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We study the global existence and uniqueness of regular solutions to the Cauchy
problem for the Vlasov–Poisson–Fokker–Planck system. Two existence theorems for
regular solutions are given under slightly different initial conditions. One of them
completely includes the results of P. Degond (1986, Ann. Sci. Ecole Norm. Sup. 19,
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1. INTRODUCTION

Plasma means completely ionized gases. The Vlasov–Poisson–Fokker–
Planck system, we often say VPFP for short, appears in Vlasov plasma
physics and stems from the Liouville equation coupled with the Poisson
equation for determining the self-consistent electrostatic or gravitational
forces (see [7, 11]).

In this paper, we consider the global existence and uniqueness of reg-
ular solutions to the Cauchy problem for the VPFP system. Let f �x� v� t�
describe the microscopic density of particles located at position x ∈ �N

with velocity v ∈ �N at time t > 0. Then, the VPFP system can be written
as

∂tf + v · ∇xf + E · ∇vf − 
vf = 0 (1.1)

for f = f �x� v� t�� �x� v� ∈ �N × �N� t > 0,

E�x� t� = γ

SN−1

x


x
N ∗
∫
f �x� v� t�dv (1.2)
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with initial data

f �x� v� 0� = φ�x� v��

where ∇x = �∂x1
� � � � � ∂xN ��∇v = �∂v1

� � � � � ∂vN �� 
v is the Laplacian in
the v variable, γ = ±1� SN−1 is �N − 1�-dimensional volume of the
N-dimensional unit sphere, and the symbol ∗ is the convolution in the x
variable. E�x� t� is the force field (the electric field) acting on the particle.

Let ρ�x� t� describe the macroscopic density of particles located at posi-
tion x ∈ �N at time t > 0; that is,

ρ�x� t� =
∫
f �x� v� t�dv�

Equation (1.2) can be written alternatively as the Poisson equation E =
−∇xU with −
xU = γρ. Then, we see U�x� t� = �2 −N�−1c0
x
2−N∗ρ�x� t�
with c0 = γ/SN−1.

The sign γ = +1 represents electrostatic (repulsive) interaction between
the particles of the same species, while γ = −1 represents gravitational
(attractive) interaction. Note that if γ = 0, we have the linear Fokker–
Planck equation, which describes the Brownian motion of particles in a
surrounding bath.

Neunzert et al. [8] used the probabilistic method to prove the
global existence of probability measure solutions for weak form of the
two-dimensional VPFP system with the friction term. Degond [6] proved
the global existence of a unique classical solution f ∈ L∞�0� T �W 1� 1

x� v �
for any T > 0 of the VPFP system, under the assumptions that φ ≥
0� φ ∈ W

1� 1
x� v (i.e., �φ�L1

x� v
+ �Dφ�L1

x� v
< ∞ with D = ∇x and ∇v), and

�v�m�
φ
 + 
Dφ
� ∈ L∞
x� v for some m > N in one- and two-dimensional

cases. Moreover, the regularity problem was treated for smooth initial data,
e.g., φ ∈ W k� 1

x� v and �v�m�
φ
 + · · · + 
Dkφ
� ∈ L∞
x� v. To prove these results,

the iterative scheme method was used. Here, we denote �v� =
√

1 + 
v
2.
We use the function space W m�n� 1

x� v such that

ψ ∈ W m�n� 1
x� v if and only if

∑

α
 ≤m� 
β
 ≤n

�∇α
x∇β

v ψ�L1
x� v
<∞�

and we often use W k� 1
x� v instead of W k�k� 1

x� v for simplicity.
Also, Victory and O’Dwyer [13] obtained the similar results for the VPFP

system with the friction term in one- and two-dimensional cases, together
with a technique similar to that in [6].

Our aim of this paper is to prove the global existence and uniqueness
of regular solutions of the VPFP system for initial data φ in a wider class
than Degond’s [6].



628 kosuke ono

Our main result is as follows.

Theorem 1.1. Let N = 1� 2� 3. Suppose that φ ≥ 0� �v�mφ ∈ L∞
x� v for

some m > N , and φ ∈ L1
x� v if N = 1� 2 or �v�2φ ∈ L1

x� v if N = 3. Then,
there exists a unique global solution f ≥ 0 of the VPFP system belonging to
C��0�∞��L1

x� v� ∩ C��0�∞��W m�n� 1
x� v � for any m�n ≥ 0, with

sup
0≤ t ≤T

�E�t��L∞
x
<∞ for any T > 0�

Moreover, we have

f ∈ C∞(
�N × �N × �0�∞�) and E ∈ C∞(

�N × �0�∞�)�
When N = 1 and 3, recently, in [9] we studied the global existence and

uniqueness of regular solutions for the VPFP system together with the lin-
ear Fokker–Planck equation, under slightly better initial conditions than
those of Theorem 1.1 (see Theorem 2.3 in Section 2). Thus, as a corollary
of Theorem 2.3, we conclude Theorem 1.1 in one- and three-dimensional
cases. (See the end of Section 2 for details.) Then, we need to focus the
problem in two dimensions.

In Section 2 we will give the proof of Theorem 1.1. In Section 3, under
other initial conditions related to Theorem 2.3, we will study the global
existence and uniqueness of regular solutions of the two-dimensional VPFP
system in the repulsive interaction case.

As for global existence in three dimensions, we refer to Bouchut [1, 2]
and Castella [4]. They studied the existence of strong solutions under other
initial conditions. As for the decay estimates of the force field E and the
density ρ, and for the asymptotic behavior of the solutions with small initial
data, we refer to [3, 5, 9, 10, 12] and the references cited therein.

Finally we fix some notation. The function spaces Lpx�L
p
x� v� L

p
x �Lqv� mean

Lp��N
x �� Lp��N

x ×�N
v �� Lp��N

x �Lq��N
v ��, and so on. Positive constants will

be denoted by C and will change from line to line; especially, CT means
constants depending on T .

2. REGULAR SOLUTIONS

First, we recall the local existence theorem, which is given by [9] (see
Propositions 4.1 and 4.5 in [9]).

Proposition 2.1. Let N be any dimension. Suppose that φ ≥ 0� φ ∈ L1
x� v,

and

sup
λ≥0

∥∥∥∥∫ φ�x−λv�v�dv
∥∥∥∥
L∞
x

<∞ �or, more simply, φ∈L1
v�L∞

x ��� (2.1)
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Then, for m�n ≥ 0, there exists T > 0 such that the problem (1.1), (1.2) admits
the existence of a unique local solution f ≥ 0 belonging to

C
(�0� T ��L1

x� v

) ∩ C(�0� T ��W m�n� 1
x� v

)
� (2.2)

Moreover, if

sup
0≤t<T

sup
λ≥0

∥∥∥∥ ∫ f �x− λv� v� t�dv
∥∥∥∥
L∞
x

<∞� (2.3a)

then we can take T = ∞ in (2.2).
Furthermore, a sufficient condition for (2.3a) is

sup
0≤t<T

tδ�E�t��L∞
x
<∞ for some δ ∈ �0� 1/2�� (2.3b)

The existence of the unique local solution f of the VPFP system is shown
by using the contraction mapping principle.

Remark 2.2. (i) Due to Lemma 2.6 below, we know that the condition
(2.1) is fulfilled by initial data φ such that �v�mφ ∈ L∞

x� v for some m > N .

(ii) When N = 1, by the definition of the force field E, we see imme-
diately the boundedness of E and hence we can take T = ∞ in (2.2). When
N = 3, in the previous paper [9] we gave the a priori estimate under the
conditions that 
v
2φ ∈ L1

x� v and φ ∈ L∞
x� v in addition to the assumptions

of Proposition 2.1, and then we obtained the following.

Theorem 2.3 (Ono and Strauss [9]). Let N = 1� 3. Suppose that φ ≥
0� supλ≥0 �

∫
φ�x − λv� v�dv�L∞

x
< ∞, and φ ∈ L1

x� v if N = 1 or �v�2φ ∈
L1
x� v and φ ∈ L∞

x� v if N = 3. Then, there exists a unique global solution
f ≥ 0 of the VPFP system belonging to C��0�∞��L1

x� v� ∩ C��0�∞��W m�n� 1
x� v �

for any m�n ≥ 0, with sup0≤t≤T �E�t��L∞
x
<∞ for any T > 0. Moreover, we

have f ∈ C∞��N × �N × �0�∞�� and E ∈ C∞��N × �0�∞��.
Let us focus on the two-dimensional case. The first result for the

two-dimensional VPFP system is as follows.

Theorem 2.4. Let N = 2. Suppose that φ ≥ 0, φ ∈ L1
x� v, and �v�mφ ∈

L∞
x� v for some m > 2. Then, there exists a unique global solution f ≥ 0 of

the VPFP system belonging to C��0�∞��L1
x� v� ∩ C��0�∞��W m�n� 1

x� v � for any
m�n ≥ 0, with

sup
0≤t≤T

��v�mf �t��L∞
x� v
<∞ and sup

0≤t≤T
�E�t��L∞

x
<∞

for any T > 0. Moreover, we have f ∈ C∞��N × �N × �0�∞�� and E ∈
C∞��N × �0�∞��.
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Proof. Let N = 2 and let f be a solution given by Proposition 2.1 on
�0� T �. It is enough to derive a priori bound �E�t��L∞

x
<∞ on �0� T �.

Then, by a direct calculation we know that the solution f satisfies

∂t��v�mf � + v · ∇x��v�mf �

+
{
E + 2m

v

�v�2

}
· ∇v��v�mf � − 
v��v�mf � = F� (2.4)

where F = F1 + F2 with

F1 = m

{
�m+ 2� 
v


2

�v�2 −N

}
�v�m−2f

and

F2 = mE · v�v�m−2f�

We first estimate the L∞
x� v-norm of the terms F1 and F2. We freely use

the fact that �f �t��Lpx� v ≤ �φ�Lpx� v for 1 ≤ p ≤ ∞. It is easy to see that

�F1�t��L∞
x� v

≤ C��v�m−2f �t��L∞
x� v

≤ C��v�mf �t��L∞
x� v
� (2.5)

Since it follows from Lemma 2.6 below that

�E�t��L∞
x
≤ C�ρ�t��1/2

L1
x
�ρ�t��1/2

L∞
x
= C�f �t��1/2

L1
x� v
�
∫
f dv�1/2

L∞
x

≤ C�f �t��1/2
L1
x� v

(�f �t��1−2/m
L∞
x� v

��v�mf �t��2/m
L∞
x� v

)1/2

≤ C��v�mf �t��1/m
L∞
x� v

for m > 2� (2.6)

we observe

�F2�t��L∞
x� v

≤ C�E�t��L∞
x
��v�m−1f �t��L∞

x� v

≤ C��v�mf �t��1/m
L∞
x� v

(�f �t��1/m
L∞
x� v
��v�mf �t��1−1/m

L∞
x� v

)
≤ C��v�mf �t��L∞

x� v
for m > 2� (2.7)

Therefore, from Proposition 2.5 below together with (2.5) and (2.7), we
have

��v�mf �t��L∞
x� v

≤ ��v�mφ�L∞
x� v

+ C
∫ t

0
�F�s��L∞

x� v
ds

≤ C + C
∫ t

0
��v�mf �s��L∞

x� v
ds� (2.8)

and from Gronwall’s inequality, we deduce

sup
0≤t<T

��v�mf �t��L∞
x� v

≤ CT �
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and hence from (2.6) we observe

sup
0≤t<T

�E�t��L∞
x
≤ CT �

which is the desired a priori estimate. Thus the function f is the global
solution of the two-dimensional VPFP system. Moreover, using Eq. (1.1),
we see that the solution f and the force field E are smooth for t > 0.

Next, we prove the inequality (2.8) which we used in the proof of
Theorem 2.4 (cf. Degond [6]).

Proposition 2.5. Let f be a solution on �0� T � given by Proposition 2.1.
Suppose that the assumptions of Theorem 2.4 are fulfilled. Then, the solution
f satisfies

��v�mf �t��L∞
x� v

≤ ��v�mφ�L∞
x� v

+
∫ t

0
�F�s��L∞

x� v
ds (2.9)

for 0 ≤ t < T .

Proof. Putting

g�x� v� t� = �v�mf �x� v� t� and H�x� v� t� = E�x� t� + 2m
v

�v�2 �

we have from (2.4) that

L�g� ≡ ∂tg + v · ∇xg +H · ∇vg − 
vg = F (2.10)

with g
t=0 = �v�mφ.

Step 1. We will prove that if g
t=0 ≥ 0 and F ≥ 0, then g ≥ 0. Putting
G�x� v� t� = e−tg�x� v� t� and

L̃�G� ≡ ∂tG+G+ v · ∇xG+H · ∇vG− 
vG�

we observe

L̃�G� = e−tL�g� = e−tF ≥ 0� (2.11)

We will argue by contradiction. Assume that there exists a point �x0� v0� t0�
∈ �N × �N × �0� T � such that g�x0� v0� t0� < 0. Then, we have

G�x0� v0� t0� < 0�

and we put k = −G�x0� v0� t0�, k > 0. For A > 0 and ε > 0 which are fixed
below, we define a function

Gε�x� v� t� = G
(
x� v� t� + ε�At + 
x
2 + 2
v
2)�
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Then,

L̃�Gε� = L̃�G� + ε
(
A+At + 
x
2 + 2x · v + 2
v
2 + 4H · v − 4N

)
�

and by Young’s inequality and (2.11),

L̃�Gε� ≥ εA− ε
(−
v
2 + 4�H�L∞

x� v

v
 + 4N

)
�

Since t0 < T , it follows from (2.3b) with δ = 0 in Proposition 2.1 that
�H�t��L∞

x� v
<∞ for any 0 ≤ t ≤ t0. We take A > 0 such that

A ≥ sup
{−
v
2 + 4�H�t��L∞

x� v

v
 + 4N 
 v ∈ �N and t ∈ �0� t0�

}
�

and then

L̃�Gε� ≥ 0� (2.12)

Moreover, we take ε > 0 such that

Gε�x0� v0� t0� = G�x0� v0� t0� + ε�At0 + 
x0
2 + 2
v0
2� ≤ −k
2
�

and we set

�x� v =
{
�x� v� ∈ �N × �N 
 
x
2 + 2
v
2

> ε−1
(
− inf

�x� v� t�∈�N×�N×�0� t0�
G�x� v� t�

)}
�

Since G
t=0 = �v�mφ ≥ 0 and G ∈ C��N × �N × �0� t0��, we see that �x� v
is not empty and

Gε > 0 on �x� v × �0� t0��
On the other hand, since Gε
t=0 = �v�mφ + ε�
x
2 + 2
v
2� ≥ 0,

Gε�x0� v0� t0� < 0, and Gε ∈ C��N × �N × �0� t0��, we observe that
there exists a point �x1� v1� t1� ∈ ���N × �N�\�x� v� × �0� t0� such that

Gε�x1� v1� t1� = inf
�x� v� t�∈�N×�N×�0� t0�

Gε�x� v� t��

Then, we see ∂tGε�x1� v1� t1� ≤ 0, ∇xGε�x1� v1� t1� = 0, ∇vGε�x1� v1� t1� =
0, and 
vGε�x1� v1� t1� ≥ 0, and hence

L̃�Gε�x1� v1� t1�� ≤ Gε�x1� v1� t1� ≤ Gε�x0� v0� t0� < 0

which is a contradiction to (2.12). Therefore we conclude g ≥ 0.
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Step 2. We will prove that for t > 0,

sup
�x� v�∈�N×�N

g�x� v� t� ≤ sup
�x� v�∈�N×�N

g�x� v� 0�

+
∫ t

0
sup

�x� v�∈�N×�N

F�x� v� s�ds (2.13)

and

inf
�x� v�∈�N×�N

g�x� v� t� ≥ inf
�x� v�∈�N×�N

g�x� v� 0�

+
∫ t

0
inf

�x� v�∈�N×�N
F�x� v� s�ds� (2.14)

Putting

u = −g + sup
�x� v�∈�N×�N

g�x� v� 0� +
∫ t

0
sup

�x� v�∈�N×�N

F�x� v� s�ds�

we observe

L�u� = −L�g� + sup
�x� v�∈�N×�N

F�x� v� t� ≥ 0

and u
t=0 = −g
t=0 + sup�x� v�∈�N×�N g
t=0 ≥ 0. Thus, from Step 1 we have
u ≥ 0, which gives (2.13).

Next, putting

v = g − inf
�x� v�∈�N×�N

g�x� v� 0� −
∫ t

0
inf

�x� v�∈�N×�N
F�x� v� s�ds�

by the same argument above, we have v ≥ 0, which gives (2.14).
From Step 2 we immediately deduce

�g�t��L∞
x� v

≤ �g�0��L∞
x� v

+
∫ t

0
�F�s��L∞

x� v
ds

which implies the desired estimate (2.9).

Next, we state a useful lemma.

Lemma 2.6. If �v�mψ ∈ L∞
x� v for some m > N , then ψ ∈ L1

v�L∞
x � and

hence ψ ∈ L∞
x �L1

v�, and we have

�ψ�L∞
x �L1

v� ≤ �ψ�L1
v�L∞

x � ≤ C�ψ�1−N/m
L∞
x� v

��v�mψ�N/mL∞
x� v
� (2.15)
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Proof. The first inequality in (2.15) is clear. For R > 0, we have∫
�ψ�·� v��L∞

x
dv =

(∫

v
≥R

+
∫

v
≤R

)
�ψ�·� v��L∞

x
dv

≤ CR−�m−N���v�mψ�L∞
x� v

+ CRN�ψ�L∞
x� v
�

Making the optimal choice R = ���v�mψ�L∞
x� v
/�ψ�L∞

x� v
�1/m, we conclude the

second inequality in (2.15).

As a corollary of Theorems 2.3 and 2.4 together with Lemma 2.6, we have
the following global existence theorem, which completely includes Degond’s
results [6].

Corollary 2.7. Let N = 1� 2� 3. Suppose that φ ≥ 0, �v�mφ ∈ L∞
x� v for

some m > N , and φ ∈ L1
x� v if N = 1� 2 or �v�2φ ∈ L1

x� v if N = 3. Then,
there exists a unique global solution f ≥ 0 of the VPFP system belonging to
C��0�∞��L1

x� v� ∩ C��0�∞��W m�n� 1
x� v � for any m�n ≥ 0. Moreover, we have

f ∈ C∞��N × �N × �0�∞�� and E ∈ C∞��N × �0�∞��.

3. REPULSIVE INTERACTION CASE

In the repulsive interaction case (i.e., γ = +1 in (1.2)), under the dif-
ferent conditions from Theorem 2.4, we consider the global existence and
uniqueness of regular solutions for the two-dimensional VPFP system.
Here, we denote the initial force field at time t = 0 by

E0�x� ≡ E�x� 0� = +1
SN−1

x


x
N ∗
∫
φ�x� v�dv� (3.1)

where the symbol ∗ is the convolution in the x variable.
Another global existence theorem for the two-dimensional VPFP system

is written as follows.

Theorem 3.1 (Repulsive interaction). Let N = 2 and γ = +1 in
(1.2). Suppose that φ ≥ 0� �v�2 φ ∈ L1

x� v� φ ∈ L∞
x� v, supλ≥0 �

∫
φ�x −

λv� v�dv�L∞
x
< ∞, and E0 ∈ L2

x. Then, there exists a unique global solution
f ≥ 0 of the VPFP system belonging to C��0�∞��L1

x� v� ∩ C��0�∞��W m�n� 1
x� v �

for any m�n ≥ 0, with

sup
0≤t≤T

�E�t��L∞
x
<∞ for any T > 0�

Moreover, we have f ∈ C∞��N ×�N × �0�∞�� and E ∈ C∞��N × �0�∞��.
To get the above theorem, we use the following lemma and proposition,

which have been given in the previous paper [9] (cf. [1, 4]).
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Lemma 3.2 [9, Proposition 3.5 (ii)]. If ψ ∈ L1
x� v ∩L∞

x� v and 
v
kψ ∈ L1
x� v

for some k > 0, then ψ�x− λv� v� ∈ Lpx �L1
v� for any λ ∈ � and p ∈ �1� 1 +

k/N�, and we have

sup
λ≥0

∥∥∥∥ ∫ 
ψ�x− λv� v�
dv
∥∥∥∥
L
p
x

≤ C�ψ�1/p−�N/k��1−1/p�
L1
x� v

�ψ�1−1/p
L∞
x� v

�
v
kψ��N/k��1−1/p�
L1
x� v

�

Proposition 3.3 [9, Proposition 5.5]. Let N ≥ 2. Suppose that φ ≥ 0�
φ ∈ L1

x� v ∩ L∞
x� v� supλ≥0 �

∫
φ�x− λv� v�dv�L∞

x
<∞, and

Kr ≡ sup
0≤t<T

�E�t��Lrx <∞ for some r ∈ �2N�∞�� (3.2)

Then, for p ∈ �l�∞�,

Sp ≡ sup
0≤t<T

sup
λ≥0

∥∥∥∥ ∫ f �x− λv� v� t�dv
∥∥∥∥
L
p
x

(3.3)

satisfies

Sp ≤ C + CTS
l/p
l K

r�1−l/p�
r �

Proof of Theorem 3.1. Let N = 2 and γ = +1, and let f be a solution
on �0� T �. Since a direct calculation leads to the energy identity

d

dt

{�
v
2f�L1
x� v

+ �E�t��2
L2
x

} = 4�φ�L1
x� v
�

we obtain

�
v
2f�L1
x� v

≤ �
v
2φ�L1
x� v

+ �E0�2
L2
x
+ 4�φ�L1

x� v
T

for 0 ≤ t < T , where E0 is given by (3.1).
Applying Lemma 3.2 with p = q� k = 2, we observe∥∥∥∥ ∫ f �x− λv� v� t�dv

∥∥∥∥
L
q
x

≤ C�
v
2f�1−1/q
L1
x� v

≤ CT

for 1 ≤ q ≤ 2, and hence

Sq ≤ CT for 1 ≤ q ≤ 2�

where Sq is given by (3.3).
From the Hardy–Littlewood–Sobolev inequality, it follows that

Kp ≤ C sup
0≤t<T

∥∥∥∥ ∫ f �x� v� t�dv
∥∥∥∥
L
q
x

≤ CSq
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for 1 < q < p <∞ with 1/p = 1/q − 1/2, where Kp is given by (3.2), and
hence

Kp ≤ CT for 2 < p <∞�

Finally, applying Proposition 3.3 with l = 2� r = 5� p = ∞, we conclude

S∞ = sup
0≤t<T

sup
λ≥0

∥∥∥∥ ∫ f �x− λv� v� t�dv
∥∥∥∥
L∞
x

≤ C + CTK
5
5 ≤ CT � (3.4)

which is the desired a priori estimate (2.3a), and by the same way as in [9],
we obtain from (3.4) that K∞ ≤ CT .
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