinuous solution can be formed from a 
pure subsonic-pure supersonic pair of curves with the same K. The location of 
the Qs’ to Qs- discontinuity thus parametrizes the set of all transonic solutions 
with shocks (see Fig. 2). There are no smooth transonic flows if ca = 0. Since the 

4 

FIG. 2. Shock solutions (C, = 0). 

streamlines are orthogonal to the shock lines, the shocks in this case are normal 
(compression) shocks. In fact, since there is no component of the flow in the w 
direction, the analogy with the flow behavior in a de Lava1 nozzle is seen to be 
hardly surprising. If we consider the subsurface T of T cut off by the curves 
ZI = n1 and 2; = vz , then the ilow restricts to T which we recognize as a curvi- 
linear two-dimensional de Lava1 nozzle in space. 

Finally, we observe that we have chosen to prescribe the value of Q at u = r, 
the point at whichf( u is minimum. From Fig. 1, one sees that if another value ) 
of u had been chosen it would not always be possible to find a global solution 
having a prescribed value at that point. On the other hand we will see (Proposi- 
tion 4.1) that a local solution always exists. It may happen, however, that it 
cannot be continued to a global solution on the whole interval [0,27r] but instead 
terminates at some value of u at which Q = 2/(r f 1) and dQ/du becomes infinite. 

3.3. The Circulation Problem (cg = 0) 

We have seen that there is a one-parameter family of curves Qt(u), encom- 
passing the subsonic, transonic with shock, and supersonic solutions, whose 
integrals depend continuously on the parameter t and range from 0 to 4rr/(r - 1). 
But 

cl(t) =: [‘” a du = lzrQf’“[(f’)” + (g’)2]1’2 du 
0 
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so that values of cl(t) vary continuously from 0 to L(2/(y - l))lr‘ where L is 
the length of the curve v = constant. It follows that there exist polytropic 
flows having prescribed circulations ci (0 < ci <L(2/(y - 1))‘i2) in the u 
direction and cs = 0 in the o direction. If ci is small the flow is subsonic and if c2 
is large the flow is supersonic. In the intermediate range it is transonic with one 
normal compression shock. 

3.4. The Initial Value Problem (cz # 0) 

The most important fact to be observed if c2 # 0 is that the sonic value 
2/(y + 1) loses significance. In its place (see Eq. 4.4) is a critical curve Q = Q(U) 
which depends explicitly on the metric, the circulation c, , and the point U. 
Moreover, if c2 # 0 then&(u) > 2/(r + 1). For fixed c2 = 27$ we will say that a 
solution Q(U) is subcritical, critical, or supercritical at U, accordingly, as Q(U) is 
less than, equal to, or greater than Q(U). By Theorems 5.1 and 5.2, there exists, 

for P2ifzW < Qm < 2/(r - l), Qn f &(4, an everywhere subcritical (respect- 
ively, supercritical) solution Q(U) if QV is subcritical (respectively, supercritical). 
The curves Q-(U) and Q+(U) in Fig. 3 depict such solutions. In addition, there is 

FIG. 3. Smooth solutions (C, # 0). 

a subcritical-critical solution QC-(u) and a supercritical-critical solution QC+(u). 
These are also drawn in Fig. 3. Their differentiability behavior at r is similar 
to that in the case ca = 0 already discussed. Again, a one-parameter family of 
solutions with a single compression shock occurs (see Fig. 4). A similar argument 
to that in Section 3.2 shows that such a solution must pass smoothly from the 
curve SC-(u) to the curve SC+(u) at u = rr and then must undergo a single jump 
discontinuity from the Qe+(u) curve to the Qc-(u) curve. 

The speed in front of the shock must be supersonic (since it is supercritical) 
but may be supersonic or subsonic behind the shock. Note that the shocks in 
this case are oblique compression shocks. 
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FIG. 4. Shock solutions (C, # 0). 

If data are prescribed at a point u # rr then a local solution might terminate at 
a point u at which Q(u) = Q(U) and dQ)ldu becomes infinite. 

3.5. The Circulation Problem (cg # 0) 

As in Section 3.3 one sees that, for fixed ca , there exist polytropic flows for a 
range of circulation c, (0 < c, < CT) in the u direction (where CT depends on cs). 
If c1 is small the flow is subcritical; if it is large the flow is supercritical (and 
hence supersonic). In the intermediate range the flow has a single oblique com- 
pression shock. Subcritical does not, however, imply subsonic so we should 
perhaps emphasize that if the circulation cs in the v direction satisfies 0 < cs < 
min (2?rf(2/(~ + l))l/“, 24,424~ - 1))lj2) then there is a range of circulation cl 
in the u direction for which the flow is smoothly transonic. 

A graph showing the dependence of the character of the solutions for pres- 
cribed circulations c1 and ca is given in Fig. 5. The region corresponding to 

Subsonic , 

140 
Cl C; 

c; 
Cl 

c; = 

2r I 
C;’ = [ [g,, Q;]‘d” 

C;” = iig,, 0; ]+A, 
0 

FIG. 5. The circulation problem. 
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supercritical (and hence supersonic) solutions and the region of solutions with 
shocks (supersonic-supersonic or supersonic-subsonic) are indicated. The 
region bounded by the cr and ca axes and the curve c’;‘-ci corresponds to sub- 
critical solutions. This always contains a (proper) subregion of subsonic solutions 
(under the dotted curve c’;‘--ct). There are also always smooth transonic solutions 
as shown and in addition, there may (depending on the geometry determined by 
f) be a region of supersonic-subcritical solutions. The dividing curve between 
these two regions would have as one endpoint a point on the curve c;“-ci (but 
not on the cr axis). The other endpoint could be either on the ca axis between 
c;l and I$’ or on the curve cy-ci , again depending on f. We have indicated this by 
an incomplete dotted curve. 

4. LOCAL THEORY 

4.1. Local Existence 

We seek a (local) solution Q = Q(U) of the initial value problem 

f “(Q - /12/j2) p2 = K = positive constant, (4.la) 

QW = Q1) P21fl <Ql <2/r - 1, (4.lb) 

wherep =(l -((y- 1)/2)Q) l/(v-l) and we have writtenf, = f (ul). Let Kr be 
the constant obtained by evaluating Eq. (4.la) at u = ur , Q = Q1 , and set 

F@, 8) =f2(Q - B"/f"> p2 - 4 . (4.2) 

The existence of a solution of (4.1) would follow from the implicit-function 
theorem if Fo(u, , Qr) # 0. A computation yields 

F&l 781) =fi” (1 - ~Q1)(3--y”‘-,-1i(~(u1) - Q1), (4.3) 

where the function Q(U) is given by 

&w = & (1 + B”if”b (4.4) 

We shall call Q(U) th e criticalfunction or critical curve and it will play a prominent 
role in what follows for reasons which shall become evident. We have 

PROPOSITION 4.1. If B/f: < Q1 < 2/(y - 1) and Q1 # &(ul) then, in some 
interval containing u1 , there exists a unique continuously di&w-ntiable solution of 
the initial value problem (4.1). 
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Note 1. Q(U) > 2/(y + 1) unless c2 = 0 in which case Q(u) is the constant 

Nr + 1). 

Note 2. In this section we do not make the de Lava1 assumption (3.1) on f. 

Note 3. Our computations show, in fact, 

COROLLARY 4.1. For u = u1 , (d/dQ) {(Q - /3z/flz) pz} is positiwe for Q < 

Q&d, ~~0 for Q = Qw and negative for Q > Q(uJ. 

PROPOSITION 4.2. Let Q = Q(u) be a solution of the initial value problem (4.1) 
in a neighborhood N of u1 . Then 

(9 If Q1 < Q(d then Q( u is an increasing (decreasing) function of u if 1 
f’ < 0 (f’ > 0) in N. 

(ii) If Ql > Q<d thmQ( u 1s a ) . d ecreasing (increasing) function of u if f’ < 0 
(f’ > 0) in N. 

Proof. Again by the implicit-function theorem 

dQ F -..-=-zI=- 4 f’ Q(1 - ((Y - 1)/2) Q) -- 
du Fo r+lf Q-Q ’ 

(4.5) 

The conclusions follow by observing the signs off’ and of Q-Q in the various 
cases. 

4.2. Dependence of K on Q 

The quantity Kin (4.la) gives the (square of the) mass flow in the u direction 
as a function of u and Q (where /3a/f” < Q < 2/(y - 1)). For a iixed u = ur we 
write K = K(Q) and observe first that K = 0 for Q = B2/fi2 and for Q = 
2/(y - 1). Moreover, at u = u1 , dK/dQ is (by C orollary 4.1) greater than, equal 
to, or less than zero, accordingly, as Q is less than, equal to, or greater than 
Q(z+). Hence K attains a maximum at Q = Q(uJ which we denote by K,(u,) 
(see Fig. 6). 

K 

K&l ----- 

K 
I 

--- ---I- 

h 
/33r: a- a (“,) a+ Z/(yl) 

a 

FIG. 6. Dependence ofKonQ. 

409/72/I -25 
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Summarizing, we have 

PROPOSITION 4.3. For u = u, and 0 < K < K,(u,) there exist two values of 
Q (which we denote by Q- and Q+) such that 

(i) K =fi2(Q+ - B”ifi”) (1 - ((Y - 1 K.4 Q*)z’(y-l), 
(4 B”ifi” < Q- < &(4 < Q+ < 2/k - 11, 
(iii) Q- (resp. Q+) is a monotone increasing (resp. decreasing) function of K. 

(iv) Q- f &W and Q+ h &(uJ as K+ K&d. 

We will also need to know how the maximum mass flow K,(u) that can pass 
through a point u is controlled by the value off at u. 

PROPOSITION 4.4. Iff(q) <f(u2) then K,(u,) < K,(u,) with equality holding 

only if f(uJ = f642>. 

Proof. If fi < f2 then &(uJ > Q(u2) b u computations show that fi2Q(u,) < t 
f22Q(u2) and, since p is a decreasing function of Q, that p2(Q(ul>> < p”(Q(u2)>. 
However, K,(uJ = K(Q(uJ) =f:(Q(q) - /3”lfia) p2(Q(ui)) and the conclusion 
follows. 

4.3. Dependence on the Initial Value 

If a solution Q(u) satisfying Q(z+) = Q1 can be continued to a point u = u2 
we will be interested (see Section 5.3, Theorem 5.2) in the dependence of the 
functional value Q2 = Q(u2) upon the initial value Qr . 

PROPOSITION 4.5. Let either (a) Q(u; K) < Q(u) or (b) Q(u; K) > Q(u) be a 
family of solutions parametrized by K, each solution defined in an interval containing 
ul and u2 . Let Q1 = Q(uI; K) and Q2 = Q(u2; K) denote their functional values 
at u1 and u2 , respectively. Then Q2 is an increasing function of Q1 . 

Proof. In case (a), K is, by Proposition 4.3, an increasing function of Qi , and 
Qa is an increasing function of K. In case (b), both functions are decreasing. 
Thus. the conclusion holds in either case. 

5. PROOF OF THE EXISTENCE THEOREM, AND THE 
CONVERGENCE TO'THE SONIC SOLUTIONS 

5.1. Preliminaries 

In this section, we seek global solutions Q(U) of the mass flow equation for 
polytropic flow with p = (1 - ((7 - 1)/2) Q)m-I): 

f2p2 (Q - $$) = f” (1 - ~Q)2”y-1) (Q - $) = K. (5.1) 
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Here, K is the mass-flow constant, andfis a positive, periodic, twice continuously 
differentiable function satisfying assumption (3.1). The constant K is uniquely 
determined from (5.1) by the value of Q at any point U. In particular, 

K = f(n)2 (1 - q Q(r))““‘-” (Q(n) - A) . (5.2) 

We shall omit the limiting cases for which K = 0 by always assuming that 

fL2 < Q(4 -=c & . 

LEMMA 5.1. ,+‘uppose Q is a solution of (5.1) on an interval containing rr. 
Then, K # 0 there and 

(4 

@I 

(4 

2 -==-, Y-1 

Q(u) -f;;j2 >f;j2' __ - 

1 - yQ@) > (~f+)""'2. 

Proof. From (5.2) and the assumption on the initial value at r, K > 0 
and neither p2 nor Q - ,9/f(u)" can vanish. Since p2 never vanishes, neither 

does 1 -Y NY - 1)/2) 8, and since 1 - ((y - 1)/2) Q(n) > 0, it follows that 
1 - ((r - 1)/2) Q(U) > 0. This proves (a). 

From (a), 

( 1 - ?+Q)2’cv-1) < 1, 

and therefore, 

which proves (b). Finally, 

f~+yzl l- ( 
y ; 1 Q)2’(y-l), 

Since 1 - ((7 - 1)/2) Q > 0, raising this inequality to’ the power (y- 1)/2 
proves (c). 

In the following, we make extensive use of the auxiliary function: 

Q(u)=&1 +fG). 
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We wish to study the behavior of solutions of the differential equation 

dQ -= 1 - NY - lMQ 
du -+$e( Q-Q 1’ (5.3) 

In particular, consider the pair of initial value problems: 

(5.3)’ Find solutions Q*(u) of Eq. (5.3) with prescribed initial values 
Q+(V) (respectively, Q-(V)) satisfying 

(+> Q'(4 > Qw, 
(-) Q-W < Qw 

Differentiable solutions of (5.1) satisfy (5.3). Conversely, solutions of (5.3)*, 
in some neighborhood of u = rr, satisfy the equation 

$if%'(Q-5)) =O 

and hence, the mass-flow relation (5.1). Therefore, we have shown 

PROPOSITION 5.1. Let Q(u) be continuously dz$krentiable in some interval 
containing w with Q(r) # Q(w). Then, Q is a solution of (5.1) if and only ifQ is a 
sobtion of (5.3)+ 01 (5.3)-. 

COROLLARY 5.1. Solutions Q*(u) of (5.3)* de$ned in some interval containing 7 
satisfy the conclusions of Lemma 5.1 there. 

PROPOSITION 5.2. Let Q(u) be a solution of (5.3); OY (5.3)- on some interval 
containing T for which the function y(u) = (Q(u) - Q(U))" > 0. Then, v has a 
unique minimum at u = v andfor u # VT on that interval, v(u) > q(n). 

To prove the proposition we will need the following important 

LEMMA 5.2. (a) The function (Q - Q)” satis$es the diflerential equation 

&Q-QY- w Au, Q(u)), 
where 

g(u, Q(u)) = & [Q(u) (1 - qQ(u,) + fG(Q(u) - Q(u))/ . 

(5.4) 

(b) If (Q(u) - Q(u))” > 0 in an in2ervaZ containing r, then 

(5.5) 
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where 

C(K)=-ql+ 
(Y + lJ2 

is a monotone increasing function of the mass-jlow constant K. 

To prove (a), 

;(Q-e,'-2(Q-Q~(~- g) 
. 8f’ 1 B” fy+,~~QW -Q(u)) - 2(Q - Q,g 

8j’ 1 ,B” =--- 
f r41f2 

(Q-Q+ f y&Q (1 - ‘+Q)- 

To prove (b), if Q(p) < Q(r) then Q(u) < Q(u) and 

g(u, Q(u)) > & ]Q(4 (1 - '+ Q(u)) + 5 (Q - Q)/ 
; 

-~Q(Q-++&p(l+j&)j&~ 

If Q(r) > Q(T) then Q(u) > Q(u) and 

Au, Q(4) > $ Q(u) (1 - qQ(4) 

’ ($ 1)” l +f(o)z ( 
E y - 1 K 

)( 
(Y-1)/2 

-- 2 fvo2 1 * 

This proves the lemma. 
To prove Proposition 5.2, we observe that dqjdu = (Sf’(u)lf(u)) g(u, Q(u)) 

vanishes only at v and 

gy(7f) = vg(-, Q(4) > 0. 

COROLLARY 5.2. (a) IfQ- is a solution oj(5.3)- in some interval containing T 
in which Q(u) - Q-(u) > 0, then, on that interval, 

Q(u) - Q-W > Q(r) - Q-b-) > 0. (5.6)- 

(b) If Q+ is a solution of (5.3)” in some interval containing w in which 
Q+(u) - Q(u) > 0, then, 

Q’(u) - Q(u) > Q+(v) - Q(T) > 0. (5.6)+ 
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5.2. Solution of the Initial Problem for Non Critical Initial Data 

THEOREM 5.1. For each choice of the initial values Q+(r) or Q-(rr) there exists a 
unique continuously dtzerentiable periodic solution of (5.3)+ or (5.3)-, or alternately 
(5.1). The solution satisjies (5.6)+ or (5.6)- as well as conditions (a), (b), and (c) of 
Lemma 5.1. 

Remark. It follows from the theorem that the Q- solutions lie below the 
critical curve & and the Q+ solutions lie above the critical curve Q. In addition, 
from Proposition 4.2, Q+(U) h as a minimum at u = r. Therefore, Q+(U) > 
Q'W >&CT> a Nr + 1h or Q+(U) is always supersonic. If /3 = 0, Q(u) = 
2/(y + 1) and the Q- solutions are subsonic. Otherwise, they may be subsonic, 
supersonic, or transonic. 

Proof of Theorem 5.1. We shall solve the initial value problem (5.3)), the 
solution of (5.3)+ being completely analogous. 

Let Q-(r) be the given initial value. By Proposition 4.1, (5.3)- has a unique 
continuously differentiable solution in some interval containing ?r. By continuity, 
in some possibly smaller interval, Q-(U) < Q(u). From Corollary 5.2, (5.6)- is 
satisfied on this interval. Conditions (a), (b), and (c) follow from Corollary 5.1. 
Therefore, the problem has a unique local solution in some interval about m. 

Let S = (ul , u2) be the largest open interval containing rr on which the 
solution Q-(u) exists, is continuously differentiable, and satisfies the conditions 
(5.6)-, (a), (b), and (c). We will show that S = (0,277). 

If this is not the case, then, say, u1 > 0. Let U, E S with u, L ur . The 
sequence Q-(uJ is then monotonically decreasing and bounded below so that 
Q-(u,J tends to a limit Q-(ur). It follows that Q-(u) is continuous on the closed 
interval [ui , ~1 and satisfies the mass-flow relation (5.1) there. By Lemma 5.1, 
conditions (a), (b), and (c) are valid on that interval. By continuity, Q(u) - Q-(u) 
> Q<d - Q-(4 > 0 on the closed interval [z+ ,nJ. But then by Corollary 5.2, 
(5.6) holds on that interval. 

Again, by Proposition 4.1, the initial value problem 

dQ -= 
du ---&$Q( 

1 - NY - 1MQ 
Q _ Q 1 3 Q(uJ = Q-W, 

has a unique solution in some interval containing u1 . By uniqueness, the solution 
agrees with Q-(u) for u > u1 . Hence, it is a continuously differentiable extension 
of Q-(u) in some interval to the left of ul . Since Q(ul) - Q-(ui) > 0, by con- 
tinuity, Q(u) - Q-(u) > 0 in some interval to the left of ui , and therefore 
(5.6)- is satisfied there by Corollary 5.2. By Corollary 5.1, (a), (b), and (c) are 
also satisfied. But this implies that S was not the largest interval on which 
Q-(U) exists. Therefore u1 must be zero. A similar analysis at the right endpoint 
shows that u2 = 2~. 
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By Proposition 4.2, Q-(U) has limiting values at u = 0 and u = 2~7, and is 
therefore continuous on the closed interval [0,2?r]. 

From the differential equation (5.3), dQ-/du has a limit at u = 0, namely, 

dQ- 1 - KY - 1)iWQ-(O) -= 
du - m-f- f'(o> Q-CO) ( Q(o) _ Q2-(o> Y-i- 1 f(O) ) 

= o 3 
since f’(O) = 0. 

Also, (dQ-/du) (274 = 0, so that the curves have the same slope at 0 and 27r. 
We next show that sincef is periodic, Q- is periodic. From (5.1), 

PYQ-(0)) (Q-W -fG) = P~(Q-(W (Q-W - &F) - 

As in Section 4, Corollary 4.1, 

2&,2(Q+))+(1 -?+Q)("-yl'+l), (&-Q)>(). 

Therefore, 

~~(81) (Q, - 9) = p2(Q2) (Q2 - 5) 

implies Qr = Qs , or, in this case, Q-(O) = Q-(27~). This completes the proof of 
Theorem 5.1. 

COROLLARY 5.3. The solutions of Theorem 5.1 satisfy the integral equations 

Q*(u) = &W 31 (C!%, - Q*bN2 + Iflu +,(t, Q*(t)> dt)1’2, (5.7)* 

where g(t, Q*(t)) > C(K) as defined in Lemma 5.2. 

The corollary follows by integrating (5.4) and taking square roots. 

5.3. The Critical Solutions 

Next, we study the behavior of the solutions as the initial values tend to the 
critical value Q(r). 

We will need the following 

LEMMA 5.3. Suppose h(u) is continuously dzjjkentiable and increasing in a 
neighborhood of rr with h(r) = 0. Then the function 
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is bounded and 

(i> lim,, c H(u) = -(2h’(97))‘~2, 

(ii) l&b ?r H(u) = (2h’(.rr))1/2. 

Proof. From L’Hospital’s Rule, 

Taking square roots with appropriate signs proves the lemma. 

THEOREM 5.2. Let Q**(u) be sequences of solutions of (5.3)* for which Qn*(w) 
tend monotonically to Q(r). Then, Q n* u conereige uniformly on [0,27;1 to solutions ( ) 
Qc*(u) of (5.1) with K = K, and Qc+(rr) = Qe-(r) = Q(T). For every u # r, 

Qc-04 < &b4 Qo-74 >&M Q c* u are continuously dz#tvntiable, and there ( > 
exists a constant M independent of u such that 1 dQ,+ldu / < M. 

Proof of Theorem 5.2. Recall (Proposition 4.5) that if Q*-(V) is monotone 
increasing, then Qlz-(u) is also monotone increasing, and bounded above by 
Q(r). We will show that the sequence 1 dQ,-ldu 1 is uniformly bounded. By 
Arzela’s theorem, a subsequence converges uniformly. By monotonicity, the 
original sequence must converge. 

Differentiating (5.7)-, we see that a solution of (5.3)~ satisfies 

dQ- dQ 1 8(f ‘(W(u)) Au> Q-W -- -- 
du -x 2 (c&b-) - Q-W2 + J; W’lf) g(t, Q-(t)> W2 . 

Therefore 

l~I<lpi+ I(2f ‘(W(4) g(u, Q-WI 
CJ: (2f ‘If) g(t, Q-(t)) W2 ’ 

Also, recall (Proposition 4.3) that K, is a monotone increasing function of 
Qn-(4, and C(K) is an increasing function of K. Therefore, g(t, Qn-(t)) > 
C(K,) > C > 0 for large n. 

Since f ‘(u) is increasing near m, and f ‘(r) = 0, 

s n” Fg(t, Qn-(t)) dt > C ly 7 dt. 
?r 

Moreover, g(u, Qn-(u)) is bounded above. Therefore, 

dQ,- I I < Kl + K2 Pf ‘(W(4)l 
du (J,” (2f ‘if) W2 ’ 
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Applying Lemma 5.3, we see that the right-hand side is bounded, as was to be 
shown. It follows that Qn-(a) converges uniformly to a continuous function 
Qo(u) with Qo(n) = Q(T). 

In a similar fashion, if Qn+(~) is monotone decreasing, then Qn+(u) is also 
monotone decreasing and bounded below by Q(m) (Proposition 4.5). In this case 
(Proposition 4.3), the mass flows K, increase as Q,(r) decreases. Thus, 
g(t, Qn+(t)) > C(K,J > C > 0, and one obtains a uniform bound on / dQ,+/du j . 
The sequence Qn+(u) converges uniformly to a limit function SC+(u) with 

Qc+W = Qw 
From the uniform convergence of Qn*(u), 

and 
At, Qc*(t>> > Wc) > 0, 

Qc*@) = Q(u) f (Jc: yg(t, Qc+(t)) dt)l”. 

Therefore, Qc+(u) > Q(u) and Qc-(u) < Q(u) for u # V. 
If u # r, the right-hand side is differentiable and 

(5.8)’ 

(5.9)* 

As in the preceding argument, this is bounded independently of U. This com- 
pletes the proof of Theorem 5.2. 

COROLLARY 5.4. The critical solutions Qo*(u) have left- and right-handed 
derivatives at u = 7~ given by 

(i) lii +$ = 
i 4 (f(r?;;;i 1)s ( 1+-&l( 

l-Y-1 B” l/2 

-2-m ' 1) 

(ii) l& v = 
* 4 ((y-fiyf(r) ( I-l-&( 

1 _ Y - 1 B” 1’2. 
T-f02 1) 

Therefore, 

(iii) lii * = lili?-$$ 

and 
dQc+ liTi --&- = dQc- 

&r. 

Remark. It follows from Corollary 5.4 that the functions 

Q&4 = Qo-, for u < 77, 

= c+, Q for u 2 77, 
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and 

are continuously differentiable. 

Remark 2. If f”(r) = 0, the solutions QC * are continuously differentiable 
at 7r. 

To prove the corollary, we will compute the limits in (5.9)* as u + 7. First 
observe that d&/du = 0 at u = V. Next, let h(u) = (2f ‘(u)/‘f(u)) g(u, Qc*(u)). 
The function h(u) is increasing in a neighborhood of m with /z(r) = 0. We must 
check that Jr’(u) is continuous. Differentiating, 

h’(u) = yg(u,Qc*(u)) + $ ($ + g T - 4 g(u,Q(u,) . 

For u # rr, this expression is continuous. Since dQf/du are bounded functions 
and f’(n) = 0, h’(a) = (2f “(n)/f(n)) g(r, Qc*(r)) exists. 

Therefore, h(u) satisfies the hypotheses of Lemma 5.3. 
Now, 

Therefore, 

2h’(n) = 16 f “(4 (I + 
(Y + 1)” f (4 

Applying Lemma 5.3 in each of the four cases now gives the conclusions of 
the corollary. 

6. THE CASE y = 3 

If y = 3, the mass flow relation (5.1) in the preceding section is quadratic in 
Q; n=ely, 

(1 -Q)(Q+) =; 

or 

Q++$)Q+F=O. 

(6.1) 

(6.2) 
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Since Q = $(I + /Islfs) we find that 

Q = Q f (8" - (B" + Q'f">""~ (6.3)& 

On the other hand, recall the integral identities (5.7)*: 

Q(u) = Q(u) f ((SW - Q(4)’ + 1‘: +~(t, Q(t)> dt)l’z- 

Since (Q(n) - Q(r))” = Q(n)2 - (/32 + K)lf(rr)s and 

s 
* Sf’ pgdt=B2+K F2+K 
57 f m - f2 +&” -Qw2, 

we see that (5.7)* is the same as (6.3)’ for y = 3. 
The explicit nature of the formula (6.3)* allows us to read off all properties 

of the solutions directly. 

7. DESCRIPTION OF FLOWS (CONTINUED) 

In the description (Section 3) of the global solutions Q(u) we have assumed 
(3.1) that f has only one minimum between 0 and 27~. The local theory of Section 
4 makes no use of this whatsoever. In Section 5 the fact that we have arranged 
that f has a minimum at u = TI is, as we have pointed out, merely a technical 
convenience. Continuing the solution to the left to u = 0 depends solely on the 
fact that this is the closest maximum point off to the left of rr. (The corres- 
ponding observation holds for u = 2rr.) 

Note that, by Eq. (4.5) f or an arbitrary f E C2, if f ’ = 0 on an interval then any 
smooth solution Q(U) is constant on the interval. With no loss of generality 
then, we assume that f has isolated extrema with relative minima at ui , i = 
1 ,..., rz, and interlaced maxima at U; , say with U; < Ui < ~a+, . The arguments of 
Section 5 then lead to a family of solutions on the interval [ui , uj+;I correspond- 
ing to mass-flow constants K (see Section 4.2) with 0 < K < K,(ui). Each 
solution has vanishing derivatives at the endpoints as follows from the proof of 
Theorem 5.1. But Q is determined by u and K (as usual, this is all for fixed c2) so 
that two solutions, one on each of adjacent intervals, will meet (smothly) at the 
common endpoint if and only if they correspond to the same value of K (and 
both are either subcritical or both supercritical). As we have just seen, the range 
of K is not the same for all intervals but depends on ui . More precisely, since 
K(ui) = @Q(Q), * d P d it e en s on the value off at uI . Let Kc = min K,(q) over 
all relative minima u( off. By Proposition 4.4 this minimum is assumed at an 
absolute minimum off. 
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THEOREM 7.1. Let f E C2 be an arbitrary (periodic) function with isolated 
extrema. Then for 0 < K < K, there exist a smooth subcritical solution Q-(u) and 
a smooth supercritical solution Q+(u), both defined on the interval [0, 27~1. For 

K = Kc there exist smooth solutions Qe-(u) and Qc+(u) which are subcritical (res- 
pectively, supercritical) everywhere except at an absolute minimum off, where they 
are critical. 

Flows with compression shocks can be constructed as in Section 3.4. As 
regards the circulation problem, we have 

THEOREM 7.2. Suppose that f has a unique absolute minimum at u = II* (but 
it may have other relative minima). Let cz = 242j(r - l))‘l”f(u*) be the upper 
bound on circulation in the v-direction and let c2 < ct. Then there is a constant cf 
depending on cz (see Section 3.5) such that for cl < CT there exists a unique jlow 
on T having circulations cl and c2 . For appropriate choices of cl and c, the flow is 
smoothly subsonic, smoothly transonic, transonic with one compression shock, or 

smoothly supersonic. 

Remark. If the absolute minimum off is attained at several values of u, then 
flows with several compression shocks are possible. In this case the solution 
of the circulation problem need not be unique. 
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