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SUMMARY

Cell cycle regulators play critical roles in the balance
between hematopoietic stem cell (HSC) dormancy
and proliferation. In this study, we report that cell
cycle entry proceeded normally in HSCs null for
cyclin-dependent kinase (CDK) inhibitor p57 due to
compensatory upregulation of p27. HSCs null for
both p57 and p27, however, were more proliferative
and had reduced capacity to engraft in transplanta-
tion. We found that heat shock cognate protein 70
(Hsc70) interacts with both p57 and p27 and that
the subcellular localization of Hsc70 was critical to
maintain HSC cell cycle kinetics. Combined defi-
ciency of p57 and p27 in HSCs resulted in nuclear
import of an Hsc70/cyclin D1 complex, concomitant
with Rb phosphorylation, and elicited severe defects
in maintaining HSC quiescence. Taken together,
these data suggest that regulation of cytoplasmic
localization of Hsc70/cyclin D1 complex by p57 and
p27 is a key intracellular mechanism in controlling
HSC dormancy.

INTRODUCTION

HSCs play an essential role in the maintenance of multiple line-

ages of blood cells through their dual ability to self-renew and

to differentiate into progenitors of various lineages. By protecting

HSCs from proliferative exhaustion, cell cycle quiescence is

essential for the long-term engraftment potential and mainte-

nance of stem cells. A balance of cell-extrinsic and -intrinsic

regulators normally maintains HSCs in a state of relative

dormancy. Our previous studies indicate that HSC quiescence

is regulated by several extracellular factors, including Ang1/

Tie2 (Arai et al., 2004), THPO/MPL (Yoshihara et al., 2007), and

N-cadherin/b-catenin (Hosokawa et al., 2010). Because these
Cell
pathways must converge on cell cycle regulation, it might

be possible to drive HSC fate determination by directly manipu-

lating the expression of intracellular cell cycle regulators.

However, little is known about the intracellular mechanisms of

cell cycle factors that regulate HSCquiescence and proliferation.

An early stage of the cell cycle is regulated by the action of the

D-type cyclins that, together with their catalytic partner CDKs,

function as intracellular sensors of extracellular signals. Their

activities are carefully regulated by the INK4 family (p15, p16,

p18, p19) and the Cip/Kip family (p21, p27, p57) of CDK inhibi-

tors. Both positive and negative cell cycle regulators, including

the D-type cyclins (Kozar et al., 2004), Cdk4/6 (Malumbres

et al., 2004), and the INK4 family of CDK inhibitors (Oguro

et al., 2006; Yuan et al., 2004), are critical for various aspects

of HSC proliferation. In the Cip/Kip family gene products, p21

is critical for preventing HSC exhaustion by regulating quies-

cence (Cheng et al., 2000b), whereas p27 regulates the prolifer-

ation and pool size of hematopoietic progenitor cells (HPCs)

rather than that of HSCs (Cheng et al., 2000a).

Amongall CDK inhibitors, p57 is uniquebecauseof its essential

role in development (Pateras et al., 2009). Recent studies have

shown that p57 is highly expressed in the Thy1.1intFlk2�LSK
(Passegué et al., 2005) and CD34�MPL+LSK (Yoshihara et al.,

2007) quiescent populations of HSCs. Furthermore, TGF-

b-induced cell cycle arrest in HPCs (Scandura et al., 2004) and

HSCs (Yamazaki et al., 2009) is correlated with an increase in

p57 expression. These observations suggest that HSC quies-

cence is potentially maintained by the modulation of p57 expres-

sion. However, the role of p57 in HSCs has not been determined,

because of the neonatal lethality of p57�/� mice.

In this study, p57 was found to contribute to the maintenance

of HSC quiescence, and p27 compensated for p57 function in

HSCs with a p57 deletion. An association between p57, p27,

and Hsc70 was found to maintain the cytoplasmic localization

of the Hsc70/cyclin D1 complex and regulate the cell cycle entry

of HSCs. These findings provide insights into the physiological

function of p57 and p27 in HSCs and have implications for

the roles of CDK inhibitors in the maintenance of tissue

homeostasis.
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RESULTS

Deletion of p57 in Embryonic HSCs Did Not Affect Cell
Cycle Progression
Bone marrow (BM) lineage� Sca1+ c-Kit+ (LSK) cells can be

divided into populations of long-term reconstituting HSCs (LT-

HSCs; CD34�/Flt3� or CD150+/CD48�), which are capable of

extensive self-renewal, and short-term reconstituting HSCs

(ST-HSCs; CD34+/Flt3� or CD150�/CD48�), which self-renew

for a limited time before giving rise to a population of non-self-

renewing multipotent progenitors (MPPs; CD34+/Flt3+ or

CD48+) (Adolfsson et al., 2001; Kiel et al., 2005). To gain insights

into G0/G1 cell cycle control in these populations, we analyzed

the expression levels of G1 phase cyclins via qRT-PCR. Within

the pool of LSK cells, LT-HSCs expressed the highest levels of

cyclin D1 and D2 and the lowest levels of cyclin D3 (Figure 1A).

However, no induction of cyclin E1 or E2 was observed in

LT-HSCs, although their expression is correlated with cyclin

D-dependent Rb-mediated transcription. Furthermore, both of

the G1 phase CDKs were expressed at low levels in LT-HSCs

(Figure 1B). In contrast, the differentiation of LT-HSC into

ST-HSC and then into MPP specifically correlated with

decreased expression of p57 and increased expression of p21,

whereas p27 expression did not change significantly (Figure 1C).

Immunocytochemistry showed that most Ki67�LSK cells

(quiescent HSCs) exhibited abundant expression of p57 in the

cytoplasm, whereas most Ki67+LSK cells (cycling HSCs or

MPPs) showed only weak expression of p57. In contrast, no

significant difference in the expression of p21 or p27 was de-

tected between Ki67� and Ki67+LSK cells (see Figure S1A avail-

able online). To understand how cell cycle entry is regulated in

HSCs, freshly isolated CD34�LSK cells were stimulated with

SCF (stem cell factor). SCF stimulation caused the degradation

of p57 and nuclear translocation of cyclin D1, which were fol-

lowed by Rb phosphorylation (Figure S1B). Interestingly,

CDK2, CDK4, and CDK6 were not detected in the cytoplasm

ofCD34�LSKcells although their nuclear expressionwas induced

after SCF stimulation (Figure S1C and data not shown). These

results suggest that p57 in HSCsmay regulate cell cycle progres-

sion by controlling the subcellular localization of cyclin D, which is

independent of the expression of the CDKs.

To investigate whether the proliferation of hematopoietic cells

was affected by p57 deficiency, cell cycle progression was

examined in fetal liver (FL) LSK cells, common lymphoid progen-

itors (CLP), common myeloid progenitors (CMP), granulocyte-

macrophage progenitors (GMP), and megakaryocyte-erythroid

progenitors (MEP) (Figure S2A). Hoechst staining showed that

the absence of p57 did not affect the proliferation of FL LSK cells

or progenitors (Figure S2B). In addition, no significant difference

was detected in the total number of LSK cells between p57+/+

and p57�/� embryos (Figure S2C).

Next, in vitro colony-forming assays were performed with

freshly isolated FL Flt3� or Flt3+LSK cells. Equal numbers of

p57+/+ or p57�/� cells were plated, and equivalent numbers of

colonies were generated (Figure 2A). To determine whether

p57 is involved in adult BMHSC reconstitution, the long-term re-

populating capacity of p57�/� FL HSCs was examined in vivo.

Flow cytometric analysis of the peripheral blood (PB) of the

transplant recipients revealed that p57+/+ and p57�/� FL LSKs
248 Cell Stem Cell 9, 247–261, September 2, 2011 ª2011 Elsevier In
were equally capable of supplying hematopoietic cells (Fig-

ure 2B). Serial BMTs also were performed to analyze the self-

renewal capacity of p57�/�HSCs. Examination of donor-derived

BM (Figure 2C) or LSK (Figure 2E) cells after the third transplan-

tation revealed a substantial reduction in the reconstitution

capacity of p57�/� HSCs compared to p57+/+ HSCs. The prolif-

eration of donor-derived LSK cells was then determined by Ki67

staining (Figure 2D). There was no difference in the frequency of

G0 cells between p57+/+ and p57�/� LSK cells at either the first or

the third BMT (Figure 2F). These data indicate that p57 may

mediate the self-renewal capacity of FL donor-derived HSCs

during serial BMT, but that the changes are not caused by alter-

ations in the cell cycle.

Deficiency of p57 Leads to the Upregulation of p27
in HSCs
Although p57 deficiency did not affect themaintenance of quies-

cence in HSCs, molecular redundancy or compensatory mech-

anisms may exist that compensate for the loss of p57. The

expression of CDK inhibitors was examined in LSK cells isolated

from p57+/+ or p57�/� donor-derived BM at 4 months post-BMT.

The effects of THPO administration on gene expression in donor-

derived LSK cells of recipient mice was also investigated (Fig-

ure 3A) because THPO/MPL signaling is involved in the mainte-

nance of HSC quiescence and is associated with the regulation

of p57 signaling pathways in HSCs (Yoshihara et al., 2007).

Consistent with previous studies, upregulation of p57 occurred

in wild-type (WT) donor-derived LSK cells after 3 days of daily

THPO administration. Interestingly, a significant increase in

p27 expression was detected in p57�/� LSK cells, and the

increase became more distinct after THPO administration,

whereas p21 expression was the same in all groups (Figure 3B).

In addition, p57�/� LSK cells exhibited a greater level of p18

expression, which is correlated with the self-renewal of HSCs

(Yuan et al., 2004). However, THPO administration did not

increase the expression of p18 in p57�/� LSK cells, indicating

a difference between the regulation of p18 and p27.

In the serial BMT, p18, but not p27, was upregulated in the re-

constituted p57�/� LSK cells during the transplantation (Fig-

ure 3C). Furthermore, p57�/� donor-derived CD34�LSK cells

showed a high level of p18 expression in the nucleus (Figure 3D;

Figure S3A), whereas, in contrast, p27 was expressed predom-

inantly in the cytoplasm of these cells (Figure 3E; Figure S3B).

In addition, the upregulation of p21 expression in donor-derived

LSK cells was not observed when p57 was deleted (Figure S3C).

Taken together, these data suggest that p27 may compensate

for the loss of p57 function in the cytoplasm for the maintenance

of quiescence in p57�/� HSCs.

Critical Role of p57 in the Maintenance of p27–/– BM
LSK Cells
Given the upregulation of p27 in p57�/� FL donor-derived

HSCs at post-BMT, a p57 knockdown (KD) strategy was

utilized in p27�/� adult BM LSK cells to reduce the expression

of p57 in the absence of p27 (Figure 4A). As shown in Fig-

ure S4A, the expression of p57 in p27�/� LSK cells was not

affected. Three retroviral p57 shRNAs were introduced into

MEFs, and the efficient reduction of p57 expression by sh-1

was verified (Figure S4B). LSK cells were isolated from p27+/+
c.
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Figure 1. qRT-PCR Analysis of Cell Cycle-Related Genes in LT-HSC, ST-HSC, MMP, Lineage–, and MNC Fractions

LT-HSC, ST-HSC, and MMP fractions are from CD34�/Flt3� or CD48�/CD150+; CD34+/Flt3� or CD48�/CD150�; and CD34+/Flt3+ or CD48+ populations,

respectively.

(A) Expression levels of G1 phase cyclins.

(B) Expression levels of G1 phase CDKs.

(C) Expression levels of the p21, p27, and p57 CDK inhibitors.

Data represent mean values from three samples, all performed in duplicate. Error bars indicate the SD (*p < 0.01, **p < 0.05, n = 3).
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or p27�/� BM and were transduced with either the scrambled

control (CON) or the p57 sh-1 KD vector. At day 2 after viral

infection, each group of LSK GFP+ cells was sorted for func-

tional assessment.
Cell
Long-term colony-initiating cell (LTC-IC) assays were first per-

formed for GFP+ cells on a layer of OP9 stromal cells. In this

assay, the number of colony-forming cells after 6 weeks of

culture reflects HSC function. After 6 weeks, the number of
Stem Cell 9, 247–261, September 2, 2011 ª2011 Elsevier Inc. 249
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Figure 2. p57 Deficiency Affects HSC Repopulating Ability upon Serial BMT, but Is Not Caused by an Altered Cell Cycle

(A) Normal clonogenic capacity of p57�/� FL HSCs in vitro. Flt3� or Flt3+ LSK cells were flow sorted from p57+/+ or p57�/� E14.5 FLs and cultured in methyl-

cellulose medium for 7 days. Data shown are the mean number of colonies (±SD) formed per 200 cells (n = 3).
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Figure 3. Expression of CDK Inhibitors in p57+/+ or

p57–/– FLDonor-Derived LSKCells after Transplan-

tation

(A) Scheme of the preparation of donor-derived LSK cells.

(B) Increased p27 and p18 expression in p57�/� LSK cells

at 4 months posttransplantation. Donor-derived LSK

cells were sorted after 3 days of daily THPO or PBS

(control). The relative expression of CDK inhibitors (p21,

p27, p57, and p18) was analyzed by qRT-PCR. Data

shown are mean (±SD) values from two independent

experiments (*p < 0.01, n = 3).

(C) Increased p18 expression in p57�/� LSK cells during

serial BMT. FL LSK cells before transplantation or FL

donor-derived LSK cells were sorted after each BMT. The

relative expression of p18 and p27 was analyzed. Data

shown are mean (±SD) values from two independent

experiments (*p < 0.01, **p < 0.05, n = 3).

(D) Expression of p18 was upregulated in the nucleus of

p57�/� donor-derived CD34�LSK cells at 4 months

posttransplantation. Freshly isolated donor-derived cells

were stained with anti-p18 (green) and DAPI (blue).

(E) Expression of p27 was upregulated in the cytoplasm of

p57�/� donor-derived CD34�LSK cells at 4 months

posttransplantation. Freshly isolated donor-derived cells

were stained with anti-p27 (green) and DAPI (blue).
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colonies derived from p27�/�p57KD LSK cells was significantly

less than that derived from p27+/+p57CON, p27+/+p57KD, or

p27�/�p57CON LSK cells, although there was no significant

difference in the short-term cultures (less than 2 weeks) (Fig-

ure 4B). In addition, almost no large LTC-IC colonies (>2 mm in

diameter) were generated from p27�/�p57KD LSK cells (Fig-
(B) Normal long-term reconstitution capacity of p57�/� FL LSK cells. Irradiated recipient mice were tra

plus 2 3 105 BM-MNCs. Data shown are the mean percentages (±SD) of donor-derived cells in the

(C) Defective repopulation capacity of p57�/� BM MNCs during serial transplantation. 4 3 103 don

transplanted into recipient mice. The repopulating capacity of p57+/+ or p57�/� donor cells was determ

are the mean percentages (±SD) of donor-derived cells in BM MNCs (*p < 0.01, n = 5).

(D) Equivalent cell cycle status of posttransplant p57+/+ and p57�/� LSK cells. Results shown are on

(E) Defective repopulation of p57�/� LSK cells derived from BM cells in serial transplantation. BM cells

donor-derived LSK cells at 16 weeks post-BMT (±SD, *p < 0.01, n = 5).

(F) Cell cycle status in the pool of donor-derived LSK cells. Cell cycle analyses of LSK populations by K

G0, G1, or S/G2/M phase are indicated (±SD).

Cell Stem Cell 9, 247
ure S4C). Because these colonies represent

the more primitive hematopoietic cell popula-

tions, these data suggest that p57 and p27

cooperate to maintain the immature HSC

phenotype in vitro.

To evaluate HSC function in vivo, the repopu-

lating capacity of p27�/�p57KD LSK cells was

next examined via competitive reconstitution

assays. The p27�/�p57KD cell recipients

showed low donor-derived cell chimerism in

the PB at 2 months after transplantation, and

this proportion decreased thereafter. In

contrast, the transplanted p27+/+p57CON,

p27+/+p57KD, or p27�/�p57CON cells showed

a steady increase in chimerism from 2 to

4months posttransplantation (Figure 4C). These

results indicate that p57KD may cause an in vivo
defect that impairs the function of LSK cells after BMT when p27

expression is deficient. To characterize the defect in

p27�/�p57KD LSK cells, the homing capacity and viability of

transplanted cells were tested. 30 hr after BMT, homing capacity

and apoptotic cell ratio of transplanted GFP+ cells in the BM

were equivalent in each group (Figures S4D and S4E). Therefore,
nsplanted with 43 103 LSK cells from p57+/+ or p57�/� FLs

PB at the indicated times after transplantation (n = 5).

or-derived LSK cells from the recipient mice were serially

ined at 16weeks posttransplant for eachBMT. Data shown

e analysis representative of two independent experiments.

from the recipient mice were analyzed for the frequency of

i67 and Hoechst staining in (D). The percentages of cells in

–261, September 2, 2011 ª2011 Elsevier Inc. 251
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Figure 4. Abrogated Self-Renewal Capacity and Defective Maintenance of Quiescence in p27–/–p57KD LSK Cells

(A) The experimental scheme for shRNA transduction.

(B) Decreased colony formation of p27�/�p57KD LSK cells after long-term culture. p27+/+p57CON, p27+/+p57KD, p27�/�p57CON, or p27�/�p57KD GFP+ LSK cells

(2 3 103) were cultured on OP9 stromal cells for the indicated number of weeks (W) and tested for colony formation. Data shown are the mean number (±SD) of

colonies formed (*p < 0.01, n = 3).

(C) Hematopoietic reconstitution capacity of p27+/+p57CON, p27+/+p57KD, p27�/�p57CON, and p27�/�p57KD LSK cells. Irradiated recipient mice were trans-

planted with 5 3 103 GFP+ LSK cells and 2 3 105 competitor cells. Data shown are the mean percentages (±SD) of donor GFP+ cells in the PB at the indicated

time-points post-BMT (*p < 0.01, **p < 0.05, n = 5).
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the engraftment defect of p27�/�p57KD LSK cells cannot be

attributed to a defect in homing or cell survival.

It was next investigated whether the repopulating defect

observed with p27�/�p57KD LSK cells could result from changes

in their cell cycle distribution. Analysis of donor-derived GFP+

cells revealed that p27�/�p57KD LSK cells had a 2-fold decrease

in the frequency of Ki67� quiescent cells (Figure 4D) and a correl-

ative increase in the percentage of BrdU+ cycling cells (Fig-

ure 4E). Thus, a proportion of quiescent LSK cells in the BM

are profoundly affected by the loss of p57 when p27 is unavail-

able. Furthermore, examination of donor-derived GFP+ LSK cells

after the second transplantation revealed a severe reduction in

the self-renewal capacity of p27�/�p57KD HSCs (Figure 4F).

Failure to Maintain Quiescence in p27–/–p57–/– HSCs
Hematopoietic cells are rapidly expanded in the FL; however, FL

EPCR+LSK cells are represented in a slow cycling population as

early as E12.5 (Iwasaki et al., 2010). To confirm the genetic coop-

eration of p57 and p27 in regulating HSC proliferation, the cell

cycle of E14.5 FL CD48�EPCR+LSK cells was examined in

p27�/�p57�/� (DKO) mice. Loss of both p27 and p57 signifi-

cantly decreased the frequency of Ki67� HSCs compared to

the frequency in p27�/�, p57�/�, or WT mice (Figure S5A).

However, no significant differences were detected in the total

cell numbers of LSK and progenitors between DKO embryos

and the other genotypes (Figure S5B). Furthermore, DKO FL

CD48�EPCR+LSK cells showed no defects in colony formation

after 7 days in methylcellulose culture (Figure S5C).

Next, the repopulation capacity of FL CD48�EPCR+LSK cells

of various genotypes was examined after BMT. In the short-term

(4 and 8 weeks post-BMT), the repopulating capacity of DKO

donor-derived cells was comparable to that of other genotypes,

and no alteration was observed to suggest that loss of p27 and

p57 affects progenitor function (Figure 5A). However, at later

time points, the repopulating capacity of DKO cells was lower

than that of the control groups. In addition, the number of DKO

donor-derived LSK cells sharply decreased at 4 months post-

BMT (Figure 5B). These results indicate that deficiency of p27

and p57 may affect the function of HSCs but not that of progen-

itor cells. In fact, there was a significant reduction in the

frequency of CD48�CD150+LSK cells in reconstituting DKO

BM compared to that in controls (Figure 5C). This decrease

was not associated with changes in the apoptotic rates of these

cells (data not shown).

Based on these observations, the cell cycle profile of reconsti-

tuting subpopulations of HSCs (CD48�CD150+LSK cells) and

HPCs (CD48+LSK cells) was further tested. DKO HSCs, while

decreased in number, displayed enhanced proliferation, while

DKO HPCs did not cycle more than the control groups (Fig-

ure 5D). On the other hand, flow cytometric analyses identified
(D) Defective maintenance of quiescence in p27�/�p57KD LSK cells. Cell cycle ana

and Ki67 at 16 weeks post-BMT. Inserts show the mean percentages (±SD) of d

(E) Increased BrdU+ cells in p27�/�p57KD LSK cells. Recipient mice were intraper

after injection, BMMNCs were harvested and stained with surface markers and B

BrdU+ cells in donor-derived LSK cells are indicated (*p < 0.01, n = 5).

(F) Defective repopulation capacity of p27�/�p57KD LSK cells in second BMT. D

transplanted into sublethally irradiated mice. Data shown are the mean percenta

(*p < 0.01, n = 5).

Cell
an increased number of myeloid (Mac-1+ and Gr-1+) cells as

well as a reduction in the number of B (B220+) cells in DKO

donor-derived BM cells; in contrast, an increased number of T

(CD4+CD8+) cells was detected in both p27�/� and DKO cells

(Figure 5E). Despite the perturbed frequency of HSCs and

various hematopoietic cell lineages in reconstituting DKO BM,

no significant extramedullary hematopoiesis was detected

because the spleen size and the frequency of splenic LSK cells

in DKO cell recipients were similar to those in other genotypic

cell recipients (Figure S5D and data not shown). Specifically,

the deficiency of both p57 and p27 in HSCs resulted in

a complete lack of long-term maintenance of HSCs after serial

BMT (Figure 5F), suggesting that these proteins cooperate to

play a pivotal role in the maintenance of HSC quiescence and

to protect HSCs from loss of self-renewal activity.

Identification of Hsc70 as a p57 Binding Protein
in Quiescent Hematopoietic Cells
Given our in vivo studies suggesting that p57 and p27 cooperate

to maintain quiescence in HSCs, p57/p27 binding factors were

investigated to elucidate the mechanism of this cooperation.

Murine EML cells, a hematopoietic progenitor cell line, were

used to identify p57 binding proteins. As previously reported

(Ye et al., 2005), lineage� EML cells can be separated into two

populations based on the cell surface marker CD34, and both

populations contain similar levels of c-kit. In addition, it was

found that the CD34+ population was active in cell cycling,

whereas the CD34� cells were in G0/G1 cell cycle arrest, as indi-

cated by Ki67 staining (Figure 6A). It was also observed that p57

was expressed at high levels in CD34�EML cells, while

increased c-Myc was detected in CD34+EML cells, correlating

with the cell cycle status (Figure S6A).

To identify proteins that physically associate with p57 in quies-

cent EML cells, p57 binding proteins were coimmunoprecipi-

tated on anti-Myc agarose beads from whole cell extracts of

Lin�CD34� EML cells overexpressingMyc-p57. Several proteins

coprecipitatedwithMyc-p57 that were absent in the control puri-

fication (Figure 6B). Protein bands were excised, digested with

trypsin, and subjected to Nano-liquid Chromatography-Tandem

Mass Spectrometry (LC-MS/MS). Cyclin D1, D2, CDK4, and

CDK6 were identified as prominent copurifying proteins. In addi-

tion, the mass spectra identified several tryptic peptides that

were identical to murine Hsc70. Also, Hsc70 was detected as

an endogenous binding protein of p57 by immunoprecipitation

with p57- or Hsc70-specific antibodies in Lin�CD34� EML cell

lysates (Figure 6C).

Hsc70 is a member of the heat shock protein 70 (Hsp70)

family, which shuttles between the cytoplasm and the nucleus

and serves as a molecular chaperone for the nuclear import of

certain proteins. Diehl et al. (2003) showed that Hsc70 directly
lysis of GFP+ donor-derived LSK cells was performed by staining with Hoechst

onor-derived GFP+ LSK cells (*p < 0.01, n = 5).

itoneally injected with 1 mg of BrdU at 16 weeks post-BMT. Twenty-four hours

rdU antibodies and then analyzed by flow cytometry. The percentages (±SD) of

onor-derived GFP+ LSK cells (5 3 103) were obtained from recipient mice and

ges (±SD) of donor-derived GFP+ LSK cells at 16 weeks after the second BMT

Stem Cell 9, 247–261, September 2, 2011 ª2011 Elsevier Inc. 253
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Figure 5. Defects in the Maintenance of Quiescence and the Self-Renewal Capacity of p27–/–p57–/– HSCs

(A) Defective hematopoietic repopulating activity of DKO FL HSCs. 53 102 FL CD48�EPCR+LSK cells fromWT, p27�/�, p57�/�, or DKOmice were transplanted

into irradiated recipients together with 2 3 105 BM-MNC competitors. Red lines indicate the mean percentages of donor-derived PB cells (*p < 0.01, n = 7).
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interacts with cyclin D1 and accelerates its binding to CDK4/6

during the G0/G1-S transition. Hsc70 is constitutively expressed

in the absence of stress in mature mammalian cells and is abun-

dantly expressed in embryonic, mesenchymal, and neural stem

cells (Baharvand et al., 2007). The relative levels of Hsc70

mRNA were examined in hematopoietic cells, and Hsc70 was

found to be highly expressed in multipotent LSK cells (Fig-

ure S6B). In contrast, Hsp70-1a, a member of the Hsp70 family

whose expression is induced by stressors such as heat, is ex-

pressed at low levels in LSK cells (Figure S6C). The subcellular

localization of cyclin D1 and Hsc70 in CD34�LSK cells was

next analyzed by immunocytology. Cyclin D1 colocalized with

Hsc70 in the cytoplasm of untreated CD34�LSK cells but trans-

located into the nucleus with Hsc70 after SCF stimulation (Fig-

ure S6D). These results suggest that the localization of Hsc70

to the cytoplasm of HSCs may inhibit the G0/G1-S transition by

regulating the subcellular localization of cyclin D1.

To determine whether other CDK inhibitors bind to Hsc70,

expression vectors encoding EGFP-tagged Hsc70 and HA-

tagged p21, p27, or p57 were cotransfected into COS-7 cells.

EGFP-Hsc70 was immunoprecipitated with anti-GFP from the

cell lysates, and immunoblotting was carried out with HA or

GFP antibodies. HA-p57 and HA-p27, but not HA-p21, copreci-

pitated with EGFP-Hsc70 (Figure 6D), suggesting that p57 and

p27 may specifically interact with Hsc70 to regulate cell cycle

progression in HSCs. Consistent with this, the hyperphosphory-

lation of Rb in DKO HSCs correlated with the nuclear import of

the Hsc70/cyclin D1 complex in donor-derived CD34�LSK cells

(Figure 6E). These observations suggest that loss of p57 and p27

in HSCs results in Rb phosphorylation and causes cell cycle

entry by regulating the nuclear import of the Hsc70/cyclin D1

complex.

Control of the Cytoplasmic Hsc70/Cyclin D1 Complex
Is a Key Molecular Mechanism of HSC Quiescence
Deoxyspergualin (DSG), an immunosuppressive agent, has

a peptidomimetic structure and binds specifically to Hsc70,

which is thought to preclude the binding of certain other proteins

to Hsc70 (Nadler et al., 1992). Immunoprecipitation assays were

performed in the presence or absence of DSG to identify the

interactions between Hsc70, p57, and cyclin D1 proteins in

Myc-p57- or cyclin D1-overexpressing Lin�CD34� EML cells.

Hsc70 bound to both p57 and cyclin D1, but DSG only inhibited

the association between Hsc70 and cyclin D1 (Figure 6F). When

freshly isolated BM CD34�LSK cells were treated with DSG to

inhibit the binding of Hsc70 to cyclin D1, cyclin D1 was imported

into the nucleus and Rb became phosphorylated, whereas

Hsc70 remained localized to the cytoplasm (Figure S6E). These

data suggest that Hsc70 maintains the cytoplasmic localization
(B) Defective LSK repopulating activity of DKO cells. BMT experiments were perf

LSK cells at 16 weeks post-BMT (*p < 0.01, n = 7).

(C) Flow cytometric analysis of donor-derived BM fractions. The frequency of CD

compared to other controls. Inserts shown are the mean percentages (±SD) of d

(D) Proliferation status in donor-derived HSC and HPC populations. The cell cy

determined by intracellular Hoechst staining. The mean percentage ± SD of cells

(E) The percentage (±SD) of CD4/CD8+ T cells, B220+ B cells, or Mac-1+/Gr-1+ m

(F) Defective repopulating capacity of DKO LSK cells during serial BMT. The perce

second and third BMT (*p < 0.01, **p < 0.05, n = 4).
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of cyclin D1 through direct binding and functions as a specific

G0/G1 factor relative to Rb phosphorylation in HSCs.

A nuclear localization signal (NLS) and a nuclear localization-

related signal (NLRS) have been identified in amino acid regions

246–262 and 473–492, respectively, of Hsc70 (Tsukahara and

Maru, 2004). Blocking of the NLRS, which functionally inhibits

the nuclear export signal (NES), results in the inhibition of

Hsc70 nuclear translocation (Figure S7A). GFP fusionswere con-

structed of WT or NLRS-deficient (NLRS-D) Hsc70, which also

binds to cyclin D1 (Figure S7B), and their subcellular localizations

were examined in COS7 cells. WT Hsc70 localized to both the

cytoplasm and the nucleus at 37�C and accumulated in the

nucleus after heat shock at 42�C for 4 hr. In contrast, NLRS-D

Hsc70 remained exclusively in the cytoplasm (Figure S7C).

Given that the nuclear translocation of Hsc70 was altered by

the deletion of the NLRS, cell cycle progression was next

compared in HSCs overexpressing WT or NLRS-D Hsc70. There

was no significant difference in cell cycle status in culturing

GFP+LSK cells transduced with WT Hsc70 or NLRS-D Hsc70,

compared to cells transduced with the GFP control vector (Fig-

ure S7D). We next examined the proliferation of the transduced

cells 8 weeks after BMT. Analysis of the reconstituting BM

showed an increase in the LSK fraction and a decrease in the

CD34�LSK cell population in mice transplanted with cells trans-

duced withWTHsc70. Ki67 staining showed that the percentage

of G0 cells in repopulating CD34�LSK cells was significantly

decreased by WT Hsc70, whereas deletion of the Hsc70

NLRS prevented the reduction in the number of Ki67� cells

(Figure 7A). Furthermore, analysis of the donor-derived GFP+

CD34�LSK fraction showed that a significant increase in the

percentage of BrdU+ cells occurred in WT Hsc70-transduced

cells but not in NLRS-D Hsc70- or control vector-transduced

cells (Figure 7B). In addition, donor-derived CD34�LSK formed

few colonies inWTHsc70- but not in NLRS-DHsc70-transduced

cohorts (Figure 7C). These data demonstrate that the subcellular

localization of Hsc70 is critical for the maintenance of HSC cell

cycle kinetics and repopulating capacity after BMT.

To examine the role of CDKs in these processes, the effect of

the pharmacologic inhibition of CDK4/6 (with PD-0332991) or

CDK2 (with BMS-387032) was evaluated in mice transplanted

with HSCs overexpressing WT or NLRS-D Hsc70. Treatment

in vivo with PD-0332991 significantly induced G0 quiescence in

HSCs expressing WT Hsc70, whereas BMS-387032 treatment

increased the frequency of the G1 population. In contrast, neither

PD-0332991 nor BMS-387032 significantly affected the

frequency of G0 or G1 cells in NLRS-D Hsc70-overexpressing

HSCs, though the S/G2/M population was slightly suppressed

by BMS-387032 in these cells (Figure 7D). In addition,

CD34�LSK cells were isolated from WT or DKO donor-derived
ormed as in (A). Data shown are the mean percentages (±SD) of donor-derived

48�CD150+LSK cells was significantly reduced in reconstituting DKO BM as

onor-derived LSK cells (*p < 0.01, n = 7).

cle status of HSCs (CD48�CD150+LSK cells) or HPCs (CD48+LSK cells) was

in S/G2/M is indicated (*p < 0.01, n = 7).

yeloid cells of donor-derived BM cells in BMT recipients (*p < 0.01, n = 7).

ntages (±SD) of donor-derived LSK cells were determined at 16 weeks after the
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BM at 4 months post-BMT. After 12 hr of culture with low-dose

SCF (10 ng/ml) and with or without DSG, PD-0333991, and

BMS-387032, cell cycle initiation was determined by Ki67 stain-

ing (Figure S7E). Treatment with PD-0332991 blocked the cell

cycle progression induced by p27 and p57 deletion, whereas

BMS-387032 had no effect on DKO cells. These data demon-

strate that the CDK4/6 activity elicited by the nuclear expression

of Hsc70/cyclin D1 releases HSCs from p27/p57-protecting

quiescence. This model is additionally supported by the require-

ment for CDK4/6 but not CDK2 for cell cycle entry after DSG

stimulation (Figure S7E).

DISCUSSION

Here, we report that theCDK inhibitors p57 and p27 cooperate to

maintain HSC quiescence and that their function is closely corre-

lated to the regulation of the cellular localization of the Hsc70/

cyclin D1 complex in HSCs (Figure 7E).

Loss of p57 in FL HSCs Leads to Impaired Self-Renewal
in Serial BMT, although the HSC Cell Cycle Is Not
Affected
Upon mitogenic stimuli, D-type cyclins phosphorylate Rb, initi-

ating G0/G1-S phase progression. Interestingly, HSCs abun-

dantly express cytoplasmic cyclin D1, which is essential for

HSC proliferation (Kozar et al., 2004) and which is correlated

with the high expression of p57 in the cytoplasm of quiescent

HSCs. In addition, SCF downregulates p57 and induces the

nuclear translocation of cyclin D1 in HSCs (Figure S1). These

findings suggest that, in quiescent HSCs, p57 and cyclin D1

form a complex in the cytoplasm and cyclin D1 is available for

rapid re-entry into the cell cycle in response tomitogenic signals.

Recent studies have indicated that the cytoplasmic localization

of cyclin D1 plays an important role in cell cycle control (Tama-

mori-Adachi et al., 2003; Yamamoto et al., 2006). In addition,

evidence for the cytoplasmic localization of p57 has been

provided in normal and cancerous tissues (Pateras et al.,

2009). Although a similar expression pattern has been reported

for HSCs (Yamazaki et al., 2006), the exact functions of p57

are still not known.

The function of p57 was first examined with FL HSCs because

p57-null mice show neonatal lethality. Unexpectedly, there were
Figure 6. Association of Hsc70 with p57, p27, and Cyclin D1

(A) Cell cycle analysis of CD34� and CD34+Lin�EML cells. Cells were stained with

and analyzed by anti-Ki67 staining. Bottom panels indicate the cell cycle pattern

(B) Detection of p57-associated proteins by mass spectrometry. The left lane co

contains proteins that nonspecifically bind to anti-myc beads in control EML lysat

p57-infected EML cells. The positions of cyclin D1, cyclin D2, CDK4, CDK6, M

spectrometry.

(C) Hsc70 was detected in the p57 endogenous complex. Lin�CD34� EML cell lys

bound complexes were immunoblotted for p57 or Hsc70.

(D) Hsc70 directly binds to p57 and p27. Expression vectors encoding EGFP-tagge

EGFP-Hsc70 was immunoprecipitated with anti-GFP, and immunoblotting was c

(E) The phosphorylation of Rb is increased in p27�/�p57�/� HSCs. p27�/�p57�

transplantation and stained with anti-Hsc70 (green), anti-cyclin D1 (red), anti-pR

independent experiments (*p < 0.01).

(F) DSG inhibits the association between Hsc70 and cyclin D1. EML cells were i

presence or absence of 10 mg/ml DSG for 24 hr. Immunoprecipitation with Myc

noblotting was carried out with Hsc70 or Myc antibodies.
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no significant abnormalities in the function of p57�/� HSCs,

although a defect in repopulating capacity was observed in serial

BMT. Moreover, no defects were detected in the cell cycle

control of p57�/� donor-derived LSK cells, indicating the pres-

ence of alternative mechanisms to maintain quiescence

(Figure 2). Interestingly, in the p57�/� donor-derived LSK cells,

the levels of p27 and p18 were increased significantly, indicating

that these proteins may functionally compensate for p57 in the

maintenance of HSC quiescence. However, after administration

of THPO to transplant recipient mice, the p18 level remained

unchanged, whereas p27 expression was elevated in p57�/�

LSK cells. Furthermore, the expression of p27 but not p18 in

the cytoplasm of p57�/� HSCs was similar to that of p57 in WT

HSCs, suggesting compensation for the lack of p57 by p27

(Figure 3). Indeed, p18 has been reported to play a negative

role in self-renewal through an independent mechanism of cell

cycle arrest in HSCs (Yuan et al., 2004). These finding suggest

that p57 deficiency induces the exhaustion of HSCs after

repeated BMTs by upregulating p18, and not defective HSC

quiescence by p27 compensation. It remains to be determined

why p57 deletion increases p18 during serial BMT and, more

importantly, how p27 is functionally upregulated by p57 deletion

to maintain HSC quiescence.

p57 and p27 Cooperate to Maintain Cell Cycle
Quiescence and the Reconstitution Activity of HSCs
Both p27 and p57 have broad antiproliferative effects on a variety

of cell types and tissues outside the hematopoietic system.

Previous studies with mice lacking p27 and p57 have shown

that these proteins cooperate to control the cell cycle in many

tissues (Bilodeau et al., 2009; Zhang et al., 1998). In addition, it

was demonstrated that p57 and p27 have overlapping functions

in a knockin mouse model (Susaki et al., 2009). However, the

physiological significance and the molecular mechanism for

the cooperation between p27 and p57 in stem cells were not

evaluated in previous studies.

In this study, the deficiency of both p57 and p27 resulted in

a complete lack of long-term maintenance of HSCs, suggesting

that these proteins cooperate to maintain HSC quiescence and

protect HSCs from a loss of self-renewal activity (Figures 4

and 5). We have previously reported that Foxo3a, an important

downstream target of PI3K-Akt signaling, is essential for the
c-kit, CD34, and lineage (CD4, CD8, B220, TER-119, Gr-1, Mac-1) antibodies

of CD34� and CD34+Lin�EML cells.

ntains molecular weight markers (sizes shown in kilodaltons), the middle lane

es, and the right lane contains p57 complexes isolated from lysates from Myc-

yc-p57, and Hsc70 are indicated, along with the peptides identified by mass

ates were immunoprecipitated with p57- or Hsc70-specific antibodies, and the

dHsc70 andHA-tagged p21, p27, or p57were cotransfected into COS-7 cells.

arried out with HA or GFP antibodies.
/� donor-derived CD34�LSK cells were isolated by FACS at 16 weeks post-

b (white), and DAPI (blue). Data shown are the mean (±SD) values from two

nfected with Myc-p57 or Myc-cyclin D1 retroviruses and were cultured in the

antibodies was performed on the infected Lin�CD34� EML cells, and immu-
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Figure 7. Control of Cytoplasmic Hsc70/Cyclin D1 Localization Is a Key Molecular Mechanism of HSC Quiescence

(A) Cell cycle analysis of donor-derived WT Hsc70 and NLRS-D Hsc70-transduced CD34�LSK cells at 2 months after BMT. Inserts shown are the mean

percentages (±SD) of donor-derived CD34�LSK cells (*p < 0.01, **p < 0.05, n = 4).

(B) Increased frequency of BrdU+ cells in the donor-derived WT-Hsc70 and NLRS-D Hsc70-transduced CD34�LSK cells at 2 months after BMT. Recipient mice

were intraperitoneally injected with 1 mg of BrdU at 2 months post-BMT. Twenty-four hours after injection, BM MNCs were harvested and stained with surface

marker and BrdU antibodies and then analyzed by flow cytometry. The percentages (±SD) of BrdU+ cells in donor-derived CD34�LSK cells are indicated (*p <

0.01, n = 4).
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maintenance of self-renewal capacity in HSCs. Maintenance of

quiescence is defective in Foxo3a�/� HSCs, concomitant with

the decreased expression of both p57 and p27 (Miyamoto

et al., 2007). Another genetic model that illustrates the relation-

ship between the PI3K-Akt pathway and HSC quiescence is

the conditional knockout of PTEN, which regulates HSC mainte-

nance by restricting HSC proliferation (Yilmaz et al., 2006; Zhang

et al., 2006). The deficiency leads to the activation of PI3K, which

results in Akt activation and consequently Foxo inactivation. This

relationship may explain the similarities in the phenotypes of

PTEN�/�, Foxo3a�/�, and p27�/�p57�/� HSCs with respect to

cell cycle regulation and repopulating capacity. More interest-

ingly, the PI3K pathway also plays an important role in controlling

the localization of cytoplasmic cyclin D1 in various cell lines

(Radu et al., 2003; Yamamoto et al., 2006). These findings are

especially interesting to us as the PI3K-Akt pathway acts

upstream of p57 and p27 to control cyclin D1 localization in

HSCs. The fact that both p57 and p27 function downstream of

the same regulatory pathway may well be important. One

possible explanation is that this compensatory mechanism

exists to ensure that the cell cycle regulatory function of the

PI3K pathway is intact even if one effector becomes inactivated.

Increased proliferation is often associated with the loss of self-

renewal in HSCs, and alterations in the downstream regulators

(Rb family members) of the CDK inhibitors are also associated

with this phenotype (Viatour et al., 2008). Rb family proteins

collectively regulate genes that normally inhibit the proliferation

of both HSCs and hematopoietic progenitors. In contrast, p27

and p57 deficiency resulted in an altered cell cycle for HSCs

but not for progenitors. These observations suggest that the

cell cycle progression of HSCs and progenitors may be

controlled by different mechanisms, although both processes

are regulated by the Rb gene family.

Taken together, our results indicate that either p57 or its

compensator p27 specifically plays a pivotal role in controlling

HSC quiescence. This compensatory mechanism of p27 may

provide an essential proliferation control in stem cells where

p57 is not expressed at normal levels, as is the case in many

human tumors and hyperplasia.

Importance of Hsc70, a p57 and p27 Binding Protein,
in the Regulation of HSC Quiescence
Hsp70/Hsc70 chaperones localize to both cytosolic and nuclear

compartments, where they regulate protein maturation, translo-

cation, and association. Previous studies have shown that

Hsp70 prevents the inactivation of the transcription factor

GATA-1 by a caspase-mediated proteolysis, indicating that

Hsp70 might indirectly trigger erythroid differentiation (Ribeil

et al., 2007). Hsc70 also plays a role in the cytokine-mediated

survival of hematopoietic progenitors by negatively influencing
(C) Defective clonogenic capacity of donor-derived WT Hsc70-transduced CD34

Hsc70-transduced CD34�LSK cells were sorted at 2 months post-BMT and cultu

colonies (±SD) formed per 100 cells (*p < 0.01, **p < 0.05, n = 3).

(D) Cell cycle analysis of donor-derived GFP control-, WT Hsc70-, or NLRS-D H

inhibitors in vivo. Recipient mice were intraperitoneally injected with 100 mg/kg o

injection, BMMNCswere harvested and cell cycle progression was analyzed as in

CD34�LSK cells are indicated (*p < 0.01, n = 3).

(E) Molecular regulation of the quiescence machinery in HSCs.
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the stability of mRNA of the proapoptotic protein Bim, thus pre-

venting apoptosis in hematopoiesis and leukemogenesis (Matsui

et al., 2007). However, neither molecule has been shown to play

a specific role in HSCs.

In this study, Hsc70 was identified as a p57 binding protein

under quiescent conditions with the Lin�CD34�EML cells.

Hsc70 is also associated with p27 and is involved in cell cycle

progression (Figure 6D; Imamura et al., 2009). Moreover, Diehl

et al. (2003) demonstrated that Hsc70-cyclin D1 binding can

stabilize cyclin D1 and regulate its transport into the nucleus.

Interestingly, Hsc70 and cyclin D1 formed a complex and addi-

tionally colocalized in the cytoplasm of quiescent HSCs. In future

studies, identification of the stoichiometry of the p57/p27-

Hsc70-cyclin D1 complex could help further investigations into

the roles of these proteins in various contexts.

To determine whether the nuclear translocation of Hsc70 is

functionally involved in the control of HSC quiescence, the cell

cycle status of CD34�LSK cells transduced with WT Hsc70 or

NLRS-D Hsc70 were examined. The percentage of G0 cells in

WT Hsc70-transduced cells was significantly decreased and,

interestingly, this effect was restored by the administration of

a CDK4/6 inhibitor (PD-0332911) but not a CDK2 inhibitor

(BMS-387032) (Figure 7). These results indicate that the subcel-

lular localization of Hsc70, which regulates the activity of CDK4/6

by controlling the localization of cyclin D1, potentially acts down-

stream of p57 and p27 to control the quiescence of HSCs.

Consistent with these observations, the enhanced proliferation

of DKO HSCs compared to WT or single knockout HSCs is, at

least in part, mediated by the nuclear import of the Hsc70/cyclin

D1 complex (Figure 6E). Further, the treatment of HSCs with PD-

0332991 blocked cell cycle progression induced by p27 and p57

deletion, whereas BMS-387032 had no effect on DKO cells.

Collectively, our data suggest that p57 and p27 may regulate

the activity of CDK4/6 by controlling the cellular localization of

cyclin D1 through the association with Hsc70, resulting in the

maintenance of HSC quiescence.

DSG, an Hsc70-binding immunosuppressive agent, inhibited

the association between Hsc70 and cyclin D1 and resulted in

the nuclear accumulation of cyclin D1 in HSCs, accompanied

by Rb phosphorylation (Figure S6E). This finding further sug-

gests that the appropriate distribution of cyclin D1 between the

nucleus and cytoplasm is regulated by Hsc70 and is closely

associated with cell cycle progression in HSCs. In addition,

treatment with DSG in mice showed a potent BM suppression

accompanying cyclin D1 degradation (data not shown), suggest-

ing that the immunosuppressive properties of DSG are due, at

least in part, to the disruption of the Hsc70-cyclin D1 interaction

in BM cells.

Hsc70 has been considered to be a potential target in stem

cell-based therapy. Expression of Hsc70, which is important
�LSK cells HSCs in vitro. Donor-derived GFP control-, WT Hsc70-, or NLRS-D

red in methylcellulose medium for 7 days. Data shown are the mean number of

sc70-transduced CD34�LSK cells after administration of pharmacologic CDK

f PD-0332911 or BMS-387032 at 2 months post-BMT. Twenty-four hours after

(A). The percentages (±SD) of G0, G1, and S/G2/M phase cells in donor-derived
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for the regulation of cyclin D1, is significantly upregulated in

imatinib-resistant chronic myeloid leukemia (CML) cells (Pocaly

et al., 2008). Furthermore, treatment with the Hsc70-specific

inhibitor DSG in combination with imatinib decreases the viability

of CML cells (José-Enériz et al., 2008). The slow cell cycle of

leukemia stem cells may explain their resistance to anticancer

drugs. Thus, the present study suggests that the manipulation

of the cellular localization of Hsc70 and its binding to CDK inhib-

itors (p57 and p27) could serve as the basis for the development

of new anticancer therapies.

EXPERIMENTAL PROCEDURES

Mice

Heterozygous p57+/� or p27+/� mice were crossed to generate p57�/� or

p27�/� mice on a C57BL/6 background. C57BL/6 Ly5.1 congenic mice were

purchased from Sankyo Lab Service (Tsukuba, Japan). Animal care was con-

ducted in accordance with the guidelines of Keio University.

Flow Cytometry

Monoclonal antibodies (mAbs) recognizing the following markers were used

for flow cytometric analyses and cell sorting (FACS Vantage or FACS AriaII,

BD Bioscience): c-Kit (2B8), Sca-1 (E13-161.7), IL-7Ra (SB/199), CD16/

CD32 (2.4G2), Ki67 (B56), CD4 (RM4-5), CD8 (53-6.7), B220 (RA3-6B2),

TER-119 (Ly-76), Gr-1 (RB6-8C5), CD34 (RAM34), CD41 (MWReg30), CD48

(HM48-1), CD150 (TC15-12F12.2), CD45.1 (A20), CD45.2 (104), and anti-

Mac-1 (M1/70). All mAbs were purchased from BD Biosciences. A mixture of

mAbs recognizing CD4, CD8, B220, TER-119, Mac-1, and Gr-1 was used to

identify Lin+ cells. For cell cycle analyses, FL or BM cells were collected and

stained for LSK. Cells were then fixed with 4% paraformaldehyde in PBS

and stained with Ki67 and Hoechst33342 (Molecular Probes).

Quantitative Real-Time RCR Analysis

qRT-PCR was performed on a 7500 Fast Real-Time PCR System with a

TaqMan Fast Universal PCR master mixture (Applied Biosystems). Relative

expression of the selected genes was normalized to that of b-actin

(FAM4352933) for each sample. The following TaqManGeneExpression Assay

Mixes were used: cyclin D1 (Mm03053889_sl), cyclin D2 (Mm00438070_ml),

cyclin D3 (Mm01612362_ml), cyclin E1 (Mm00432367_ml), cyclin E2

(Mm00438077_ml), c-myc (Mm00487803_ml), p18 (Mm00483243_ml), p21

(Mm00432448_ml), p27 (Mm00438167_gl), p57 (Mm01272135_gl), Hsc70

(Mm01731394_gH), and Hsp70-1a (Mm01159846_sl).

Immunocytochemistry

Immunocytochemistry was performed as previously described (Hosokawa

et al., 2010). The following antibodies were used for immunocytochemistry:

anti-p57, anti-p27 and anti-p18 (Santa Cruz); anti-Hsc70 and anti-Hsp70

(Stressgen); anti-cyclin D1 and anti-p21 (BD Pharmigen); and anti-pRb

(Sigma). Nuclei were identified by staining with DAPI. For the inhibition exper-

iments, HSCs were cultured with 10 mg/ml DSG (Nippon Kayaku), 100 nM

PD-0332991, or 100 nM BMS-387032 (Axon Medchem) before immunocyto-

chemistry. Subcellular localizations were obtained with confocal laser scan-

ning microscopy (FV1000, Olympus).

Mass Spectrometry

The LC-MS/MS analysis was performed as described previously (Sadaie et al.,

2008).

Retroviral Transduction

Myc-p57, Myc-cyclin D1, and Hsc70 were ligated into the pMY-IRES-GFP

vector, provided by Dr. Kitamura (University of Tokyo). Cyclin D1 cDNA was

kindly provided by Dr. Ikeda (Tokyo Medical and Dental University). HA-p21,

HA-p27, and HA-p57 in pcDNA3.1(+) vectors were kindly provided by Dr.

Toyoshima (University of Tsukuba). Sequences of p57 shRNAs were as

follows: sh-p57-1, 50-GCAGGACGAGAATCAAGAG-30; sh-p57-2, 50-GAGAA

CTGCGCAGGAGAAC-30; and sh-p57-3, 50-CGACTTCTTCGCCAAGCGC-30.
260 Cell Stem Cell 9, 247–261, September 2, 2011 ª2011 Elsevier In
Each sequence was separated from the corresponding reverse complement

of the same 19-nucleotide sequence by a 9-nucleotide noncomplementary

spacer (TTCAAGAGA). A scrambled sequence (50-GACACGCGACTTGTAC

CAC-30) served as the negative control. Oligonucleotides were cloned into

the BglII and HindIII sites of the pReGS retrovirus vector. To retrovirally trans-

duce LSK cells, isolated p27+/+ or p27�/� LSK cells were cultured for 2 days,

transfected on RetroNectin (Takara Bio Inc.)-coated plates via Magnetofection

(OZ Biosciences), according to the manufacturer’s instructions, and then

cultured for 2 additional days. Cultures were maintained in SF-O3 medium

containing 1.0% BSA, 100 ng/ml SCF, and 100 ng/ml THPO.

Colony-Forming Assays

For LTC-IC, 33 103 GFP+LSK cells were cocultured with OP9 stromal cells, as

previously described (Miyamoto et al., 2007). After 2–6 weeks in culture, cells

were harvested and used in hematopoietic colony-forming assays.

Competitive Reconstitution Assay

Lethally irradiated C57BL/6 Ly5.1 congenic mice were reconstituted with

FL-LSK cells from WT, p27�/�, p57�/�, or DKO mice (Ly5.2), in competition

with BM MNCs from C57BL/6 Ly5.1 mice. For the serial transplantation anal-

ysis, donor-derived BM-LSK cells (43 103) were obtained from recipient mice

at 16 weeks posttransplantation and transplanted into a second set of lethally

irradiated mice. Subsequent transplantations were performed in the same

manner.

Statistical Analysis

Significant differences between groups were determined with a two-tailed

Student’s t test.
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