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Background: The HSPB family is one of the more diverse families within the group of HSP families. Some
members have chaperone-like activities and/or play a role in cytoskeletal stabilization. Some members also
show a dynamic, stress-induced translocation to SC35 splicing speckles. If and how these features are
interrelated and if they are shared by all members are yet unknown. Methods: Tissue expression data and
interaction and co-regulated gene expression data of the human HSPB members was analyzed using
bioinformatics. Using a gene expression library, sub-cellular distribution of the diverse members was
analyzed by confocal microscopy. Chaperone activity was measured using a cellular luciferase refolding assay.
Results: Online databases did not accurately predict the sub-cellular distribution of all the HSPB members. A
novel and non-predicted finding was that HSPB7 constitutively localized to SC35 splicing speckles, driven by
its N-terminus. Unlike HSPB1 and HSPB5, that chaperoned heat unfolded substrates and kept them folding
competent, HSPB7 did not support refolding. Conclusion: Our data suggest a non-chaperone-like role of
HSPB7 at SC35 speckles. General significance: The functional divergence between HSPB members seems
larger than previously expected and also includes non-canonical members lacking classical chaperone-like
functions.
Published by Elsevier B.V.
1. Introduction
The human small heat shock protein (small HSP, HSPB) family of
chaperones contains a total of eleven family members [33,80]. All
HSPB proteins are characterized by a conserved crystallin domain
flanked by a variable sized N- or C-terminus resulting in a molecular
size of approximately 16–40 kDa. Another well-described character-
istic is their ability to oligomerize into large, spherical and symme-
trical structures [30]. The main feature of many small HSPs is their
ability to interact with components of the cytoskeleton
[21,50,59,71,79] and to protect the cytoskeleton during stress [46]. In
cells, HSPB1 has been found to affect cell motility and morphology,
related to its interactionwith cytoskeletal elements [67]. Furthermore,
HSPB1 seems to fulfill a protective roles in heart diseases like ischemia
[23,83] and atrial fibrillation [7] preventing contractile elements
against becoming dysfunctional.

One other well-defined molecular function of HSPB proteins is
their ability to prevent aggregate formation of denatured proteins in
vitro [3,39]. In vivo, this basic function is part of the cellular pathways
accommodating protein folding and degradation [9,13]. Active
processing of HSPB bound substrates occurs in collaboration with
HSPA (HSP70) members which can lead to either the refolding or
degradation of the substrate. [9,80].
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The vital role of HSPBmembers as chaperones and/or protectors of
the cytoskeleton is also apparent from several genetically inherited
diseases. Mutation in both HSPB1 and HSPB8 has been reported to be
causative in the development of Charcot–Marie–Tooth disease and
distal hereditary motor neuropathy [22,37]. Mutated HSPB4 and
HSPB5 can both cause cataract [16,49] while desmin-related myo-
pathy is caused by specific mutations in HSPB5 [82].

Another feature of certain HSPB proteins is their involvement in
RNA splicing: e.g. HSPB1 up-regulation was found to enhance the
recovery of splicing after heat stress [52] which may relate to early
findings of enhanced recovery of translation arrest after stress when
HSPB1 was overexpressed [48]. This has been associated with
findings that, upon a combination of stress and (stress-induced)
phosphorylation, HSPB1 associates with nuclear splicing speckles, (or
SC35 speckles) [8], which are nuclear domains involved in RNA
splicing. Also HSPB5 has been reported to associate with these
nuclear speckles in a phosphorylation dependent manner [18].
Interestingly, this HSPB member was shown to recruit the F-box
protein FBX4 to the speckles, suggesting a role for HSPB5 in
facilitating ubiquitination of speckle components [18,20]. We also
found that heat-denatured substrates associate with these nuclear
speckles together with HSPB1 and indirect evidence indicated that
this was not associated with refolding of denatured substrates [10].
Rather, a hypothetical model was proposed that these nuclear
splicing speckles would be used during stress for temporal storage
of unfolded proteins to target them for degradation upon stress relief.
This model was supported by findings that these speckles largely
overlapped with sites for protein degradation [68].
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Whether cytoskeleton-related functions, splicing-related functions
and chaperone activity are distinct features of the various HSPB
proteins or whether they all are phenotypical manifestations of a
single conserved function remains unclear. Also, to what extent the
various HSPBmembers differ in these functional aspects remains to be
elucidated. Therefore, we initiated a systematic study on the HSPB1–
HSPB10 members of the human HSPB family (HSPB11 was not
investigated as it was discovered [4] after we had completed our
studies). In this MS, we provide the first part of these data, starting
with a general overview, mainly based on bioinformatics, on the
tissue-specific expression, intracellular localization patterns, interac-
tion partners and co-regulated genes of the HSPB1–10 members.
Using a human HSPB plasmid library, we initially focused on the sub-
cellular localization patterns of the HSPB family. Interestingly, we
show that one of the least investigated HSPB members, HSPB7, is a
SC35-speckle-associated protein under non-stressful conditions.
Association of HSPB7 with nuclear speckles is dependent on the N-
terminus of HSPB7. While HSPB1 can assist in the refolding of heat-
denatured proteins, HSPB7 is ineffective in doing so. Moreover,
targeting HSPB1 to the nuclear speckles using the HSPB7 speckle
localization signal abolishes its refolding enhancing capacity, strongly
suggesting that association with speckles is not associated with
chaperone-assisted refolding.

2. Materials and methods

2.1. Reagents and antibodies

Tetracycline, MOPS and cycloheximide were obtained from Sigma
(Sigma, Zwijndrecht, The Netherlands), beetle luciferin from Promega
(Promega Benelux, Leiden, The Netherlands). Antibodies against the
V5 tag (Invitrogen, Breda, The Netherlands) and SC35 (Abcam,
Cambridge, United Kingdom) were mouse monoclonal. The antibody
against theMYC tag (Abcam, Cambridge, United Kingdom)was rabbit-
polyclonal.

2.1.1. Molecular techniques
Standard recombinant DNA techniques were carried out essen-

tially as described by Sambrook et al. [70]. Oligonucleotide primers
(Biolegio, Nijmegen, The Netherlands) and plasmids used in this study
are listed in Tables S1 and S2 respectively. Restriction enzymes were
used according to the manufacturer's instructions (Invitrogen, Breda,
The Netherlands, New England Biolabs, Ipswich, MA). Preparative
polymerase chain reactions (PCR) were carried out using Vent DNA
polymerase (New England Biolabs, Ipswich, MA) according to the
manufacturer's instructions. DNA sequencing reactions were carried
out by ServiceXS (ServiceXS, Leiden, The Netherlands). HSPB protein
sequences were retrieved from the NCBI database and analyzed by
ClustalX [47] and visualized using Treeview [66].

2.1.2. HSPB plasmid generation
The human HSPB family members were isolated from both mixed

cell line cDNA and commercially available cDNA clones (Open
Biosystems, Huntsville, USA) (Table S1). PCR products were cloned
into the pCDNA5/FRT/TO-MV plasmid (Invitrogen, Breda, The
Netherlands) (Fig. S1) and sequence verified. Modification of the
pcDNA5/FRT/TO plasmid was performed by cloning of oligonucleo-
tides. This vector is designed to allow, in combination with a
tetracycline repressor, for tetracycline-regulated expression (Fig. S1).
The HSPB encoding cDNAs were subsequently sub-cloned in frame
with either a HIS tag, V5 tag, EGFP, MYC or mRFP tag (for availability
see Fig. S1). As such, the resulting library is tailored to a large set of
research topics. Deletion of the N-terminus op HSPB7 was performed
using the Quickchange kit (Stratagene; Bio-Connect, Huissen, The
Netherlands). Generation of chimeric constructs was performed as
described before [81].
2.1.3. Growth conditions and DNA transfections
Flp-In T-Rex HEK293 cells expressing the Tet repressor (Invitro-

gen, Breda, The Netherlands) and HeLa cells were cultured in
Dulbecco's modified Eagle's medium (Gibco; Invitrogen, Breda, The
Netherlands) supplemented with 10% fetal calf serum (Griener Bio-
one, Alphen aan den Rijn, The Netherlands) at 37 °C under a
humidified atmosphere containing 5% CO2. Mouse HL-1 atrial
cardiomyocytes were maintained in Claycomb Medium (Sigma,
Zwijndrecht, The Netherlands) supplemented with 100 μM norepi-
nephrine (Sigma, Zwijndrecht, The Netherlands) dissolved in
0.3 mM L-ascorbic acid (Sigma, Zwijndrecht, The Netherlands),
4 mM L-glutamine (Gibco; Invitrogen, Breda, The Netherlands) and
10% fetal calf serum (Griener Bio-one, Alphen aan den Rijn, The
Netherlands) at 37 °C under a humidified atmosphere containing 5%
CO2. HEK293 cells and mouse HL-1 cells were transfected using
Lipofectamine (Invitrogen, Breda, The Netherlands) according to the
manufacturer's instructions using 1ug of plasmid DNA per 35-mm
dish. HeLa cells were transfected using Effectene (Qiagen, Venlo, The
Netherlands) according to the manufacturer's instructions using
0.6 μg of plasmid DNA per 35-mm dish. Gene expression in Flp-In T-
Rex HEK293 cells was induced with a final concentration of 1 μg/mL
tetracycline.

2.1.4. Microscopy
For microscopy, cells were plated 24 h before transfection. For

fixation, the coverslips were washed with cold PBS and fixed for
15 minwithmethanol (−20 °C). Cells were permeabilized in blocking
solution (100 mM glycine, 3% BSA, 0.1% triton) for 1 h followed by 1 h
incubation with the primary antibody (V5 anti-mouse, 1:200, SC35
anti-mouse, 1:10,000, MYC anti-rabbit 1:200). After three washing
steps, coverslips were incubated for 1 h with CY3-conjugated anti-
rabbit secondary antibody (Amersham Biosciences, Little Chalfont,
United Kingdom) at 1:200 dilution or with FITC-conjugated anti-
mouse secondary antibody (Jackson, Suffolk, United Kingdom) at
1:200 dilution. After three washing steps, the coverslips were
mounted using Citifluor mounting medium (Citifluor Ltd, London,
United Kingdom).

Images were obtained using an inverted confocal laser scanning
microscope (TCS SP2, DMRXE, Leica, Rijswijk, The Netherlands) with a
63×/1.32 NA oil objective. The mRFPruby fusion protein [24,60] was
excited with a 543-nm helium–neon laser line and emission was
recorded between 571 and 626 nm using a DD 488/543 dichroic filter.

2.1.5. Luciferase refolding assay
Chaperone activity of HSPB members was assessed by using the

luciferase refolding assay [55]. Briefly, HEK293 cells were co-
transfected with nuclear targeted luciferase (Nuc-superluc-EGFP)
[29] together with HSPB encoding plasmids (1:9 ratio). Two hours
after transfection, expression was induced by addition of tetracycline.
After 24 h, cells were resuspended and divided into 1 mL portions in
tissue-grade 10 mL tubes. The following day, cells were given a heat
shock (30 min at 43 °C) in the presence of cycloheximide (20 μg/mL)
and 4-morpholinepropanesulfonic acid (MOPS; 20 mM, pH 7.0) in
order to inhibit protein synthesis and increase the buffer capacity of
the medium respectively. After heat-treatment, cells were allowed to
recover before luciferase activity was determined (3 h at 37 °C).
Luciferase activity measurements were performed using a Berthold
Lumat 9510 luminometer (Berthold Technologies, Vilvoorde,
Belgium).

3. Results

3.1. Bioinformatical analysis

Compared to other HSP families, small HSPs show a rather large
sequence divergence, in particular in both the N- and C-terminal



Fig. 1. Nearest neighbor analysis of the human HSPB family. Nearest neighbor analysis of the complete protein sequence of the HSPB members (A) or the crystallin domains only (B).
Protein alignments were performed in ClustalX using the Neighbor-joining algorithm in combination with Blosum scoring. Bootstrap values are indicated on the branchpoints.
(Bootstrap trails: 10,000.)
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regions. A nearest neighbor analysis using the full sequences (Fig. 1A)
in order to link functional properties of the diverse member will thus
likely be prone to wrong interpretations. And although the two
functionally related and interactive members HSPB4 and HSPB5 [36]
cluster together in such an analysis (Fig. 1A), HSPB1 does not despite
the fact that it shares many functional features with HSPB4 and
HSPB5, amongst others of chaperone activity [39]. Rather, in such an
analysis HspB1 clusters together with the non-functionally related
HSPB8. Therefore, we repeated the nearest neighbor analysis only
using the conserved crystallin domains (Fig. 1B). Now, HSPB1 did
group together with its functionally related family members HSPB4
and HSPB5. In addition, HSPB2 and HSPB3, which are reported to
form functional hetero-oligomers during muscle differentiation [76],
now also appear as a (separate) group within the tree, suggesting
that this nearest neighbor analysis based on the crystalline domain
only might be more informative for function. If correct, this nearest
neighbor analysis would then suggest a possible functional overlap
between HSPB8/HSPB10 and HSPB7/HSPB9 (Fig. 1B). We have
indeed observed a functional overlap between HSPB7 and HSPB9 in
handling aggregated substrates (data submitted elsewhere). A
functional overlap between HSPB8 and HSPB10 remains to be tested
experimentally.

Next, we extracted data from online databases to analyze both
interaction data [6] and co-expression data [64] to provide informa-
tion on interaction partners and co-regulated genes. HSPB members
show an extensive set of interaction partners including other HSPB
members (Fig. 2B). When looking at gene-networks, HSPB members
show co-regulated expression with numerous genes, again including
other HSPB genes (Fig. 2A). Clearly these data are yet far from
complete as many HSB members have only been poorly studied.
Moreover, part of the data only come from cell free studies and yet
have to be verified in living cells. But, as can be derived from Fig. 2B,
there is a likely complex and extensive interactive network within the
HSPB family suggesting that they cooperate in several processes.

In addition to differences in functionality, individual HSPB
members show large differences in tissue-specific expression
(Fig. 3). HSPB4 for instance, is found at high concentrations in the
eye lens, while its expression is almost absent in other tissues [65].
Compiling data from the UniGene EST ProfileViewer (NCBI) (Fig. 3A)
for total messenger levels reveals that in the human body as a whole,
the most abundant HSPB member is HSPB1, followed by HSPB5 and
interestingly also HSPB7 (Fig. 3A top row). Although reported to be
expressed almost exclusively in heart tissue [44], messenger RNA for
HSPB7 can also be found in adipose tissue, connective tissue and the
parathyroid gland. HSPB9, that clusters together with HSPB7 in the
nearest neighbor tree (Fig. 1B) has been referred to as a testis specific
HSPB member [42]. But, HSPB9 expression is also found in lung and
pancreas tissue.

When comparing HSPB messenger composition for a selection of
organs, HSPB1 and HSPB5 represent the most abundant HSPB
messengers in brain, muscle and eye tissue (Fig. 3B). Looking at
heart tissue, HSPB7 is indeed transcribed at very high levels in
comparison to the other HSPB members (Fig. 3B). HSPB messenger
composition in the testis shows that HSPB7 and HSPB1 are the most
abundant in this organ and not HSPB9. The most restricted members
in view of tissue-specific expression are HSPB4 (eye), HSPB9 (lung,
pancreas, testis) and HSPB10 (testis) (Fig. 3A).

3.2. Subcellular localization

The small HSPs are known to be widely distributed throughout
eukaryotic cellular compartments. Herein, plants take a special place,
with the most widely known organelle specific distribution pattern
[73]. In Drosophila at least one small HSP, the mitochondrial HSP22,
shows compartment specific localization besides the cytosol and
nucleus [58]. As a complete picture of HSPB protein localization is
currently unavailable, we combined web-based prediction programs
and subcellular localization databases together with confocal micro-
scopy imaging of the V5-tagged HSPB library to generate a complete
overview. In silico prediction of subcellular localizationwas performed
using PSORT, Ptarget and Multiloc [27,34,35] (Fig. 4A). There was a
surprisingly large disagreement between the predictions made by
these different programs especially with regard to a tentative
mitochondrial localization signal. Using MITOPRED [28], a web server
dedicated specifically for the prediction of mitochondrial localized
proteins, HSPB5 and HSPB7 were predicted to be mitochondrial with
high confidence, while the other members were not predicted to
localize to mitochondria. For HSPB5, a mitochondrial localization was
indeed recently experimentally verified [40]. However, neither the
LOCATE database [74] nor the Human Protein Reference (HPR)
database [56] indicated that the mitochondrial localization of HSPB5
and large differences in the predicted localization and experimentally
verified localizations were seen, especially when using the Ptarget
server.

To investigate and directly compare the localization of HSPB
proteins experimentally, we expressed the V5-tagged HSPB members
in human HEK-293 cells (Fig. 4B). Endogenous HSPB1, the most
extensively investigated HSPB member is known to be mostly
cytosolic under non-stress conditions and only enters the nucleus
upon stress-induced phosphorylation and changes in oligomeric size
after which it co-localizes with SC35 positive nuclear speckles [8,9].
Using MCF-7 cells that express high levels of HSPB1, endogenous



Fig. 2. Physical interactions and co-regulated gene expression of the HSPB family members with other proteins/genes. (A) Database searches were performed to collect information
on HSPB interactions with other proteins and co-regulated genes. (B) An overview on both physical interactions (dotted line) and co-regulated genes (straight line) within the HSPB
family.
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HSPB1 indeed showed mainly cytoplasmatic staining in unstressed
cells and a heat-induced localization to nuclear speckles (Fig. 4C).
Staining of the ectopically expressed V5-HSPB1 in HEK293 cells,
showed a similar pattern of expression during control and heat-
shocked conditions (Fig. 4D), showing that the V5-tag did not
interfere with its physiological localization patterns. Also several
experimental data are available for HSPB4 and HSPB5. Like HSPB1,
HSPB4 was reported to be localized in the cytoplasm [2,51]. A similar
pattern is seen for the ectopically expressed V5-tagged HSPB4
(Fig. 4B). HSPB5 has been reported to be a cytosolic and nuclear
protein where it can specifically localize to SC35 positive nuclear
speckles [62,78] in a phosphorylation dependent manner [18,19].
Again, the transiently expressed V5-tagged HSPB5 confirmed the
cytosolic staining representative for non-phosphorylated HSPB5. Also
a faint signal of nuclear foci could be detected, confirming that like
untagged HSPB5, also V5-HSPB5 in part associates with nuclear
domains. The findings on these three well-studied and closely related
HSPB members (Fig. 1B) show that their cellular compartmentaliza-
tion is highly comparable and also show that V5-tagging does not
interfere with their intracellular localization. Also, V5-tagging of
HSPB1, HSPB4 or HSPB5 did not affect their function as chaperone in
cells to support refolding of heat-denatured luciferase (Fig. 8A).
Apparently for these members tagging does not affect biological
activity.

The V5-tagged HSPB2 was found to be present in the nucleus and
cytoplasm, consistent with the data from LOCATE. In addition, HSPB2
was present in foci throughout both cellular compartments. HSPB2
has been reported previously to localize to mitochondria [61], we
were however unable to detect overlap of the cytosolic HSPB2 foci and
the mitochondrial marker Cox8-dsRED (data not shown) suggesting
either errors in the predictive programs or a inhibitory effect of the V5
tag on mitochondrial import. The nature of the nuclear foci was not
elucidated. To date, no experimental data are available on the
localization of HSPB3, the protein that is most closely related to
HSPB2 (Fig. 1B). Unlike HSPB2, however, but consistent with the
database predictions, V5-HSPB3 showed mainly a cytosolic localiza-
tionwith someminor nuclear staining. No clear localization to specific
other organelles or sub-nuclear domains was seen.

Also for the intracellular localization of HSPB6 experimental data
are lacking. The V5-HSPB6 confirmed the predicted cytosolic
distribution but could not confirm the mitochondrial localization as
predicted by Ptarget.



Fig. 3. HSPBmRNA levels throughout the human body. (A) The top row indicates the amount of total mRNA present in the human body for each HSPB member, relative to HSPB1. The
vertical view shows the distribution inmRNA expression for each HSPBmember in individual organs relative to the organwith the highest HSPBmRNA abundance. (B) Comparison of
HSP1, HSPB5, HSPB7 and HSPB9mRNA expression in either brain, heart, muscle, eye or testis. Values for gene expression (transcript per million) were retrieved fromUniGene (NCBI)
and calculated relative to the most abundant HSPB member. These values were transformed into grayscale values (0%=white, 100%=black) using Adobe Photoshop.
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HSPB8 has been reported to be an exclusively cytosolic protein [14]
although others also have suggested that it is localized to the nucleus
in some cells [37]. The ectopically expressed V5-HSPB8 shows a
predominant cytosolic staining, with some intense staining in
cytosolic foci. These foci could potentially represent autophagosomes,
consistent with the suggested function of HSPB8 in autophagy [12]. Its
closest homologue HSPB10, known to be a structural protein in sperm
tails [25], also mainly localized to the cytosol with minor nuclear
staining. The expression was however accompanied by the appear-
ance of many cytoplasmic foci and the formation of an aggresome,
suggesting misfolding and/or failed clearance of the ectopically
expressed V5-tagged protein [41].

The V5-tagged HSPB9 showed a diffuse cytosolic and nuclear
distribution (Fig. 3B), whereas in vivo HSPB9 shows mainly a nuclear
localization in testis and a cytosolic/nuclear distribution in tumor
cells [17]. Again this localization was not predicted correctly by the in
silico prediction programs (Fig. 3A). Staining of HSPB7 showed a
rather striking distribution. HSPB7 was reported to interact with α-
Filamin, an actin-binding protein [44], suggesting a cytoskeletal
localization. The V5-HSPB7 showed cytosolic staining (Fig. 3B). In
addition, however, bright nuclear foci could be detected, that
suggested association with nuclear sub-domains in the absence of
stress.

During stress, several heat shock proteins are known to be re-
allocated within the cells and especially move to the nucleus,
including to nuclear speckles [8,26,31,77]. Therefore, we analyzed
heat-induced alterations in intracellular localization for all the
individual HSPB members. Interestingly, most members appeared
after heat shock in nuclear foci or showed an enhanced nuclear foci
signal in comparison to control conditions (Fig. S2a). HSPB-related
foci, however, did not change in size and intensity. The clearest change
in subcellular distribution was found for HSPB1 and HSPB4, which



Fig. 4. Intracellular distribution of the human HSPB. (A) Several databases were used to extract the predicted intracellular distribution and published intracellular distribution.
(B) Intracellular distribution of V5-tagged human HSPB proteins in HEK293 cells. Arrows indicate bright foci in both the nucleus and the cytoplasm (V5-HSPB2), nuclear foci
(V5-HSPB7) and aggresome formation (V5-HSPB10). The nucleus was visualized by expression of the human Histone-2B fused to themonomeric red fluorescent protein ruby [60,69].
This signal was traced in Adobe Photoshop and depicted as a dashed line. (C) Redistribution of endogenous HSPB1 to nuclear speckles after a heat shock. (D) Redistribution of
exogenous V5-HSPB1 to nuclear speckles after a heat shock.
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both entered the nucleus after heat shock treatment and appeared at
nuclear foci (Fig. S2a, b).

3.3. HSPB7 specifically associates with Cajal bodies and SC35 speckles

Because of the association of HSPB1 with splicing and the stress-
induced reallocations of HSPB1 and HSPB5 to SC35 splicing speckles,
we decided to identify to which specific nuclear structure(s) HSPB7
localizes. Hereto, we co-expressed different nuclear sub-domain
markers tagged with EGFP or EYFP with MYC tagged HSPB7. EGFP-
tagged SP100 was used to visualize promyelocytic leukaemia (PML)
nuclear bodies which play a role in transcriptional regulation,
programmed cell death, tumor suppression, and antiviral defense
[5,43]. These structures were in close proximity to MYC-HSPB7-
containing bodies, but did not overlap (Fig. 5A). EGFP-tagged Coilin,
marking the Cajal bodies, implied in spliceosomal snRNP assembly
and various other functions [75] showed partial overlap with the
MYC-HSPB7 signal (Fig. 5B), indicating that the HSPB7 can localize to
Cajal bodies. Splicing speckles were visualized using SC35 and ASF/
SF2; two members of the serine/arginine (SR) rich protein family.
These proteins form a group of structurally and functionally related
splicing factors which are essential for constitutive and alternative
splicing regulation in higher eukaryotes [11,57]. Expression of EGFP-
tagged alternative splicing factor/splicing factor 2 (ASF/SF2) showed



Fig. 5. HSPB7 associates with SR protein-containing nuclear domains. Myc-HSPB7 was
analyzed for colocalization with either (A) SP100; a marker for PML bodies, (B) Coilin; a
marker for Cajal bodies or (C) SR proteins ASF/SF2 and SC35; two markers of splicing
speckles. Co-localizationwithSC35-EGFPwasconfirmedbystaining forendogenousSC35.

Fig. 6.HSPB7 associationwith nuclear domains is cell-type independent. V5-HSPB7 was
transfected and visualized in either (A) mouse HL-1 or (B) human HeLa cells. (C, D) In
both cell lines V5-HSPB1 was predominantly cytoplasmic. The nucleus was visualized
by expression of the human Histone-2B fused to the monomeric red fluorescent protein
ruby (H2B-mRFPruby). This signal was traced in Adobe Photoshop and depicted as a
dashed line.
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complete co-localization with MYC-HSPB7 (Fig. 5C). Similarly, EGFP-
tagged SC35 also completely co-localized to MYC-HSPB7 (Fig. 5C).
Finally, staining of endogenous SC35 confirmed co-localization with
MYC-HSPB7 (Fig. 5C).

So, in contrast to HSPB1 and HSPB5 that enter the nucleus and
associate with speckles only after stress, HSPB7 localizes to these
splicing factories also in non-stressed human HEK293 cells (Fig. 4B).
To test whether this localization is not restricted to HEK293 cells only,
we also expressed V5-HSPB7 in mouse HL-1 cardiac myocytes and
human HeLa cells. Also in these two cell types HSPB7 localized to
nuclear speckles (Fig. 6A, B), whereas V5-HSPB1 was largely cytosolic
in both cell types under non-stressed conditions (Fig. 6C, D).

3.4. The N-terminus of HSPB7 is required and sufficient for localization to
SC35 splicing speckles

As the conserved crystallin domain is the conserved motif for the
HSPBmembers, it is likely that sub-cellular localization is regulated by
targeting sequences present in the N-terminal or C-terminal domain.
Indeed, for Drosophila HSP27 and HSP22 a nuclear localization signal
and a mitochondrial targeting sequence respectively have been
identified in the N-terminal domains [54,58]. To analyze if the N-
terminus of HSPB7 is required for speckle association, we deleted the
first 71 amino acids of HSPB7 (the ΔN-HSPB7 mutant, Fig. 7A).
Compared to the full length HSPB7 (Fig. 7B1, B1′), the ΔN-
HSPB7mutant showed less nuclear staining with a complete loss of
speckle association (Fig. 7B2, B2′). To test whether the N-terminus of
HSPB7 indeed drives speckle localization, we generated HSPB
chimeras by switching the N-terminal domains between HSPB1 and
HSPB7 (Fig. 7A). When expressed in cells, HSPB7 containing the N-
terminus of HSPB1 (NB1-ΔNB7) was present in both the cytoplasm
and nucleus but completely lacked any detectable association with
sub-nuclear domains (Fig. 7B3, B3′). HSPB1 containing the N-
terminus of HSPB7 (NB7-ΔNB1) on the other hand showed staining
of sub-nuclear structures resembling wildtype HSPB7 (Fig. 7B4, B4′).
Staining of endogenous SC35 indeed confirmed association of NB7-
ΔNB1with speckles (Fig. 7C). Thus it seems that speckle association of
HSPB7 is indeed dependent on the N-terminal domain. To test
whether the N-terminus of HSPB7 can also target proteins without a
crystallin domain to SC35 speckles, we fused the N-terminus of HSPB7
to the red fluorescent protein mRFPruby (NB7-mRFPruby). The NB7-
mRFPruby chimeric protein indeed co-localized with EGP tagged SC35
(Fig. 7D), proving that the N-terminus of HSPB7 contains a novel
nuclear speckle localization signal which functions independently of
HSPB domain architecture.

3.5. Speckle association of HSPB1 and HSPB7 is not linked to chaperone
activity

In previous studies [9,10] it was found that after heat shock, not
only chaperones like HSPB1 are reallocated to SC35 speckles, but also
heat-denatured proteins. Although HSPB1 overexpression could
enhance refolding of heat-denatured nuclear model substrates like
firefly luciferase, indirect evidence, including the absence of HSP70
family members in these foci [63], suggested that the association of
HSPB1 and denatured luciferase in SC35 speckles was not associated
with refolding activity. To further look into the relevance of the



Fig. 7. The HSPB7 N-terminus is required and sufficient for targeting to SC35 speckles. (A) Schematic representation of the topology of HSPB7 and the constructed mutant and
chimeric proteins. Localization pattern and close-up of HSPB7 (B 1/1′), ΔNHSPB7 (B 2/2′), NB1-ΔNHSPB7 (B 3/3′) and NB7-ΔNHSPB1 (B 4/4′). (C) Staining of NB7-ΔNHSPB1
together with endogenous SC35 shows co-localization of both proteins. The nucleus was visualized using H2B-mRFPruby. (D) Expression of a chimeric protein containing the N-
terminus of HSPB7 fused to mRFPruby localized to SC35-EGFP stained speckles.
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presence of HSPB7, HSPB1 and unfolded luciferase in SC35 speckles for
the storage and subsequent processing of unfolded nuclear proteins,
we first tested whether the constitutively SC35-associated HSPB7 also
could assist in the refolding of heat-denatured nuclear localized
luciferase. Overexpression of either V5-tagged HSPB1, HSPB4 or
HSPB5 indeed resulted in enhanced refolding (Fig. 8A) as described
before for the untagged versions in vitro [39,45]. Refolding activity of
HSPB4 towards nuclear luciferase was due to a translocation of HSPB4
towards the nucleus upon heat shock (Fig. S2a, S3). Under these
conditions, NLS tagged luciferase was found exclusively in the nucleus
(Fig. S3), suggesting that the cytosolic fraction of HSPB4 does not
contribute to refolding of heat-denatured nuclear luciferase. Over-
expression of the SC35-associated V5-HSPB7 did however not show
any refolding promoting activity (Fig. 8A). The NB1-ΔNB7 mutant,
harboring the crystallin domain of HSPB7 and devoid of nuclear
speckle association also did not show refolding promoting activity
(Fig. 8B), in line with the complete lack of chaperone activity of the
full length HSPB7. The NB7-ΔNB1 mutant, harboring the crystallin
domain of HSPB1, but now associated with SC35 speckles via the N-
terminus of HSPB7, lost refolding promoting activity (Fig. 8B);
suggesting that localization in part results in loss of refolding capacity.

Finally, we asked whether speckle-associated HSPB proteins with
no folding activity could affect thewildtype HSPB1 folding capacity via
e.g. co-oligomerization or induced association with splicing speckles
or by competitive substrate binding. Hereto, we co-expressed HSPB7
with HSPB1 and nuclear luciferase. This however did not affect the
capacity of HSPB1 to assist in refolding heat-denatured luciferase
(Fig. 8C). Next, we co-expressed the NB7-HSPB1 (NB7-B1) mutant,
which is targeted to nuclear speckles, together with wildtype HSPB1.
Again, HSPB1 refolding capacity was not negatively influenced by co-



Fig. 8. HSPB7 and chaperone activity. HSPB proteins were co-expressed with nuclear
firefly luciferase in HEK293 cells. 48 h after transfection, cells were heated for 30 min at
43 °C reducing luciferase activity to less than 5%. Next, cells were re-incubated for 3 h at
37 °C to allow for (chaperone-assisted) luciferase refolding. Luciferase activities are
plotted relative to the activity in unheated cells (=100%). (A) Refolding of heat-
denatured luciferase in cells overexpressing V5-HSPA1A (positive control), V5-HSPB1,
V5-HSPB4, V5-HSPB5 and V5-HSPB7. (B) Comparison of chaperone activity in refolding
heat-denatured luciferase of either SC35 speckle localized or non-SC35 speckle
localized HSPB proteins. (C) Chaperone activity of HSPB1 without or with co-expression
of resident speckle-associated HSPB proteins. Data are the mean±SD.
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expression of a speckle-associated (mutant) HSPB protein (Fig. 8C).
This highly suggests that NB7-B1, lacking folding activity, does not
interfere with the folding-active wildtype HSPB1.

4. Discussion

We have presented an overview on several aspects and properties
of the human HSPB family using a variety of specialized databases and
focused subsequently on sub-cellular localization patterns. Apart from
their cytoskeletal localization, an issue not addressed in this manu-
script, some HSP members have been reported to reside in the
nucleus. In fact, we now show that most HSPB members at least
partially reside in the nucleus during non-stressed states some being
associated with sub-nuclear structures called SC35- or splicing
speckles (HSPB5 and HSPB7). Even more so, during and after heating
all HSPB members show nuclear localization, often in foci, which for
HSPB1, HSPB5 and HSPB7 were demonstrated to be SC35 speckles.
Finally, we for the first time show that HSPB7 contains a speckle
targeting sequences in its N-terminus that is capable of driving it and
other proteins to splicing speckles under non-stressful conditions.

4.1. HSPB7 is a resident component of SC35-speckles containing a speckle
targeting sequence in its N-terminal domain

SC35 speckles (also known as nuclear splicing speckles) are sub-
nuclear structures involved in the storage and assembly of the splicing
machineryandcontainpre-mRNAsplicing factors, transcription factors,
snRNAs and ribosomal proteins [53]. Furthermore, modulation in
splicing factor concentrations appears to link SC35 speckles to
alternative splicing [1]. The SC35 speckle resident splicing factors
primarilybelong to theserine/arginine-rich (SR)protein family [15,38].

In general, little is known on how proteins are able to associate
with SC35 speckles. One known SC35 speckle targeting signal consists
of the SR motif itself, as was shown for the SC35 protein [11], although
the presence of an SR motif not always drives proteins to SC35
speckles, meaning that other elements or the context around SR
motifs may also play a role [72]. Until now, only one non-SR motif has
been reported to function as a targeting signal for SC35 speckles. Cdk9,
an elongation factor for RNA polymerase II-directed transcription and
DYRK1A, a protein kinase [1,32], both contain a histidine-rich region
which was shown to be sufficient to target EGFP to SC35 speckles.
HSPB1, HSPB5 and HSPB7 however lack such an SR motif and
histidine-rich region, suggesting that other elements in the HSPB
sequences are required for speckle association. The dependency on a
specific sequence needed for SC35 speckle association was reported
for the Drosophila HSP27 [54]. The authors showed that speckles
association in HeLa cells was dependent on two leucine residues (L50,
L52) located in the N-terminus. Although leucines are present in the
N-termini of HSPB1, HSPB5 and HSPB7, their contribution to speckle
association has yet to be established (Fig. S4).

In this study we showed that the N-terminus of HSPB7 functions as
a unique and novel SC35 targeting sequence. Deletion of the N-
terminus of HSPB7 or replacement by the N-terminus of HSPB1,
abrogated HSPB7 speckle association. We furthermore showed that
the N-terminus alone is sufficient to target either a crystallin domain
or mRFPruby to SC35 speckles. HSPB7 contains a serine-rich region,
which shows homology to the SR motif. Deletion of the serine stretch
did however not result in dissociation of HSPB7 from SC35 speckles
(data not shown). This suggests that the N-terminus of HSPB7
contains additional elements allowing for speckle association, which
have yet to be determined.

4.2. Functional implications of HSPB speckle associations

HSPB1 is known to associate with SC35 speckles during heat stress.
When luciferase is overexpressed under these conditions, it also
associates with SC35 speckles [10]. In view of this, SC35 speckles
might function as storage sites for HSPB-luciferase complexes, ready
to be refolded upon stress relief. Could SC35 speckles indeed act as a
depot for unfolded proteins, and does the association of HSPB proteins
with SC35 speckles reflect a role in chaperoning of protein refolding?
We showed that the SC35 speckle resident HSPB7 is not active in
refolding of heat-denatured luciferase in contrast to HSPB1 and
HSPB5. This suggests that at least for HSPB7, association to SC35
speckles is unrelated to protein refolding. By exchanging the N-
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terminus of HSPB1 for the N-terminus of HSPB7, we were able to
target the HSPB1 crystallin domain to SC35 speckles which resulted in
loss of refolding activity. This suggests either that speckles association
of HSPB1 is not related to refolding activity or that the HSPB1 N-
terminus is required together with the HSPB1 crystallin domain to
form a functional unit in assisting protein refolding activity. While co-
expression of HSPB5 and luciferase clearly showed that this HSPB
member is a chaperone capable of refolding heat-denatured lucifer-
ase, the direct association of HSPB5 with SC35 speckles has been
suggested to relate to protein ubiquitination and degradation rather
than protein refolding [18,20]. In conclusion, data on HSPB association
with SC35 speckles hint to other functions than specific refolding of
denatured proteins in situ.

As HSPB1 has been shown to enhance recovery of splicing after a
heat shock, a role in splicing of HSPB7 at SC35 speckles should be
addressed. A possible function of the SC35 speckle resident HSPB7
herein could be to fulfill a function in splicing under normal
conditions while accumulation of HSPB1 at SC35 speckles during
stress indicates a requirement to protect the splicing machinery and
accelerate splicing recovery. This idea is under current investigation.
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