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Abstract

In this paper an LBGK model for thermocapillary flow in microgravity is proposed. In the model two distribution functions are
used for the velocity and temperature fields, respectively. Through the Chapman–Enskog expansion, the macroscopic equations
for the thermocapillary flow can be recovered from the LBGK model. The boundary conditions for the thermocapillary flow are
treated using the non-equilibrium extrapolation scheme. The model is validated by simulating the thermocapillary flow in a two-
dimensional (2D) square cavity with a single free surface and differentially heated side walls.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Convective flows driven by the surface tension due to a temperature gradient are of considerable interest and play an
important role in small-scale and/or low-gravity hydrodynamics. Because these thermocapillary flows usually occur
on crystal growth melts and dominate the convective flows in the microgravity environment of space, there have been
a number of studies using simplified 2D models with negligible gravitational effects [1–7]. Many traditional methods,
such as the finite-difference methods and finite-volume methods, have been applied to solve such problems. In this
paper, an alternative method, the lattice Boltzmann BGK (LBGK) model [8], is employed to simulate this problem.
The LBGK model is a relatively new approach that uses simple microscopic kinetic models to simulate complicated
macroscopic behaviors of transport phenomena [9–11]. From a computational viewpoint, the notable advantages of
the LBGK are the intrinsic parallelism of algorithm, the simplicity of programming, and the ease of incorporating
microscopic interactions.

The LBGK model for the thermocapillary flow with microgravity used in the present work is constructed based
on the idea of the double distribution functions (DDF) LB model for natural convection equations [12,13]. In this
model, the incompressible LBGK model [14] is used to model the incompressible Navier–Stokes equations, and an
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additional LBGK equation is used to describe the evolution of the temperature field [12,13]. The model is validated
by simulating a 2D thermocapillary flow in a rectangular cavity with a single free surface and differentially heated
side walls, where the ZHM model [2] is used so that the free surface can be assumed to remain flat at leading order.
Numerical simulations have been carried on with different Reynolds numbers and the relative height of the external
temperature on the left wall. The numerical results agree well with other existing results [7].

2. The LBGK model for thermocapillary flows

The dimensionless equations for a thermocapillary flow in the absence of gravity read

∇ · u = 0, (1a)

∂u
∂t

+ u · ∇u = −∇ p +
1

Re
∇

2u, (1b)

∂Θ
∂t

+ u · ∇Θ =
1

Ma
∇

2Θ, (1c)

where u, θ and p is the dimensionless velocity, temperature and pressure of the flow, respectively. The characteristic
length and velocity are h and U0 = |σT |1T‖/ρν, where σT =

∂σ
∂T is the gradient coefficient of surface tension σ , ρ is

the density of the flow, ν is the kinetic viscosity and 1T‖ is the temperature difference along the horizontal direction.
Re, Ma and Pr are the Reynolds number, Marangoni number and Prandtl number, respectively, and are defined as

Re =
U0h

ν
, Ma =

U0h

κ
, Pr =

ν

κ
=

Ma

Re
, (2)

where κ is the thermal diffusivity.
For a 2D problem, we can solve the governing equations (1) using a 2D nine-bit (D2Q9) LBGK model, where the

discrete velocities are defined as,

ei =


(0, 0) i = 0
(cos[(i − 1)π/2], sin[(i − 1)π/2])c i = 1, . . . , 4
√

2(cos[(i − 1)π/2 + π/4], sin[(i − 1)π/2 + π/4])c i = 5, . . . , 8.

(3)

In order to solve the Eq. (1) in the LBGK framework, we follow the idea of the two distribution function similar
to that used in [12,13]. Specifically, the velocity field is described by the incompressible D2Q9 model [14], and the
temperature field is described by the D2Q4 model. The two LBGK equations read

gi (x + ei1t, t + 1t) − gi (x, t) = −τ−1
u (gi (x, t) − geq

i (x, t)) for i = 0, . . . , 8, (4a)

Θi (x + ei1t, t + 1t) − Θi (x, t) = −τ−1
T (Θi (x, t) − Θeq

i (x, t)) for i = 1, . . . , 4, (4b)

where c = 1x/1t is the particle speed, 1x and 1t are the lattice grid spacing and time step, respectively. gi (x, t)
and Θi (x, t) are the distribution functions at computing node x and time t . geq

i (x, t) and Θeq
i (x, t) are the equilibrium

functions accordingly. In this paper, geq
i (x, t) proposed by Guo [14] are defined

geq
i =


ρ0 − (1 − ω0)

p

c2
s

+ s0(u), i = 0

ωi
p

c2
s

+ si (u), i = 1, . . . , 8
(5)

where

si (u) = ωi

[
ei · u

c2
s

+
(ei · u)2

2c2
s

−
|u|

2

2c2
s

]
, (6)

with the weight coefficient ω0 = 4/9, ω1−4 = 1/9, ω5−8 = 1/36 and cs = c/
√

3 is the speed of sound. ρ0 is a
constant.
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Θeq
i (x, t) are defined as

Θeq
i (x, t) =

Θ
4

[
1 + 2

ei · u
c2

]
, i = 1, . . . , 4. (7)

The macroscopic velocity, pressure and temperature of the flow are defined as

u =

8∑
i=1

ei gi =

8∑
i=1

ei g
eq
i , (8a)

p =
c2

s

1 − ω0

[
8∑

i=1

gi + s0(u)

]
=

c2
s

1 − ω0

[
8∑

i=1

geq
i + s0(u)

]
, (8b)

Θ =

4∑
i=1

Θi =

4∑
i=1

Θeq
i . (8c)

It is noted that the constant ρ0 takes no effect in the computations of the macroscopic quantities and is set to be 1.0 in
the numerical simulations.

Through the Chapman–Enskog expansion [13,14], the macroscopic equations can be derived from the LBGK
model with

ν =
1
3

(
τu −

1
2

)
1x2

1t
, (9a)

κ =
1
2

(
τT −

1
2

)
1x2

1t
. (9b)

3. Numerical results

3.1. Problem description

The problem we considered is the thermocapillary flow in a square cavity filled with melt in the absence of
gravitational force (See Fig. 1). The motion is referred to a Cartesian coordinate system with the origin at the left
of the bottom boundary and with the y axis parallel to the side walls. The top horizontal boundary is a free surface.

In the range h − h1 ≤ y ≤ h, the vertical walls of the cavity keep the temperature TL and TR for the left and right
walls, respectively. TB is the temperature of the bottom. Let Θ = (T − TR)/1T⊥, the dimensionless temperature is
1T‖/1T⊥ and 0 for the left and right walls, respectively, where 1T‖ = TL − TR and 1T⊥ = TR − TB .

The flow is governed by Eq. (1), and the boundary conditions of the rigid walls read

x = 0, 1 − A ≤ y ≤ 1 : u = 0, v = 0,Θ = 1T‖/1T⊥, (10a)

x = 1, 1 − A ≤ y ≤ 1 : u = 0, v = 0,Θ = 0, (10b)

x = 0, 0 ≤ y ≤ 1 − A : u = 0, v = 0, ∂Θ/∂x = 0, (10c)

x = 1, 0 ≤ y ≤ 1 − A : u = 0, v = 0, ∂Θ/∂x = 0, (10d)

y = 0, 0 ≤ x ≤ 1 : u = 0, v = 0,Θ = −1.0, (10e)

where A = h1/h, 1T⊥ > 0.
For the free surface, the capillary number Ca is a measurement of the free surface deformation. In the ZHM

model [2], Ca is assumed to be sufficiently small, and thus the surface deformation can be neglected. Under such a
case, the free surface can be assumed to be flat, and the boundary condition can be expressed as (to the leading order
in Ca)

v = 0,
∂u

∂y
= −

1T⊥∂Θ
1T‖∂x

,
∂Θ
∂y

= −Bi (Θ − Θc), (11)
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Fig. 1. Geometry of the cavity and boundary condition.

where Bi = κgh/κ is Biot number, κg is the gas thermal diffusivity. In our simulations, the surface is adiabatic, and
so Bi = 0.

The initial velocity is set to be zero at each node with a constant density ρ0 = 1.0. The distribution functions gi
and Θi are initialized by setting to the equilibria for all nodes. All simulations are carried out on a 128 × 128 lattice.
The Prandtl number Pr is set to be 0.024 (for Ga melt) and 1T⊥ is set to be 1.0.

3.2. Boundary treatment

As we know, the treatment of boundary conditions is crucial in LBM. Many researches have been carried out and
several schemes, such as the bounce back scheme [16], the half-way bounce back scheme [17], and the extrapolation
scheme [15,18], have been proposed. The detailed analysis about the boundary treatment can be seen in [19].

In the thermocapillary flow in the rectangular cavity, the boundary conditions are complicated, especially for the
free surface. Among the schemes for boundary treatment, the non-equilibrium scheme [15] can solve the problem
easily, while the others may be quite difficult if not impossible.

Treatments for the boundary conditions on the solid walls using the non-equilibrium scheme can be found in [15].
For the free surface, first we suppose xb lies at the free surface and x f is the neighboring node in the fluid. Note that
the dimensionless temperature Θb of the free surface equals Θ f since Bi = 0. Therefore, the velocity ub of the free
surface can be obtained using certain numerical methods. As such, the particle distribution function gi and Θi of the
free surface can be obtained according to the non-equilibrium extrapolation scheme,

gi (xb, t) = geq
i (xb, t) + [gi (x f , t) − geq

i (x f , t)], (12a)

Θi (xb, t) = Θeq
i (xb, t) + [Θi (x f , t) − Θeq

i (x f , t)]. (12b)

3.3. Results

Fig. 2 shows the isotherms and the streamlines of the flow for three values of Re, 2.036 × 102, 2.036 × 103,
2.036 × 104 as 1T‖ = 0.1, 1.0, 10 correspondingly. The relaxation parameter ω = 1/τu is set to be 1.0, 1.5, and
1.95, respectively. To reach the steady state, a number of iterations are performed, where the criterion of steady state
is that the difference between the velocities at the center of the cavity for the successive 1000 time steps is less than
5 × 10−6. As shown, for Re = 2.036 × 102, the flow has an influence on the temperature field of the upside of the
cavity mostly, and the temperature field is homogeneous in the bottom field. With the increasing of Re, the convection
becomes stronger than the diffusion and starts to influence the temperature field in the downside. It is noted that the
eddy on the bottom left corner has been calculated but not found by the finite-difference scheme [7]. Table 1 lists the
strengths and locations of the vortex of the flow. In Figs. 3 and 4, the temperature and velocity profiles at the free
surface are plotted for different Reynolds numbers.

The isotherms of the flow are shown in Fig. 5 with different relative heights of the external temperature on the left
wall for Re = 2.036×103, 2.036×104, and 4.072×104 with 1T‖ = 1.0, 10, 20. The relaxation parameter ω = 1/τu
is set to be 1.5, 1.95, and 1.97, respectively. It is seen that with the increasing of A, the high temperature field has
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(a) Re = 2.036 × 102.

(b) Re = 2.036 × 103.

(c) Re = 2.036 × 104.

Fig. 2. The isotherms and the stream lines for different Re numbers.

been spread downwards and the isotherms become more curved, which implies that the thermocapillary flow has an
important influence on the temperature field.

4. Conclusion

In this paper, an LBGK model for the thermocapillary flow has been proposed. The incompressible LBGK
model [14] is adopted to describe the velocity field and another LBGK equation is used to model the temperature
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Fig. 3. The speed and temperature along the free surface for different Re number (a) Re = 2.036×102, (b) Re = 2.036×103, (c) Re = 2.036×104.

Fig. 4. The speed along Y -direction at X = 0.5 for different number (a) Re = 2.036 × 102, (b) Re = 2.036 × 103, (c) Re = 2.036 × 104.

Table 1
Strength and locations of vortex of the flow (ϕ: vorticity; (x, y): location of the vortex)

Re ϕ x y

2.036 × 102 Primary −0.0219 0.4219 0.7091
Right 0.0046 0.8438 0.9219
Left −4.6224 × 10−7 0.0391 0.0313

2.036 × 103 Primary −0.0092 0.6172 0.6797
Right 4.6126 × 10−6 0.8750 0.1172
Left −1.6297 × 10−7 0.0391 0.0313

2.036 × 104 Primary −0.0044 0.5391 0.5703
Right 5.3112 × 10−5 0.8750 0.1172
Left 4.1693 × 10−6 0.0703 0.0703

field. The thermocapillary flow in a rectangular cavity is used to validate the mode. The numerical results agree well
with other existing results [7].

It is noted that the free surface is treated as flat under the ZHM assumption. Further studies considering the
deflection in the free surface will be carried out in the future.



R. Du, B. Shi / Computers and Mathematics with Applications 55 (2008) 1433–1440 1439

Fig. 5. The isotherms for different Re numbers. (a) Re = 2.036 × 103, (b) Re = 2.036 × 104, (c) Re = 4.072 × 104.
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